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Wealkly interacting Fermi gases simulate spin-lattices in energy-space, offering a rich platform for
investigating information spreading and spin coherence in a large many-body quantum system. We
show that the collective spin vector can be determined as a function of energy from the measured
spin density, enabling general energy-space resolved protocols. We measure an out-of-time-order
correlation function in this system and observe the energy dependence of the many-body coherence.

Trapped, weakly interacting Fermi gases provide a new
paradigm for the study of many-body physics in a large
quantum system containing N ~ 10° atoms with a tun-
able, reversible Hamiltonian [1, 2]. In this system, co-
herent superpositions of two hyperfine states behave as
pseudo-spins and the s-wave scattering length is magnet-
ically tuned to nearly vanish [1, 3, 4]. The corresponding
collision rate is negligible, so that single atom energies are
conserved [1, 5-7] over the experimental time scale. The
conserved single particle energy states label the “sites” of
an effective energy-space lattice, simulating a variety of
spin-lattice models [8]. Interactions are effectively long
range in energy-space [4, 8, 9], important for new stud-
ies of information scrambling in a far from equilibrium,
nearly zero temperature regime [10] and for applications
to fast scrambling [11] and “out-of-equilibrium” dynam-
ics in spin-lattice systems [12]. However, measurements
in weakly interacting Fermi gases [1-7] have been limited
to the spatial profiles of the collective spin density or the
total number of atoms in each spin state, precluding ob-
servation of many-body correlations in chosen sectors of
the energy-space lattice.

Of particular interest is the measurement of out-of-
time-order correlation (OTOC) functions in weakly inter-
acting Fermi gases. Certain OTOC functions [13-16] can
serve as entanglement witnesses and to quantify coher-
ence and information scrambling in quantum many-body
systems [10, 17]. Originally, OTOC measurements were
performed by reversing the time evolution of the many-
body state in nuclear magnetic resonance experiments at
high temperatures, where the initial state is described
by a density operator and high order quantum coherence
was observed [18]. New OTOC studies have been done in
trapped ion systems containing relatively small numbers
of atoms, where the individual sites are nearly equiva-
lent, and the initial state is pure [10]. Related methods
have been developed for systems containing up to 100
atoms [19], but the application of OTOC measurement
to trapped ultracold gases has remained a challenge.

In this Letter, we report the demonstration of a general
method for performing energy-resolved measurements
of the collective spin vector in a harmonically-trapped
weakly-interacting Fermi gas. We show that OTOC mea-
surements can be implemented in this system and we
extract many-body coherence in energy-resolved sectors,
paving the way for new protocols, such as time-dependent

energy-space correlation measurements.

In the experiments [20], we begin with a degenerate
cloud of SLi containing a total of N = 6.5 x 10* atoms in
a single spin state. The cloud is confined in a harmonic,
cigar-shaped optical trap, with oscillation frequencies
w, /27 = 23 Hz along the cigar x-axis and w, /27 = 625
Hz in the transverse (y, z) directions. The corresponding
Fermi temperature Tr = 0.73 uK and T/Tr = 0.32.

We employ the two lowest hyperfine-Zeeman states,
which are denoted by [1) = | 1.) and |2) = | ],). The
cloud is initially prepared in state |].) in a bias mag-
netic field of 528.53 G, where the s-wave scattering length
a1z = a = 4.24a9 [4]. In this case, the largest possible
collision rate 7. in the Fermi gas arises for an incoherent
mixture with N/2 atoms in each of two spin states. We
find 7. < 1.7 x 10735~ [21], which is negligible for the
experimental time scale < 1s. Hence, the single particle
energies are conserved and the energy distribution is time
independent, as observed in the experiments [4, 20].

The Hamiltonian for the confined weakly interacting
Fermi gas can be approximated as a one-dimensional
(1D) spin “lattice” in energy space [4],

H(a)zaz gijSi'Sj_ZQiszi (1)
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where we take h = 1. We associate a “site” ¢ with the
energy F;=(n;+1/2) hv, of an atom in the i*" harmonic
oscillator state along the cigar axis x. For each E;, we
define a dimensionless collective spin vectors; = ), Sa,,
where the sum over «; includes the occupied transverse
(ny,n.) states for fixed n;. As kpTr/hw, ~ 650, the
average number of atoms at each site is N/650 ~ 100 [22].
The first term in Eq. 1 is a site-to-site interaction,
proportional to the s-wave scattering length a and to
the overlap of the harmonic oscillator probability densi-
ties for colliding atoms, g;; x [ dz|¢p, () |¢g, (2)|*
1/+/|Ei — E;|, which is an effective long range interaction
in the energy lattice [4]. For a zero temperature Fermi
gas, the average interaction energy is ag = 3.8 Qpp [23],
where the mean field frequency [4] for our experimental
parameters is Qpp /27 ~ 0.5 Hz, i.e., ag/2m ~ 1.9 Hz.
The second term in Eq. 1 is an effective site-dependent
Zeeman energy, arising from the quadratic spatial varia-
tion of the bias magnetic field along z, which produces
a spin-dependent harmonic potential. As w,/w, = 27,
the corresponding effect on the transverse (y, z) motion
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FIG. 1. Energy-resolved out-of-time-order correlation (OTOC) measurement. The system is initially prepared in a pure state,
with the spins for atoms of energy E1, Fa, ...En polarized along the —z axis; (a) OTOC sequence, after which the spatial profiles
of the 1 and |. states are measured for each cloud by resonant absorption imaging; (b) “single-shot” spin density profile S.(x)
(blue dots). For this measurement, the scattering length in the Hamiltonian H(a) is a = 4.24 ao, ¢ = m, and o = 345 pum.

(c) An inverse-Abel transform of the spatial profile (blue dots) extracts the single-shot energy-resolved spin density S (F) (red
dots). An Abel transform of S (FE) yields the red-dashed curve shown in (b), consistent with the data.

is negligible, so that all atoms at site ¢ have the same
Zeeman energy. In Eq. 1, Q(E;) = Q; = Q' E; + A/
where Q' = —dw, /hw,,, with dw, /27 = 14.9 mHz for our
trap [4]. For atoms with the mean energy E, ~ kpTr/4,
V E,/2m ~ 2 Hz. We define A’ = A — Q' E,,, where A
is the global detuning and A = 0 corresponds to ©; = 0
for the mean energy, E; = E,.

A key feature of our experiments is the extraction of
energy-resolved spin densities ny, | (E) by inverse Abel-
transformation of the corresponding 1D spatial profiles
n+, 1. (z), which are obtained from absorption images of
a single cloud. The transform method requires a contin-
uum approximation, which is justified for the x-direction,
where kpTr/hw, = 650. Further, we require negligible
energy space coherence, i.e., the atomic spins remain ef-
fectively localized in their individual energy sites. This
assumption is justified by the very small transition ma-
trix elements < 10~ hiw,. [24] between three dimensional
harmonic oscillator states, which arise from short range
interactions between two atoms [20].

In this regime, the spatial profile for each spin state
ny(x), 0 =12, 1z, is an Abel transform of the correspond-
ing energy profile n,(E) [20],

no(z) = / 0E |655(2) | n (E)
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In Eq. 2, the last form is obtained by using a WKB ap-
proximation for the harmonic oscillator states ¢z (x) [20].
An inverse Abel-transform [20, 25] of n,(x) then deter-
mines n,(F) with a resolution AE ~ 0.04 Er [20].

For the protocol of Fig. 1(a), discussed in detail be-
low, Fig. 1(b) shows the measured single-shot spin den-
sity, S.(z, ) = [n1.(2,6) — ny. (2,6)]/2, in units of the
central total spin density n(0). Fig. 1(c) shows the corre-
sponding single-shot S, (FE, ¢), obtained by inverse-Abel
transformation of S, (z, ¢). We see that S, (E, ¢) appears
smooth compared to the single-shot spin density S, (x, ¢),
which requires averaging over several shots to obtain a

smooth profile. To check that the inverse-Abel trans-
form has adequate energy resolution, we Abel transform
the extracted S, (F, ¢), yielding the red-dotted curve of
Fig. 1(b), which is consistent with the measured density
profile [20].

Our experimental OTOC protocol, Fig. 1(a), applies a
rotation ¢ to the total interacting spin system in between
forward and time-reversed evolutions. Then, a measure-
ment of s,; is performed to diagnose the effects of the ro-
tation on the spins at “sitei” in energy space. We start by
preparing a fully z-polarized state [}21).2 ... }2n) = |¥20)
in a bias magnetic field By = 528.53 G, where the scat-
tering length a1 = a = 4.24 ag. Then we apply a 0.5 ms
radio-frequency (7/2), pulse (defined to be about the y-
axis), which is resonant with the | .) — | 1) transition
at the bias field By, to produce an initial x-polarized N-
atom state |1o) = e 25 |0) = [Tp1Te2 .- Ten). The
system evolves for a time 7 = 200 ms at the initial bias
magnetic field By = 528.53 G. Then, a resonant radio-
frequency pulse (¢),, shifted in phase from the first pulse
by 7/2, rotates the N-atom state about the x-axis [26] by
a chosen angle ¢. Immediately following this rotation,
we reverse the sign of the Hamiltonian by applying a
(m)y pulse and tuning the bias magnetic field to a value
By = 525.83 G, where the scattering length ay = —a,
ie., ™ H(—a)e ™ = —H(a), from Eq. 1. After the
system evolves for an additional time 7, the bias field
is ramped back to Bi, and a final (7/2), pulse is ap-
plied [20]. The final state of the N-atom system after the
pulse sequence of Fig. 1(a) can be written as

_j3m
[W5) = e FIWy (7)), (3)
where the W-operator is defined by
W¢(T) _ eiH(a)Te—iqS S’me—iH(a)T7 (4)

with S, = Zi)aismi the x-component of the total spin
vector for the N-atom sample and [¢g) the fully x-
polarized state. After the pulse sequence, the spin den-
sities n4,(x) and n|.(x) are measured for a single cloud
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FIG. 2. Total collective spin projection S. versus rotation angle ¢ without energy restriction. (a) F(¢) = 3(Ny, —N,.)/(N¢. +
N,.) (blue dots) for a measured scattering length ameas = 4.24 ag. The red solid curve is the fit of Eq. 8, which determines the
magnitudes of the coherence coefficients |B,,| (b) and corresponding phases ., (c); (d) Fit of the mean field model of Ref. [4]
to the data (blue dots) for a global detuning A = 0 with @ = ameas (black-dashed) and with a = 2.63 ameas (red-solid).

using two resonant absorption images, separated in time
by 10 us. We define one repetition of this experimental
sequence as a “single-shot,” in Fig. 1(b) and (c). Inverse-
Abel transformation of [nq,(z) —n . (x)]/2 then measures
S (Ei, ¢) = s.i, for a single shot, Fig. 1(c).

Now we connect the measured s,; to information
scrambling [10, 13, 19]. Cousider a single spin labelled
by oy, with spin components s;q,, Sya;, Sza;, interact-
ing with the many-body system. It is straightforward
to show [20],

Cai = <¢0|[W¢(T)7Szai] 2|1/)0> =

<1/}f |Szai

1
o~ vs). (5)
As the many-body operator Wy and the single spin op-
erator Sgq, initially commute, i.e., [Wy(0), Sza,] = 0, a
measurement of (¢r[$za,[1s) determines how two ini-
tially commuting operators fail to commute at a later
time, providing a measure of scrambling.

In the experiments, we measure the collective spin op-
erators s,; = Eai Sza,, Where a; = (n4,ny,n.) for fixed
n;. The corresponding mean square commutator, aver-
aged over the N spins with x-energy Ej;, is [20]

1 1 1
E;C‘li (¢’T) = §_M . <¢f|szai|¢f>' (6)

Further averaging Eq. 6 over atoms with energies within
AF of E; = E, we replace the sum on the righthand side
by S.(F) AE/[n(E) AE], yielding the measured quantity

(B, ¢) —n,.(E, ¢)
(B, ¢) +n,.(E,¢)

Here, n(E) = nqy,(E, ¢) +ny.(E, ¢) is independent of ¢
and F(E,0)=1/2.

We can extract information about the many-body co-
herence from Eq. 6, by writing the sum on the right-hand
side as Y, €% B, [20]. Non-vanishing coefficients B,,
correspond to coherence between states for which the x-
component S, of the total angular momentum differs by
m [17, 20]. Since the sum is real, B_,, = B}, we can

m?

F(E, ¢) (7)

1n¢
2n¢

expand Eq. 7 for the measured, energy-selected average
in the form

F(E,$) = Bo+ Y 2|Bp|cos(mé + om).

m>1

(8)

In fitting the data with Eq. 8, we restrict the range of m
to 4. We find that the fits are not improved by further
increase of m, consistent with the limited number of ¢
values measured in the experiments.

We measure spin density profiles ny, |_(z, ¢) for a scat-
tering length a = 4.24 ag. The data are averaged over 6
repetitions for each ¢, with the ¢ values chosen in ran-
dom order. We begin by finding the total number of
atoms in each spin state Ny | (¢) = [dxny, . (z,9)
for the protocol of Fig. 1(a), to find the total collective
spin projection S, versus rotation angle ¢, without en-
ergy restriction. Fig. 2(a) shows the normalized S, data
F(¢) = $(Ny., — N;.)/(Ny. + N,.) (blue dots) and the
fit of Eq. 8 (red curve), which determines the magnitude
(b) and phase (c) of the average coherence coefficients
B,,. We note that F(0) ~ F(27) < 1/2, the maximum
for ideal conditions. This discrepancy arises from small
variations in the phase shift of the final 7/2 pulse, which
is applied at a finite detuning as the magnetic field is
ramped from By back to its original value By [20].

To check that the measurements are reasonable, we
compare the ¢-dependent data of Fig. 2 to a fit of our
1D mean field model, which employs a calculated average
transverse density n to fit single-pulse spin-wave data
with no free parameters [4]. The model, evaluated with
a global detuning A = 0, is shown in Fig. 2(d). To fit
the observed ¢ dependence (red solid curve), the model
requires a scattering length acrr = 2.63 ameas, i-€., 2.63
times larger than the measured value ameas = 4.24 ag,
which yields the black-dashed curve. The increased aey
may occur because the measured coherence orders with
|m| > 1 arise from interactions, favoring the largest cou-
plings in a manner that is not predicted by our model.

Fig. 3 shows the energy-resolved measurements
F(E, @), obtained by inverse-Abel transformation of the
same data. The top row shows significant variation in
symmetry and structure as the energy is varied from
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FIG. 3. Energy-resolved collective spin projection S.(E) versus rotation angle ¢ for spins of selected energies (left to right)

E/Er =0,0.15,0.25,0.5,0.7. Here, F(¢) = 2[nt(E) — ny(E)]/[nt(E) + ny(E)].

The top row shows the data (blue dots) for

a measured scattering length a = 4.24a9. The red solid curve is the fit of Eq. 8, which determines the magnitudes of the
coherence coefficients | B, | (second row) and corresponding phases ¢, (third row); The bottom row shows the fits (red solid
curves) of the mean field model of Ref. [4] to the data (blue dots), using a scattering length 2.63 times the measured value and

global detunings, ordered in energy, of A(Hz) =0, 0.8, 0.65, —0.8, and 0.15.

E =0to E = 0.7TFEr. The red solid curves in the first
row show the fit of Eq. 8, which yields the magnitudes
of the coherence coefficients |B,,| and the correspond-
ing phases ,,. In the last row, we compare the data to
fits of the mean field model [4]. Again, the model cap-
tures the complex ¢-dependent shapes of the data with
Aeff = 2.63 ameas, but a different detuning A is needed
for each energy. This may be a consequence of averaging
data over several detunings A, where each A rotates the
direction of the ¢-rotation axis by A7 [26].

In summary, we have demonstrated a general method
for measuring energy-resolved collective spin vectors in
an energy-space lattice with effective long-range interac-
tions. We have shown that an OTOC protocol can be im-
plemented in this system and that many-body coherence
can be measured in selected energy-space subsystems.
Future measurement of time-dependent correlations be-
tween extensive subsets, C;;(t) = (¥o|Swi(t)sz;(t)|v0) —
(Yo S2i(t)|0)(Yolsa;(t)|1ho), enables a wide variety of

protocols, extending correlation measurements in small
numbers of trapped ions [27] to large quantum systems.
For an initial x-polarized product state, 1), Cy;(t) =0
for noninteracting systems and for our mean-field model,
so that Cj;(t) # O signifies beyond mean-field physics.
As C;5(0) = 0, a scrambling time [28, 29] is determined
by observing the evolution from the product state to a
correlated state.
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