This is the accepted manuscript made available via CHORUS. The article has been published as:

Energy-Resolved Information Scrambling in Energy-Space Lattices
 S. Pegahan, I. Arakelyan, and J. E. Thomas

Phys. Rev. Lett. 126, 070601 - Published 19 February 2021
DOI: 10.1103/PhysRevLett.126.070601

Energy-Resolved Information Scrambling in Energy-Space Lattices

S. Pegahan, I. Arakelyan and J. E. Thomas
${ }^{1}$ Department of Physics, North Carolina State University, Raleigh, NC 27695, USA

(Dated: December 10, 2020)

Abstract

Weakly interacting Fermi gases simulate spin-lattices in energy-space, offering a rich platform for investigating information spreading and spin coherence in a large many-body quantum system. We show that the collective spin vector can be determined as a function of energy from the measured spin density, enabling general energy-space resolved protocols. We measure an out-of-time-order correlation function in this system and observe the energy dependence of the many-body coherence.

Trapped, weakly interacting Fermi gases provide a new paradigm for the study of many-body physics in a large quantum system containing $N \simeq 10^{5}$ atoms with a tunable, reversible Hamiltonian [1, 2]. In this system, coherent superpositions of two hyperfine states behave as pseudo-spins and the s-wave scattering length is magnetically tuned to nearly vanish $[1,3,4]$. The corresponding collision rate is negligible, so that single atom energies are conserved $[1,5-7]$ over the experimental time scale. The conserved single particle energy states label the "sites" of an effective energy-space lattice, simulating a variety of spin-lattice models [8]. Interactions are effectively long range in energy-space $[4,8,9]$, important for new studies of information scrambling in a far from equilibrium, nearly zero temperature regime [10] and for applications to fast scrambling [11] and "out-of-equilibrium" dynamics in spin-lattice systems [12]. However, measurements in weakly interacting Fermi gases [1-7] have been limited to the spatial profiles of the collective spin density or the total number of atoms in each spin state, precluding observation of many-body correlations in chosen sectors of the energy-space lattice.

Of particular interest is the measurement of out-of-time-order correlation (OTOC) functions in weakly interacting Fermi gases. Certain OTOC functions [13-16] can serve as entanglement witnesses and to quantify coherence and information scrambling in quantum many-body systems [10, 17]. Originally, OTOC measurements were performed by reversing the time evolution of the manybody state in nuclear magnetic resonance experiments at high temperatures, where the initial state is described by a density operator and high order quantum coherence was observed [18]. New OTOC studies have been done in trapped ion systems containing relatively small numbers of atoms, where the individual sites are nearly equivalent, and the initial state is pure [10]. Related methods have been developed for systems containing up to 100 atoms [19], but the application of OTOC measurement to trapped ultracold gases has remained a challenge.

In this Letter, we report the demonstration of a general method for performing energy-resolved measurements of the collective spin vector in a harmonically-trapped weakly-interacting Fermi gas. We show that OTOC measurements can be implemented in this system and we extract many-body coherence in energy-resolved sectors, paving the way for new protocols, such as time-dependent
energy-space correlation measurements.
In the experiments [20], we begin with a degenerate cloud of ${ }^{6} \mathrm{Li}$ containing a total of $N=6.5 \times 10^{4}$ atoms in a single spin state. The cloud is confined in a harmonic, cigar-shaped optical trap, with oscillation frequencies $\omega_{x} / 2 \pi=23 \mathrm{~Hz}$ along the cigar x-axis and $\omega_{r} / 2 \pi=625$ Hz in the transverse (y, z) directions. The corresponding Fermi temperature $T_{F}=0.73 \mu \mathrm{~K}$ and $T / T_{F}=0.32$.

We employ the two lowest hyperfine-Zeeman states, which are denoted by $|1\rangle \equiv\left|\uparrow_{z}\right\rangle$ and $|2\rangle \equiv\left|\downarrow_{z}\right\rangle$. The cloud is initially prepared in state $\left|\downarrow_{z}\right\rangle$ in a bias magnetic field of 528.53 G , where the s-wave scattering length $a_{12} \equiv a=4.24 a_{0}[4]$. In this case, the largest possible collision rate γ_{c} in the Fermi gas arises for an incoherent mixture with $N / 2$ atoms in each of two spin states. We find $\gamma_{c}<1.7 \times 10^{-3} \mathrm{~s}^{-1}$ [21], which is negligible for the experimental time scale $<1 \mathrm{~s}$. Hence, the single particle energies are conserved and the energy distribution is time independent, as observed in the experiments [4, 20].

The Hamiltonian for the confined weakly interacting Fermi gas can be approximated as a one-dimensional (1D) spin "lattice" in energy space [4],

$$
\begin{equation*}
H(a)=a \sum_{i, j \neq i} g_{i j} \mathbf{s}_{i} \cdot \mathbf{s}_{j}-\sum_{i} \Omega_{i} s_{z i} \tag{1}
\end{equation*}
$$

where we take $\hbar \equiv 1$. We associate a "site" i with the energy $E_{i}=\left(n_{i}+1 / 2\right) h \nu_{x}$ of an atom in the $\mathrm{i}^{\text {th }}$ harmonic oscillator state along the cigar axis x. For each E_{i}, we define a dimensionless collective spin vector $\mathbf{s}_{i}=\sum_{\alpha_{i}} \mathbf{s}_{\alpha_{i}}$, where the sum over α_{i} includes the occupied transverse $\left(n_{y}, n_{z}\right)$ states for fixed n_{i}. As $k_{B} T_{F} / \hbar \omega_{x} \simeq 650$, the average number of atoms at each site is $N / 650 \simeq 100$ [22].

The first term in Eq. 1 is a site-to-site interaction, proportional to the s-wave scattering length a and to the overlap of the harmonic oscillator probability densities for colliding atoms, $g_{i j} \propto \int d x\left|\phi_{E_{i}}(x)\right|^{2}\left|\phi_{E_{j}}(x)\right|^{2} \propto$ $1 / \sqrt{\left|E_{i}-E_{j}\right|}$, which is an effective long range interaction in the energy lattice [4]. For a zero temperature Fermi gas, the average interaction energy is $a \bar{g}=3.8 \Omega_{M F}$ [23], where the mean field frequency [4] for our experimental parameters is $\Omega_{M F} / 2 \pi \simeq 0.5 \mathrm{~Hz}$, i.e., $a \bar{g} / 2 \pi \simeq 1.9 \mathrm{~Hz}$.

The second term in Eq. 1 is an effective site-dependent Zeeman energy, arising from the quadratic spatial variation of the bias magnetic field along x, which produces a spin-dependent harmonic potential. As $\omega_{r} / \omega_{x}=27$, the corresponding effect on the transverse (y, z) motion

FIG. 1. Energy-resolved out-of-time-order correlation (OTOC) measurement. The system is initially prepared in a pure state, with the spins for atoms of energy $E_{1}, E_{2}, \ldots E_{N}$ polarized along the $-z$ axis; (a) OTOC sequence, after which the spatial profiles of the \uparrow_{z} and \downarrow_{z} states are measured for each cloud by resonant absorption imaging; (b) "single-shot" spin density profile $S_{z}(x)$ (blue dots). For this measurement, the scattering length in the Hamiltonian $H(a)$ is $a=4.24 a_{0}, \phi=\pi$, and $\sigma=345 \mu \mathrm{~m}$.
(c) An inverse-Abel transform of the spatial profile (blue dots) extracts the single-shot energy-resolved spin density $S_{z}(E)$ (red dots). An Abel transform of $S_{z}(E)$ yields the red-dashed curve shown in (b), consistent with the data.
is negligible, so that all atoms at site i have the same Zeeman energy. In Eq. $1, \Omega\left(E_{i}\right) \equiv \Omega_{i}=\Omega^{\prime} E_{i}+\Delta^{\prime}$, where $\Omega^{\prime}=-\delta \omega_{x} / \hbar \omega_{x}$, with $\delta \omega_{x} / 2 \pi=14.9 \mathrm{mHz}$ for our trap [4]. For atoms with the mean energy $\bar{E}_{x} \simeq k_{B} T_{F} / 4$, $\Omega^{\prime} \bar{E}_{x} / 2 \pi \simeq 2 \mathrm{~Hz}$. We define $\Delta^{\prime} \equiv \Delta-\Omega^{\prime} \bar{E}_{x}$, where Δ is the global detuning and $\Delta=0$ corresponds to $\Omega_{i}=0$ for the mean energy, $E_{i}=\bar{E}_{x}$.

A key feature of our experiments is the extraction of energy-resolved spin densities $n_{\uparrow_{z}, \downarrow_{z}}(E)$ by inverse Abeltransformation of the corresponding 1D spatial profiles $n_{\uparrow_{z}, \downarrow_{z}}(x)$, which are obtained from absorption images of a single cloud. The transform method requires a continuum approximation, which is justified for the x -direction, where $k_{B} T_{F} / \hbar \omega_{x}=650$. Further, we require negligible energy space coherence, i.e., the atomic spins remain effectively localized in their individual energy sites. This assumption is justified by the very small transition matrix elements $<10^{-4} \hbar \omega_{x}$ [24] between three dimensional harmonic oscillator states, which arise from short range interactions between two atoms [20].

In this regime, the spatial profile for each spin state $n_{\sigma}(x), \sigma \equiv \uparrow_{z}, \downarrow_{z}$, is an Abel transform of the corresponding energy profile $n_{\sigma}(E)$ [20],

$$
\begin{align*}
n_{\sigma}(x) & =\int d E\left|\phi_{E}(x)\right|^{2} n_{\sigma}(E) \\
& =\frac{\omega_{x}}{\pi} \int_{0}^{\infty} d p_{x} n_{\sigma}\left(\frac{p_{x}^{2}}{2 m}+\frac{m \omega_{x}^{2}}{2} x^{2}\right) . \tag{2}
\end{align*}
$$

In Eq. 2, the last form is obtained by using a WKB approximation for the harmonic oscillator states $\phi_{E}(x)$ [20]. An inverse Abel-transform [20, 25] of $n_{\sigma}(x)$ then determines $n_{\sigma}(E)$ with a resolution $\Delta E \simeq 0.04 E_{F}[20]$.

For the protocol of Fig. 1(a), discussed in detail below, Fig. 1(b) shows the measured single-shot spin density, $S_{z}(x, \phi)=\left[n_{\uparrow_{z}}(x, \phi)-n_{\downarrow_{z}}(x, \phi)\right] / 2$, in units of the central total spin density $n(0)$. Fig. 1(c) shows the corresponding single-shot $S_{z}(E, \phi)$, obtained by inverse-Abel transformation of $S_{z}(x, \phi)$. We see that $S_{z}(E, \phi)$ appears smooth compared to the single-shot spin density $S_{z}(x, \phi)$, which requires averaging over several shots to obtain a
smooth profile. To check that the inverse-Abel transform has adequate energy resolution, we Abel transform the extracted $S_{z}(E, \phi)$, yielding the red-dotted curve of Fig. 1(b), which is consistent with the measured density profile [20].

Our experimental OTOC protocol, Fig. 1(a), applies a rotation ϕ to the total interacting spin system in between forward and time-reversed evolutions. Then, a measurement of $s_{z i}$ is performed to diagnose the effects of the rotation on the spins at "site i" in energy space. We start by preparing a fully z-polarized state $\left|\downarrow_{z 1} \downarrow_{z 2} \ldots \downarrow_{z N}\right\rangle \equiv\left|\psi_{z 0}\right\rangle$ in a bias magnetic field $B_{1}=528.53 \mathrm{G}$, where the scattering length $a_{1} \equiv a=4.24 a_{0}$. Then we apply a 0.5 ms radio-frequency $(\pi / 2)_{y}$ pulse (defined to be about the y axis), which is resonant with the $\left|\downarrow_{z}\right\rangle \rightarrow\left|\uparrow_{z}\right\rangle$ transition at the bias field B_{1}, to produce an initial x-polarized N atom state $\left|\psi_{0}\right\rangle=e^{-i \frac{\pi}{2} S_{y}}\left|\psi_{z 0}\right\rangle=\left|\uparrow_{x 1} \uparrow_{x 2} \cdots \uparrow_{x N}\right\rangle$. The system evolves for a time $\tau=200 \mathrm{~ms}$ at the initial bias magnetic field $B_{1}=528.53 \mathrm{G}$. Then, a resonant radiofrequency pulse $(\phi)_{x}$, shifted in phase from the first pulse by $\pi / 2$, rotates the N -atom state about the x -axis [26] by a chosen angle ϕ. Immediately following this rotation, we reverse the sign of the Hamiltonian by applying a $(\pi)_{y}$ pulse and tuning the bias magnetic field to a value $B_{2}=525.83 \mathrm{G}$, where the scattering length $a_{2}=-a$, i.e., $e^{i \pi S_{y}} H(-a) e^{-i \pi S_{y}}=-H(a)$, from Eq. 1. After the system evolves for an additional time τ, the bias field is ramped back to B_{1}, and a final $(\pi / 2)_{y}$ pulse is applied [20]. The final state of the N -atom system after the pulse sequence of Fig. 1(a) can be written as

$$
\begin{equation*}
\left|\psi_{f}\right\rangle=e^{-i \frac{3 \pi}{2} S_{y}} W_{\phi}(\tau)\left|\psi_{0}\right\rangle \tag{3}
\end{equation*}
$$

where the W-operator is defined by

$$
\begin{equation*}
W_{\phi}(\tau)=e^{i H(a) \tau} e^{-i \phi S_{x}} e^{-i H(a) \tau} \tag{4}
\end{equation*}
$$

with $S_{x}=\sum_{i, \alpha_{i}} s_{x \alpha_{i}}$ the x-component of the total spin vector for the N-atom sample and $\left|\psi_{0}\right\rangle$ the fully xpolarized state. After the pulse sequence, the spin densities $n_{\uparrow z}(x)$ and $n_{\downarrow z}(x)$ are measured for a single cloud

FIG. 2. Total collective spin projection S_{z} versus rotation angle ϕ without energy restriction. (a) $F(\phi)=\frac{1}{2}\left(N_{\uparrow_{z}}-N_{\downarrow_{z}}\right) /\left(N_{\uparrow_{z}}+\right.$ $N_{\downarrow z}$) (blue dots) for a measured scattering length $a_{\text {meas }}=4.24 a_{0}$. The red solid curve is the fit of Eq. 8, which determines the magnitudes of the coherence coefficients $\left|B_{m}\right|$ (b) and corresponding phases φ_{m} (c); (d) Fit of the mean field model of Ref. [4] to the data (blue dots) for a global detuning $\Delta=0$ with $a=a_{\text {meas }}$ (black-dashed) and with $a=2.63 a_{\text {meas }}$ (red-solid).
using two resonant absorption images, separated in time by $10 \mu \mathrm{~s}$. We define one repetition of this experimental sequence as a "single-shot," in Fig. 1(b) and (c). InverseAbel transformation of $\left[n_{\uparrow z}(x)-n_{\downarrow z}(x)\right] / 2$ then measures $S_{z}\left(E_{i}, \phi\right) \equiv s_{z i}$, for a single shot, Fig. 1(c).

Now we connect the measured $s_{z i}$ to information scrambling $[10,13,19]$. Consider a single spin labelled by α_{i}, with spin components $s_{x \alpha_{i}}, s_{y \alpha_{i}}, s_{z \alpha_{i}}$, interacting with the many-body system. It is straightforward to show [20],

$$
\begin{equation*}
\left.C_{\alpha_{i}} \equiv\left\langle\psi_{0}\right|\left[W_{\phi}(\tau), s_{x \alpha_{i}}\right]\right|^{2}\left|\psi_{0}\right\rangle=\frac{1}{2}-\left\langle\psi_{f}\right| s_{z \alpha_{i}}\left|\psi_{f}\right\rangle \tag{5}
\end{equation*}
$$

As the many-body operator W_{ϕ} and the single spin operator $s_{x \alpha_{i}}$ initially commute, i.e., $\left[W_{\phi}(0), s_{x \alpha_{i}}\right]=0$, a measurement of $\left\langle\psi_{f}\right| s_{z \alpha_{i}}\left|\psi_{f}\right\rangle$ determines how two initially commuting operators fail to commute at a later time, providing a measure of scrambling.

In the experiments, we measure the collective spin operators $s_{z i}=\sum_{\alpha_{i}} s_{z \alpha_{i}}$, where $\alpha_{i} \equiv\left(n_{i}, n_{y}, n_{z}\right)$ for fixed n_{i}. The corresponding mean square commutator, averaged over the N_{s} spins with x-energy E_{i}, is [20]

$$
\begin{equation*}
\frac{1}{N_{s}} \sum_{\alpha_{i}} C_{\alpha_{i}}(\phi, \tau)=\frac{1}{2}-\frac{1}{N_{s}} \sum_{\alpha_{i}}\left\langle\psi_{f}\right| s_{z \alpha_{i}}\left|\psi_{f}\right\rangle \tag{6}
\end{equation*}
$$

Further averaging Eq. 6 over atoms with energies within ΔE of $E_{i} \equiv E$, we replace the sum on the righthand side by $S_{z}(E) \Delta E /[n(E) \Delta E]$, yielding the measured quantity

$$
\begin{equation*}
\mathcal{F}(E, \phi) \equiv \frac{1}{2} \frac{n_{\uparrow_{z}}(E, \phi)-n_{\downarrow_{z}}(E, \phi)}{n_{\uparrow_{z}}(E, \phi)+n_{\downarrow_{z}}(E, \phi)} \tag{7}
\end{equation*}
$$

Here, $n(E)=n_{\uparrow_{z}}(E, \phi)+n_{\downarrow_{z}}(E, \phi)$ is independent of ϕ and $\mathcal{F}(E, 0)=1 / 2$.

We can extract information about the many-body coherence from Eq. 6, by writing the sum on the right-hand side as $\sum_{m} e^{i m \phi} B_{m}[20]$. Non-vanishing coefficients B_{m} correspond to coherence between states for which the xcomponent S_{x} of the total angular momentum differs by $m[17,20]$. Since the sum is real, $B_{-m}=B_{m}^{*}$, we can
expand Eq. 7 for the measured, energy-selected average in the form

$$
\begin{equation*}
\mathcal{F}(E, \phi)=B_{0}+\sum_{m \geq 1} 2\left|B_{m}\right| \cos \left(m \phi+\varphi_{m}\right) \tag{8}
\end{equation*}
$$

In fitting the data with Eq. 8, we restrict the range of m to 4 . We find that the fits are not improved by further increase of m, consistent with the limited number of ϕ values measured in the experiments.

We measure spin density profiles $n_{\uparrow_{z, \downarrow z}}(x, \phi)$ for a scattering length $a=4.24 a_{0}$. The data are averaged over 6 repetitions for each ϕ, with the ϕ values chosen in random order. We begin by finding the total number of atoms in each spin state $N_{\uparrow_{z}, \downarrow_{z}}(\phi)=\int d x n_{\uparrow_{z, \downarrow z}}(x, \phi)$ for the protocol of Fig. 1(a), to find the total collective spin projection S_{z} versus rotation angle ϕ, without energy restriction. Fig. 2(a) shows the normalized S_{z} data $F(\phi)=\frac{1}{2}\left(N_{\uparrow_{z}}-N_{\downarrow_{z}}\right) /\left(N_{\uparrow_{z}}+N_{\downarrow_{z}}\right)$ (blue dots) and the fit of Eq. 8 (red curve), which determines the magnitude (b) and phase (c) of the average coherence coefficients B_{m}. We note that $F(0) \simeq F(2 \pi)<1 / 2$, the maximum for ideal conditions. This discrepancy arises from small variations in the phase shift of the final $\pi / 2$ pulse, which is applied at a finite detuning as the magnetic field is ramped from B_{2} back to its original value $B_{1}[20]$.

To check that the measurements are reasonable, we compare the ϕ-dependent data of Fig. 2 to a fit of our 1D mean field model, which employs a calculated average transverse density \bar{n}_{\perp} to fit single-pulse spin-wave data with no free parameters [4]. The model, evaluated with a global detuning $\Delta=0$, is shown in Fig. 2(d). To fit the observed ϕ dependence (red solid curve), the model requires a scattering length $a_{e f f} \equiv 2.63 a_{\text {meas }}$, i.e., 2.63 times larger than the measured value $a_{\text {meas }}=4.24 a_{0}$, which yields the black-dashed curve. The increased $a_{\text {eff }}$ may occur because the measured coherence orders with $|m|>1$ arise from interactions, favoring the largest couplings in a manner that is not predicted by our model.

Fig. 3 shows the energy-resolved measurements $\mathcal{F}(E, \phi)$, obtained by inverse-Abel transformation of the same data. The top row shows significant variation in symmetry and structure as the energy is varied from

FIG. 3. Energy-resolved collective spin projection $S_{z}(E)$ versus rotation angle ϕ for spins of selected energies (left to right) $E / E_{F}=0,0.15,0.25,0.5,0.7$. Here, $\mathcal{F}(\phi)=\frac{1}{2}\left[n_{\uparrow}(E)-n_{\downarrow}(E)\right] /\left[n_{\uparrow}(E)+n_{\downarrow}(E)\right]$. The top row shows the data (blue dots) for a measured scattering length $a=4.24 a_{0}$. The red solid curve is the fit of Eq. 8, which determines the magnitudes of the coherence coefficients $\left|B_{m}\right|$ (second row) and corresponding phases φ_{m} (third row); The bottom row shows the fits (red solid curves) of the mean field model of Ref. [4] to the data (blue dots), using a scattering length 2.63 times the measured value and global detunings, ordered in energy, of $\Delta(\mathrm{Hz})=0,0.8,0.65,-0.8$, and 0.15 .
$E=0$ to $E=0.7 E_{F}$. The red solid curves in the first row show the fit of Eq. 8, which yields the magnitudes of the coherence coefficients $\left|B_{m}\right|$ and the corresponding phases φ_{m}. In the last row, we compare the data to fits of the mean field model [4]. Again, the model captures the complex ϕ-dependent shapes of the data with $a_{e f f}=2.63 a_{\text {meas }}$, but a different detuning Δ is needed for each energy. This may be a consequence of averaging data over several detunings Δ, where each Δ rotates the direction of the ϕ-rotation axis by $\Delta \tau[26]$.

In summary, we have demonstrated a general method for measuring energy-resolved collective spin vectors in an energy-space lattice with effective long-range interactions. We have shown that an OTOC protocol can be implemented in this system and that many-body coherence can be measured in selected energy-space subsystems. Future measurement of time-dependent correlations between extensive subsets, $C_{i j}(t) \equiv\left\langle\psi_{0}\right| s_{x i}(t) s_{x j}(t)\left|\psi_{0}\right\rangle-$ $\left\langle\psi_{0}\right| s_{x i}(t)\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| s_{x j}(t)\left|\psi_{0}\right\rangle$, enables a wide variety of
protocols, extending correlation measurements in small numbers of trapped ions [27] to large quantum systems. For an initial x-polarized product state, $\left|\psi_{0}\right\rangle, C_{i j}(t)=0$ for noninteracting systems and for our mean-field model, so that $C_{i j}(t) \neq 0$ signifies beyond mean-field physics. As $C_{i j}(0)=0$, a scrambling time $[28,29]$ is determined by observing the evolution from the product state to a correlated state.

Primary support for this research is provided by the Air Force Office of Scientific Research (FA9550-16-1-0378) and the National Science Foundation (PHY2006234). Additional support for the JETlab atom cooling group has been provided by the Physics Division of the Army Research Office (W911NF-14-1-0628) and by the Division of Materials Science and Engineering, the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DE-SC0008646).
*Corresponding author: jethoma7@ncsu.edu
[1] X. Du, Y. Zhang, J. Petricka, and J. E. Thomas, Controlling spin current in a trapped Fermi gas, Phys. Rev. Lett. 103, 010401 (2009).
[2] S. Smale, P. He, B. A. Olsen, K. G. Jackson, H. Sharum, S. Trotzky, J. Marino, A. M. Rey, and J. H. Thywissen, Observation of a transition between dynamical phases in a quantum degenerate Fermi gas, Science Advances 5 (2019), elocation-id: eaax1568.
[3] X. Du, L. Luo, B. Clancy, and J. E. Thomas, Observation of anomalous spin segregation in a trapped Fermi gas, Phys. Rev. Lett. 101, 150401 (2008).
[4] S. Pegahan, J. Kangara, I. Arakelyan, and J. E. Thomas, Spin-energy correlation in degenerate weakly interacting Fermi gases, Phys. Rev. A 99, 063620 (2019).
[5] F. Piéchon, J. N. Fuchs, and F. Laloë, Cumulative identical spin rotation effects in collisionless trapped atomic gases, Phys. Rev. Lett. 102, 215301 (2009).
[6] S. S. Natu and E. J. Mueller, Anomalous spin segregation in a weakly interacting two-component Fermi gas, Phys. Rev. A 79, 051601 (2009).
[7] C. Deutsch, F. Ramirez-Martinez, C. Lacroûte, F. Reinhard, T. Schneider, J. N. Fuchs, F. Piéchon, F. Laloë, J. Reichel, and P. Rosenbusch, Spin self-rephasing and very long coherence times in a trapped atomic ensemble, Phys. Rev. Lett. 105, 020401 (2010).
[8] A. P. Koller, M. L. Wall, J. Mundinger, and A. M. Rey, Dynamics of interacting fermions in spin-dependent potentials, Phys. Rev. Lett. 117, 195302 (2016).
[9] U. Ebling, A. Eckardt, and M. Lewenstein, Spin segregation via dynamically induced long-range interactions in a system of ultracold fermions, Phys. Rev. A 84, 063607 (2011).
[10] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J. Bollinger, and A. M. Rey, Measuring out-of-timeorder correlations and multiple quantum spectra in a trapped-ion quantum magnet, Nature Physics 13, 781 (2017).
[11] G. Bentsen, T. Hashizume, A. S. Buyskikh, E. J. Davis, A. J. Daley, S. S. Gubser, and M. Schleier-Smith, Treelike interactions and fast scrambling with cold atoms, Phys. Rev. Lett. 123, 130601 (2019).
[12] J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nature Phys. 11, 124 (2015).
[13] M. Schleier-Smith, Probing information scrambling, Nature Physics 13, 724 (2017).
[14] B. Swingle and N. Y. Yao, Seeing scrambled spins, Physics 10, 82 (2017).
[15] J. Li, R. Fan, HengyanWang, B. Ye, B. Zeng, H. Zhai, X. Peng, and J. Du, Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator, Phys. Rev. X 7, 031011 (2017).
[16] J. Marino and A. M. Rey, Cavity-qed simulator of slow and fast scrambling, Phys. Rev. A 99, 051803 (2019).
[17] M. Gärttner, P. Hauke, and A. M. Rey, Relating out-of-time-order correlations to entanglement via multiplequantum coherences, Phys. Rev. Lett. 120, 040402 (2018).
[18] J. Baum, M. Munowitz, A. N. Garroway, and A. Pines, Multiple-quantum dynamics in solid state NMR, The Journal of Chemical Physics 83, 2015 (1985).
[19] R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and A. M. Rey, Unifying scrambling, thermalization and entanglement through measurement of fidelity out-of-timeorder correlators in the Dicke model, Nature Communications 10, 5007 (2019).
[20] See Supplemental Material for a description of the experimental details and of the inverse Abel-transform method.
[21] M. E. Gehm, S. L. Hemmer, K. M. O'Hara, and J. E. Thomas, Unitarity-limited elastic collision rate in a harmonically trapped Fermi gas, Phys. Rev. A 68, 011603 (2003).
[22] The number of atoms Δn_{i} at site i, i.e., in x-mode E_{i}, summed over y, z transverse modes, is $\Delta n_{i} \simeq \frac{3 \Delta E_{i} N}{E_{F}}(1-$ $\left.E_{i} / E_{F}\right)^{2}$. With $\Delta E_{i}=\hbar \omega_{x}, N=6.5 \times 10^{4}$, and $E_{i}=$ $E_{F} / 2$, we find $\Delta n_{i} \simeq 74$.
[23] Here, we employ a continuum approximation with $\bar{g} \equiv$ $\int d n P(n) \int d n^{\prime} P\left(n^{\prime}\right) g\left(n, n^{\prime}\right)$, in the notation of Ref. [4].
[24] Nonzero matrix elements arise for transitions between states of relative motion with even x-quantum number $2 n$ and azimuthal quantum number $l=0$ [20]. For our trap, $\sqrt{\hbar / m \omega_{x}} \simeq 8.5 \mu \mathrm{~m}$ and $\nu_{r} / \nu_{x}=27$. With $a=$ $4.24 a_{0},\left\langle 2 n^{\prime}, m_{r}^{\prime}\right| H^{\prime}\left|2 n, m_{r}\right\rangle / h \nu_{x} \simeq 3.2 \times 10^{-4} /\left(n^{\prime} n\right)^{1 / 4}$, independent of the radial quantum numbers m_{r}, m_{r}^{\prime}.
[25] G. Pretzier, A new method for numerical Abel-inversion, Zeitschrift fr Naturforschung A 46, 639 (1991).
[26] Note that a nonzero detuning Δ changes the effective axis of rotation to $\hat{e}_{x^{\prime}}=\cos (\Delta \tau) \hat{e}_{x}+\sin (\Delta \tau) \hat{e}_{y}$ without changing the general ϕ-dependent structure of the OTOC [20].
[27] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe, Non-local propagation of correlations in quantum systems with long-range interactions, Nature 511, 198 (2014).
[28] A. Y. Guo, M. C. Tran, A. M. Childs, A. V. Gorshkov, and Z.-X. Gong, Signaling and scrambling with strongly long-range interactions, Phys. Rev. A 102, 010401 (2020).
[29] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, Journal of High Energy Physics 2016, 106 (2016).

