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Weakly interacting Fermi gases simulate spin-lattices in energy-space, offering a rich platform for
investigating information spreading and spin coherence in a large many-body quantum system. We
show that the collective spin vector can be determined as a function of energy from the measured
spin density, enabling general energy-space resolved protocols. We measure an out-of-time-order
correlation function in this system and observe the energy dependence of the many-body coherence.

Trapped, weakly interacting Fermi gases provide a new
paradigm for the study of many-body physics in a large
quantum system containing N ≃ 105 atoms with a tun-
able, reversible Hamiltonian [1, 2]. In this system, co-
herent superpositions of two hyperfine states behave as
pseudo-spins and the s-wave scattering length is magnet-
ically tuned to nearly vanish [1, 3, 4]. The corresponding
collision rate is negligible, so that single atom energies are
conserved [1, 5–7] over the experimental time scale. The
conserved single particle energy states label the “sites” of
an effective energy-space lattice, simulating a variety of
spin-lattice models [8]. Interactions are effectively long
range in energy-space [4, 8, 9], important for new stud-
ies of information scrambling in a far from equilibrium,
nearly zero temperature regime [10] and for applications
to fast scrambling [11] and “out-of-equilibrium” dynam-
ics in spin-lattice systems [12]. However, measurements
in weakly interacting Fermi gases [1–7] have been limited
to the spatial profiles of the collective spin density or the
total number of atoms in each spin state, precluding ob-
servation of many-body correlations in chosen sectors of
the energy-space lattice.

Of particular interest is the measurement of out-of-
time-order correlation (OTOC) functions in weakly inter-
acting Fermi gases. Certain OTOC functions [13–16] can
serve as entanglement witnesses and to quantify coher-
ence and information scrambling in quantum many-body
systems [10, 17]. Originally, OTOC measurements were
performed by reversing the time evolution of the many-
body state in nuclear magnetic resonance experiments at
high temperatures, where the initial state is described
by a density operator and high order quantum coherence
was observed [18]. New OTOC studies have been done in
trapped ion systems containing relatively small numbers
of atoms, where the individual sites are nearly equiva-
lent, and the initial state is pure [10]. Related methods
have been developed for systems containing up to 100
atoms [19], but the application of OTOC measurement
to trapped ultracold gases has remained a challenge.

In this Letter, we report the demonstration of a general
method for performing energy-resolved measurements
of the collective spin vector in a harmonically-trapped
weakly-interacting Fermi gas. We show that OTOC mea-
surements can be implemented in this system and we
extract many-body coherence in energy-resolved sectors,
paving the way for new protocols, such as time-dependent

energy-space correlation measurements.
In the experiments [20], we begin with a degenerate

cloud of 6Li containing a total of N = 6.5× 104 atoms in
a single spin state. The cloud is confined in a harmonic,
cigar-shaped optical trap, with oscillation frequencies
ωx/2π = 23 Hz along the cigar x-axis and ωr/2π = 625
Hz in the transverse (y, z) directions. The corresponding
Fermi temperature TF = 0.73µK and T/TF = 0.32.
We employ the two lowest hyperfine-Zeeman states,

which are denoted by |1〉 ≡ | ↑z〉 and |2〉 ≡ | ↓z〉. The
cloud is initially prepared in state | ↓z〉 in a bias mag-
netic field of 528.53 G, where the s-wave scattering length
a12 ≡ a = 4.24 a0 [4]. In this case, the largest possible
collision rate γc in the Fermi gas arises for an incoherent
mixture with N/2 atoms in each of two spin states. We
find γc < 1.7 × 10−3 s−1 [21], which is negligible for the
experimental time scale < 1 s. Hence, the single particle
energies are conserved and the energy distribution is time
independent, as observed in the experiments [4, 20].
The Hamiltonian for the confined weakly interacting

Fermi gas can be approximated as a one-dimensional
(1D) spin “lattice” in energy space [4],

H(a) = a
∑

i,j 6=i

gij si · sj −
∑

i

Ωi szi (1)

where we take h̄ ≡ 1. We associate a “site” i with the
energy Ei=(ni+1/2)hνx of an atom in the ith harmonic
oscillator state along the cigar axis x. For each Ei, we
define a dimensionless collective spin vector si =

∑

αi
sαi

,
where the sum over αi includes the occupied transverse
(ny, nz) states for fixed ni. As kBTF /h̄ωx ≃ 650, the
average number of atoms at each site isN/650 ≃ 100 [22].
The first term in Eq. 1 is a site-to-site interaction,

proportional to the s-wave scattering length a and to
the overlap of the harmonic oscillator probability densi-
ties for colliding atoms, gij ∝

∫

dx |φEi
(x)|2 |φEj

(x)|2 ∝

1/
√

|Ei − Ej |, which is an effective long range interaction
in the energy lattice [4]. For a zero temperature Fermi
gas, the average interaction energy is aḡ = 3.8ΩMF [23],
where the mean field frequency [4] for our experimental
parameters is ΩMF /2π ≃ 0.5 Hz, i.e., aḡ/2π ≃ 1.9 Hz.
The second term in Eq. 1 is an effective site-dependent

Zeeman energy, arising from the quadratic spatial varia-
tion of the bias magnetic field along x, which produces
a spin-dependent harmonic potential. As ωr/ωx = 27,
the corresponding effect on the transverse (y, z) motion
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FIG. 1. Energy-resolved out-of-time-order correlation (OTOC) measurement. The system is initially prepared in a pure state,
with the spins for atoms of energy E1, E2, ...EN polarized along the −z axis; (a) OTOC sequence, after which the spatial profiles
of the ↑z and ↓z states are measured for each cloud by resonant absorption imaging; (b) “single-shot” spin density profile Sz(x)
(blue dots). For this measurement, the scattering length in the Hamiltonian H(a) is a = 4.24 a0, φ = π, and σ = 345µm.
(c) An inverse-Abel transform of the spatial profile (blue dots) extracts the single-shot energy-resolved spin density Sz(E) (red
dots). An Abel transform of Sz(E) yields the red-dashed curve shown in (b), consistent with the data.

is negligible, so that all atoms at site i have the same
Zeeman energy. In Eq. 1, Ω(Ei) ≡ Ωi = Ω′ Ei + ∆′,
where Ω′ = −δωx/h̄ωx, with δωx/2π = 14.9 mHz for our
trap [4]. For atoms with the mean energy Ēx ≃ kBTF/4,
Ω′ Ēx/2π ≃ 2 Hz. We define ∆′ ≡ ∆ − Ω′ Ēx, where ∆
is the global detuning and ∆ = 0 corresponds to Ωi = 0
for the mean energy, Ei = Ēx.
A key feature of our experiments is the extraction of

energy-resolved spin densities n↑z,↓z
(E) by inverse Abel-

transformation of the corresponding 1D spatial profiles
n↑z,↓z

(x), which are obtained from absorption images of
a single cloud. The transform method requires a contin-
uum approximation, which is justified for the x-direction,
where kBTF /h̄ωx = 650. Further, we require negligible
energy space coherence, i.e., the atomic spins remain ef-
fectively localized in their individual energy sites. This
assumption is justified by the very small transition ma-
trix elements < 10−4 h̄ωx [24] between three dimensional
harmonic oscillator states, which arise from short range
interactions between two atoms [20].
In this regime, the spatial profile for each spin state

nσ(x), σ ≡↑z, ↓z, is an Abel transform of the correspond-
ing energy profile nσ(E) [20],

nσ(x) =

∫

dE |φE(x)|
2 nσ(E)

=
ωx

π

∫ ∞

0

dpx nσ

(

p2x
2m

+
mω2

x

2
x2

)

. (2)

In Eq. 2, the last form is obtained by using a WKB ap-
proximation for the harmonic oscillator states φE(x) [20].
An inverse Abel-transform [20, 25] of nσ(x) then deter-
mines nσ(E) with a resolution ∆E ≃ 0.04EF [20].
For the protocol of Fig. 1(a), discussed in detail be-

low, Fig. 1(b) shows the measured single-shot spin den-
sity, Sz(x, φ) = [n↑z

(x, φ) − n↓z
(x, φ)]/2, in units of the

central total spin density n(0). Fig. 1(c) shows the corre-
sponding single-shot Sz(E, φ), obtained by inverse-Abel
transformation of Sz(x, φ). We see that Sz(E, φ) appears
smooth compared to the single-shot spin density Sz(x, φ),
which requires averaging over several shots to obtain a

smooth profile. To check that the inverse-Abel trans-
form has adequate energy resolution, we Abel transform
the extracted Sz(E, φ), yielding the red-dotted curve of
Fig. 1(b), which is consistent with the measured density
profile [20].
Our experimental OTOC protocol, Fig. 1(a), applies a

rotation φ to the total interacting spin system in between
forward and time-reversed evolutions. Then, a measure-
ment of szi is performed to diagnose the effects of the ro-
tation on the spins at “site i” in energy space. We start by
preparing a fully z-polarized state |↓z1↓z2 ... ↓zN〉 ≡ |ψz0〉
in a bias magnetic field B1 = 528.53 G, where the scat-
tering length a1 ≡ a = 4.24 a0. Then we apply a 0.5 ms
radio-frequency (π/2)y pulse (defined to be about the y-
axis), which is resonant with the | ↓z〉 → | ↑z〉 transition
at the bias field B1, to produce an initial x-polarized N-
atom state |ψ0〉 = e−iπ

2
Sy |ψz0〉 = |↑x1↑x2 ... ↑xN〉. The

system evolves for a time τ = 200 ms at the initial bias
magnetic field B1 = 528.53 G. Then, a resonant radio-
frequency pulse (φ)x, shifted in phase from the first pulse
by π/2, rotates the N-atom state about the x-axis [26] by
a chosen angle φ. Immediately following this rotation,
we reverse the sign of the Hamiltonian by applying a
(π)y pulse and tuning the bias magnetic field to a value
B2 = 525.83 G, where the scattering length a2 = −a,
i.e., eiπSyH(−a) e−iπSy = −H(a), from Eq. 1. After the
system evolves for an additional time τ , the bias field
is ramped back to B1, and a final (π/2)y pulse is ap-
plied [20]. The final state of the N-atom system after the
pulse sequence of Fig. 1(a) can be written as

|ψf 〉 = e−i 3π
2
SyWφ(τ)|ψ0〉, (3)

where the W -operator is defined by

Wφ(τ) = eiH(a)τ e−iφ Sxe−iH(a)τ , (4)

with Sx =
∑

i,αi
sxαi

the x-component of the total spin

vector for the N -atom sample and |ψ0〉 the fully x-
polarized state. After the pulse sequence, the spin den-
sities n↑z(x) and n↓z(x) are measured for a single cloud
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FIG. 2. Total collective spin projection Sz versus rotation angle φ without energy restriction. (a) F (φ) = 1

2
(N↑z −N↓z )/(N↑z +

N↓z ) (blue dots) for a measured scattering length ameas = 4.24 a0. The red solid curve is the fit of Eq. 8, which determines the
magnitudes of the coherence coefficients |Bm| (b) and corresponding phases ϕm (c); (d) Fit of the mean field model of Ref. [4]
to the data (blue dots) for a global detuning ∆ = 0 with a = ameas (black-dashed) and with a = 2.63 ameas (red-solid).

using two resonant absorption images, separated in time
by 10µs. We define one repetition of this experimental
sequence as a “single-shot,” in Fig. 1(b) and (c). Inverse-
Abel transformation of [n↑z(x)−n↓z(x)]/2 then measures
Sz(Ei, φ) ≡ szi, for a single shot, Fig. 1(c).
Now we connect the measured szi to information

scrambling [10, 13, 19]. Consider a single spin labelled
by αi, with spin components sxαi

, syαi
, szαi

, interact-
ing with the many-body system. It is straightforward
to show [20],

Cαi
≡ 〈ψ0|[Wφ(τ), sxαi

]|2|ψ0〉 =
1

2
− 〈ψf |szαi

|ψf 〉. (5)

As the many-body operator Wφ and the single spin op-
erator sxαi

initially commute, i.e., [Wφ(0), sxαi
] = 0, a

measurement of 〈ψf |szαi
|ψf 〉 determines how two ini-

tially commuting operators fail to commute at a later
time, providing a measure of scrambling.
In the experiments, we measure the collective spin op-

erators szi =
∑

αi
szαi

, where αi ≡ (ni, ny, nz) for fixed
ni. The corresponding mean square commutator, aver-
aged over the Ns spins with x-energy Ei, is [20]

1

Ns

∑

αi

Cαi
(φ, τ) =

1

2
−

1

Ns

∑

αi

〈ψf |szαi
|ψf 〉. (6)

Further averaging Eq. 6 over atoms with energies within
∆E of Ei ≡ E, we replace the sum on the righthand side
by Sz(E)∆E/[n(E)∆E], yielding the measured quantity

F(E, φ) ≡
1

2

n↑z
(E, φ) − n↓z

(E, φ)

n↑z
(E, φ) + n↓z

(E, φ)
. (7)

Here, n(E) = n↑z
(E, φ) + n↓z

(E, φ) is independent of φ
and F(E, 0) = 1/2.
We can extract information about the many-body co-

herence from Eq. 6, by writing the sum on the right-hand
side as

∑

m eimφBm [20]. Non-vanishing coefficients Bm

correspond to coherence between states for which the x-
component Sx of the total angular momentum differs by
m [17, 20]. Since the sum is real, B−m = B∗

m, we can

expand Eq. 7 for the measured, energy-selected average
in the form

F(E, φ) = B0 +
∑

m≥1

2 |Bm| cos(mφ+ ϕm). (8)

In fitting the data with Eq. 8, we restrict the range of m
to 4. We find that the fits are not improved by further
increase of m, consistent with the limited number of φ
values measured in the experiments.
We measure spin density profiles n↑z,↓z

(x, φ) for a scat-
tering length a = 4.24 a0. The data are averaged over 6
repetitions for each φ, with the φ values chosen in ran-
dom order. We begin by finding the total number of
atoms in each spin state N↑z,↓z

(φ) =
∫

dxn↑z ,↓z
(x, φ)

for the protocol of Fig. 1(a), to find the total collective
spin projection Sz versus rotation angle φ, without en-
ergy restriction. Fig. 2(a) shows the normalized Sz data
F (φ) = 1

2 (N↑z
− N↓z

)/(N↑z
+ N↓z

) (blue dots) and the
fit of Eq. 8 (red curve), which determines the magnitude
(b) and phase (c) of the average coherence coefficients
Bm. We note that F (0) ≃ F (2π) < 1/2, the maximum
for ideal conditions. This discrepancy arises from small
variations in the phase shift of the final π/2 pulse, which
is applied at a finite detuning as the magnetic field is
ramped from B2 back to its original value B1 [20].
To check that the measurements are reasonable, we

compare the φ-dependent data of Fig. 2 to a fit of our
1D mean field model, which employs a calculated average
transverse density n̄⊥ to fit single-pulse spin-wave data
with no free parameters [4]. The model, evaluated with
a global detuning ∆ = 0, is shown in Fig. 2(d). To fit
the observed φ dependence (red solid curve), the model
requires a scattering length aeff ≡ 2.63 ameas, i.e., 2.63
times larger than the measured value ameas = 4.24 a0,
which yields the black-dashed curve. The increased aeff
may occur because the measured coherence orders with
|m| > 1 arise from interactions, favoring the largest cou-
plings in a manner that is not predicted by our model.
Fig. 3 shows the energy-resolved measurements

F(E, φ), obtained by inverse-Abel transformation of the
same data. The top row shows significant variation in
symmetry and structure as the energy is varied from
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FIG. 3. Energy-resolved collective spin projection Sz(E) versus rotation angle φ for spins of selected energies (left to right)
E/EF = 0, 0.15, 0.25, 0.5, 0.7. Here, F(φ) = 1

2
[n↑(E) − n↓(E)]/[n↑(E) + n↓(E)]. The top row shows the data (blue dots) for

a measured scattering length a = 4.24 a0. The red solid curve is the fit of Eq. 8, which determines the magnitudes of the
coherence coefficients |Bm| (second row) and corresponding phases ϕm (third row); The bottom row shows the fits (red solid
curves) of the mean field model of Ref. [4] to the data (blue dots), using a scattering length 2.63 times the measured value and
global detunings, ordered in energy, of ∆(Hz) = 0, 0.8, 0.65, −0.8, and 0.15.

E = 0 to E = 0.7EF . The red solid curves in the first
row show the fit of Eq. 8, which yields the magnitudes
of the coherence coefficients |Bm| and the correspond-
ing phases ϕm. In the last row, we compare the data to
fits of the mean field model [4]. Again, the model cap-
tures the complex φ-dependent shapes of the data with
aeff = 2.63 ameas, but a different detuning ∆ is needed
for each energy. This may be a consequence of averaging
data over several detunings ∆, where each ∆ rotates the
direction of the φ-rotation axis by ∆τ [26].
In summary, we have demonstrated a general method

for measuring energy-resolved collective spin vectors in
an energy-space lattice with effective long-range interac-
tions. We have shown that an OTOC protocol can be im-
plemented in this system and that many-body coherence
can be measured in selected energy-space subsystems.
Future measurement of time-dependent correlations be-
tween extensive subsets, Cij(t) ≡ 〈ψ0|sxi(t)sxj(t)|ψ0〉 −
〈ψ0|sxi(t)|ψ0〉〈ψ0|sxj(t)|ψ0〉, enables a wide variety of

protocols, extending correlation measurements in small
numbers of trapped ions [27] to large quantum systems.
For an initial x-polarized product state, |ψ0〉, Cij(t) = 0
for noninteracting systems and for our mean-field model,
so that Cij(t) 6= 0 signifies beyond mean-field physics.
As Cij(0) = 0, a scrambling time [28, 29] is determined
by observing the evolution from the product state to a
correlated state.
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