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Quantum Annealing (QA) and the Quantum Approximate Optimization Algorithm (QAOA) are
two special cases of the following control problem: apply a combination of two Hamiltonians to
minimize the energy of a quantum state. Which is more effective has remained unclear. Here we
analytically apply the framework of optimal control theory to show that generically, given a fixed
amount of time, the optimal procedure has the pulsed (or “bang-bang”) structure of QAOA at the
beginning and end but can have a smooth annealing structure in between. This is in contrast to
previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support
this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating
that bang-anneal-bang protocols are more common. The general features identified here provide
guideposts for the nascent experimental implementations of quantum optimization algorithms.

Introduction. The ongoing development of Noisy In-
termediate Scale Quantum devices is guided by the ques-
tion of how to leverage limited resources to best prepare
the desired state of a system. Both Quantum Annealing
(QA) [1, 2] and the Quantum Approximate Optimiza-
tion Algorithm (QAOA) [3] use a combination of two
Hamiltonians to try to prepare the ground state of one
of the Hamiltonians. QA smoothly interpolates between
the two Hamiltonians, whereas QAOA applies one or the
other in sequence. It has previously been unclear which
method, if either, is the most efficient. This question
informs not only algorithm design but also hardware de-
sign, since near-term devices will be restricted in their
capabilities.

Previous works [4–7] have applied the formalism of
optimal control theory, in particular Pontryagin’s Max-
imum/Minimum Principle [8], to this problem. It has
been suggested on the basis of Pontryagin’s principle that
a “bang-bang” protocol, as in QAOA, is optimal [4]. Yet
as we demonstrate, some of the assumptions behind this
result are not true in general. We show that hybrid proto-
cols consisting of both bang-bang and annealing segments
are often best, backing up our analytic results with nu-
merics for Ising models. Ref. [7] found an optimal bang-
singular-bang [48] protocol for the unstructured search
problem, an effective two-level system. That work can be
thought of as a special case of our results, which apply
for general Hamiltonians and generically see the singular
region take on a smooth annealing structure.

QA is closely related to Adiabatic Quantum Comput-
ing [1], in which the Hamiltonian interpolates from a
simple “mixer” to the desired “problem” Hamiltonian.
The adiabatic theorem guarantees that the system, if ini-
tially in the ground state of the mixer Hamiltonian and
deformed sufficiently slowly, will remain in the ground
state throughout. QA generalizes this to allow for non-
adiabatic protocols. Even in adiabatic regimes, optimiza-

tion of the annealing schedule can potentially give poly-
nomial speedups over both classical algorithms and un-
optimized quantum schedules [10, 11], showing that the
shape of the schedule is important for quantum advan-
tage.

QAOA, on the other hand, applies the mixer and prob-
lem Hamiltonians alternately, using the timings of these
pulses (“bangs”) as variational parameters to be opti-
mized over [3]. There is evidence that restricted forms of
QAOA are more powerful than adiabatic protocols with
the same restrictions [12] (although both are known to
be quantum universal [13, 14]), but this does not ad-
dress whether a non-adiabatic annealing procedure can
outperform QAOA.

Both protocols are candidate algorithms for near-term
quantum devices. Determining any features of the op-
timal protocol a priori would be a significant advantage
in designing both the algorithms and the hardware they
can run on in this era of integrated hardware and soft-
ware design.

Optimal control theory [8] is well-suited to address
such questions. It has long been used in a variety of
physics and chemistry fields [15–25]. Applications to
QA/QAOA are more recent, beginning with Ref. [4] and
continuing with Refs. [5–7]. The QA/QAOA problem is
distinct from the majority of quantum optimal control
problems in that it has only one control function to be
applied in a large Hilbert space [49]. As a result, unlike
in standard quantum optimal control, the desired state
typically cannot be prepared exactly in finite time. Some
work has been done to examine the standard theory in
this limit [26], but the results in this direction remain
sparse.

In what follows, we first carefully articulate the con-
trol problem under consideration, pulling in standard
ideas from optimal control and applying them to the
QAOA/Annealing problem. We then prove general state-
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ments about where bang-bang vs. annealing forms are
preferred and what forms those will take in practice and
finally present numerical results that support the analytic
results. Our results also provide both a novel recasting of
QAOAwithin the Quantum Annealing framework and an
analysis of Quantum Annealing in the low time regime
where it deviates heavily from the adiabatic dynamics
that inspired it.
Control Problem. The problem which both QA and

QAOA seek to solve is as follows: given Hamiltonians B̂
and Ĉ, with the system in the ground state of B̂ at time
0, find the protocol u(t) which minimizes the energy

J ≡ 〈x(tf )|Ĉ|x(tf )〉, (1)

where the time evolution of |x(t)〉 is given by

d

dt
|x(t)〉 = −iĤ(t)|x(t)〉,

Ĥ(t) ≡ u(t)B̂ + (1− u(t))Ĉ.

(2)

To avoid extreme protocols, we require that

u(t) ∈ [0, 1] ∀t. (3)

Our analytic results apply for any two Hamiltonians
where the initial state is the ground state of B̂ and the
target state is the ground state of Ĉ[50]. Often in An-
nealing/QAOA problems Ĉ (the problem Hamiltonian) is
diagonal in the computational basis, while B̂ (the mixer
Hamiltonian) is a transverse field on the qubits. As
stated above, QA assumes a smooth u(t) whereas QAOA
assumes that u(t) is bang-bang.
To apply optimal control theory to this problem, we

interpret Eq. (2) as a constraint relating |x(t)〉 to u(t)
and account for it by introducing a Lagrange multiplier
|k(t)〉. Thus the cost function is modified to

J = 〈x(tf )|Ĉ|x(tf )〉

+

∫ tf

0

dt 〈k(t)|

[

−
d

dt
− iĤ(t)

]

|x(t)〉 + c.c..
(4)

Optimal control theory [8, 34] then uses calculus-of-
variations techniques to derive necessary conditions for
a minimum of J (in addition to Eq. (2)):

d

dt
|k(t)〉 = −iĤ(t)|k(t)〉, (5)

|k(tf )〉 = Ĉ|x(tf )〉, (6)

and finally, for all allowed variations δu(t) of the protocol,

δJ

δu(t)
δu(t) ≡ Φ(t)δu(t) ≥ 0,

Φ(t) =
[

i〈k(t)|
(

Ĉ − B̂
)

|x(t)〉 + c.c.
]

.

(7)

Note that Eq. (7), which is a form of Pontryagin’s Min-
imum Principle [8] applied to this problem, can be satis-
fied at any given time in one of three ways: i) Φ(t) = 0;
ii) Φ(t) > 0 and u(t) = 0; iii) Φ(t) < 0 and u(t) = 1. The
first possibility, that the functional derivative is 0 at the
minimum of J(t), is natural from a calculus-of-variations
perspective. The latter two are legitimate only because
u(t) is restricted to be between 0 and 1, and Eq. (7)
needs to hold merely for all allowed δu(t). However, sit-
uations in which Φ(t) = 0 for an extended interval have
historically been referred to as “singular” [51]. Previous
works have argued that such situations are uncommon in
practice and thus that the optimal protocol must be of
bang-bang form [4]. One of our key results is that sin-
gular regions are in fact quite natural, meaning that the
exceptions noted in Ref. [4] are often the rule [52] .
If an optimal protocol has a smooth annealing form in

some interval, then Φ(t) must equal zero in that interval.
Correspondingly, if Φ(t) is non-zero in some interval, then
the protocol must be of bang-bang form in that interval.
Just as one transforms the Lagrangian of a dynamical

system into a Hamiltonian by the Legendre transform,
one can construct from the cost function J a “control
Hamiltonian” H (not to be confused with the system
Hamiltonian Ĥ). For our problem, the control Hamil-
tonian [53] evaluates to

H(t) = i 〈k(t)| Ĥ(t) |x(t)〉 + c.c.. (8)

The derivation ofH, as well as a proof that it is a constant
in time, is carried out in the Supplementary Material [43].
Time constraints. It is important that we restrict to

a fixed runtime tf . If protocols are allowed arbitrarily
long times, then the problem becomes trivial: the adia-
batic theorem guarantees that any sufficiently slow pro-
tocol will end in the desired ground state. Since adiabatic
protocols are often prohibitively inefficient, we constrain
ourselves to more feasible runtimes. One way to do so
is to simply fix tf (“hard constraint”), as we have done.
Another would be to allow protocols of varying tf but in-
clude a penalty term λtf (“soft constraint”) in the action
[Eq. (4)].
There is a useful connection between these two means

of enforcing the time constraint which shows that they
ultimately yield the same protocol. Furthermore, this
connection gives physical meaning to the control Hamil-
tonian H. The value of H in a hard-constraint prob-
lem with given tf equals the value of λ needed in a soft-
constraint problem for the optimal protocol to have the
same runtime tf . We prove this equivalence in detail in
the Supplementary Material [44].
As a final point, we will assume that tf is small enough

that the desired ground state cannot be reached exactly,
which is often the case in the setting of variational state
preparation. Given enough time, the control problem is
under-constrained and has several optimal solutions that
may in general be hard to characterize. This assumption
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implies that H is strictly positive, since some amount of
penalty is needed for tf to be the optimal runtime.
Initial and final bangs. We now show that any optimal

protocol for our control problem must both begin and
end with a bang. For some finite time interval at the be-
ginning, the protocol must have u(t) = 0, and for another
finite time interval at the end, it must have u(t) = 1.
To prove this, write Φ(t) = ΦC(t)− ΦB(t), where

ΦX(t) ≡ i〈k(t)|X̂ |x(t)〉 + c.c, (9)

for any operator X̂ . Note that ΦB, ΦC , and thus Φ
are continuous functions of time, as is clear from the
continuity of |x〉 and |k〉 [see Eqs. (2) and (5)]. Also, the
control Hamiltonian can be written as

H = u(t)ΦB(t) + (1− u(t))ΦC(t). (10)

Consider the final portion of the protocol first. Eq. (6)
gives ΦC(tf ) = Re[i〈x|Ĉ2|x〉] = 0. Eq. (10) then gives
ΦB(tf ) > 0 (remember that H > 0), and thus Φ(tf ) < 0.
The continuity of Φ(t) then implies that Φ(t) < 0 for a
finite interval ending at tf . We thus have that u(t) = 1
for a finite interval at the end of the protocol.
The initial portion of the protocol can be treated sim-

ilarly, albeit with one additional step. Note that by
Eqs. (2) and (5), the time derivative of 〈k(t)|x(t)〉 is 0,
thus 〈k(0)|x(0)〉 = 〈k(tf )|x(tf )〉. Since the system is as-

sumed to initially be in the ground state of B̂,

ΦB(0) = Re
[

i〈k(0)|B̂|x(0)
]

∝ Re
[

i〈k(0)|x(0)〉
]

= Re
[

i〈k(tf )|x(tf )〉
]

.
(11)

Eq. (6) thus gives ΦB(0) = 0. Identical reasoning to
above then shows that Φ(t) > 0 and u(t) = 0 for a finite
interval at the beginning of the protocol.
These results make sense heuristically. At the begin-

ning of the protocol, the system is in an eigenstate of
B̂ and thus application of B̂ does nothing to the state.
While the final state is not exactly an eigenstate of Ĉ, it
should be close to the target state which is the ground
state of Ĉ. Therefore, roughly we might expect that sim-
ilar logic about the futility of Ĉ at the end might hold,
as our results indeed show.
In the Supplementary Material [45], we discuss how

the lengths of the initial and final bangs vary with the
parameters of the problem. In particular, we find that
they become small as tf increases, with the procedure
approaching the monotonic annealing schedule typical of
adiabatic quantum computing. Our results can be in-
terpreted as saying that optimal quantum annealing for
short timescales deviates from the monotonic ramp char-
acteristic of the adiabatic regime [54].
The condition for a singular region is that Φ(t) and all

its time derivatives must be zero for a finite interval of
time. This condition can be achieved in a variety of ways.
It is known in classical systems [34] that uncontrollability

can lead to singularities, but our system is guaranteed to
be able to reach the desired state due to the adiabatic
theorem since the initial and final states are the ground
states of the two Hamiltonians. Even without reachabil-
ity problems, there are other forms of singularities that
exist and impose conditions on the optimal u(t). In the
Supplement [46], we explain these conditions. Numer-
ous options are possible, largely based on the structure
of the control space and how the derivatives of Φ(t) are
set to zero. We put particular emphasis on the simplest
to derive condition which is the form we have seen for all
singular regions numerically and is given by:

u∗(t) =
Φ[[B̂,Ĉ],Ĉ](t)

Φ[[B̂,Ĉ],B̂](t)− Φ[[B̂,Ĉ],Ĉ](t)
. (12)

While this equation describes how a singular region be-
haves, it does not specify whether the critical point de-
termined by such a singular condition will be the global
minimum, for which we turn to numerics.
Numerical results. The basic form and structure of the

optimal protocol has been discussed for general Hamil-
tonians. The variety of singularity types and bang-bang
possibilities in the middle region turns out to be prob-
lem dependent. To shed light on these concepts in prac-
tice, we here support our analytic results with extensive
numerical simulations for transverse-field Ising models;
though, our analytic results are valid for other models.
The mixer and problem Hamiltonians are

B̂ = −

N
∑

i=1

σ̂x
i , (13)

Ĉ =
∑

ij

Jij σ̂
z
i σ̂

z
j . (14)

We examine a variety of different couplings Jij : long-
range antiferromagnets Jij ∝ |i − j|−α (inspired by cur-
rent experimental apparatuses [27–29]), instances of all-
to-all spin glasses having every Jij chosen randomly from
[−1, 1], and instances of the MaxCut problem on random
4-regular graphs (Jij being the adjacency matrix of the
graph).
All models studied show the same qualitative behav-

ior: the optimal protocol begins and ends with a bang
and in between has extended annealing portions (pos-
sibly punctuated by additional bangs). We term such
protocols “bang-anneal-bang,” although a more precise
name would be “bang-*-bang”, where “*” indicates any
combination of annealing and bangs. For concreteness,
we shall present the results obtained for the MaxCut
problem, with numerics for other models presented in
the Supplementary Material [47].
To find the optimal protocol, we discretize the time

evolution in Eqs. (2) and (5), and apply gradient de-
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FIG. 1: Optimal control functions found through either gradi-
ent descent (uGD(t)) or constrained-time QAOA (uQAOA(t))
for a random instance of the MaxCut problem. Also shown
is the gradient ΦGD(t) for the gradient descent method. Pa-
rameters: n = 8 spins, total time tf = 2.0, 2p = 40 bangs for
the QAOA method.

scent (specifically Nesterov’s method [35]) to J as a func-
tional of u(t). Since |x(0)〉 is known, we first evolve for-
ward in time to determine |x(t)〉, then compute |k(tf )〉
through Eq. (6), then evolve backwards in time to deter-
mine |k(t)〉. The gradient descent could become trapped
in a false minimum, so we perform multiple trials using
different initial choices for u(t). In practice, false min-
ima appear to be rare, and most initial guesses found
the optimum [55]. Fig. 1 shows a representative exam-
ple of a protocol thus obtained, denoted uGD(t) (dashed
green line), as well as the corresponding ΦGD(t) (dashed
blue line). As proven, it has bangs at the beginning and
end. In the middle, either bangs or smooth anneals are
possible based on our theoretical analysis. Numerically,
we always find the middle region dominated by smooth
anneals, possibly with an additional bang at the end as
seen in Fig. 1. Also note the consistency between the
behavior of uGD(t) and the sign of ΦGD(t).
Fig. 1 also shows the result of QAOA for the same

instance, using a fixed number of layers, p = 20, and op-
timizing over the length of each interval (with the sum
constrained to be tf ). The bangs in the middle of the
protocol, where gradient descent would produce an an-
nealing segment, are significantly shorter than those at
the beginning or end. This makes sense given the Suzuki-
Trotter decomposition:

e−i(βB̂+γĈ) = e−i
β
2p

B̂e−i
γ
p
Ĉ

·
(

e−i
β
p
B̂e−i

γ
p
Ĉ
)p−1

e−i
β
2p

B̂ +O

(

1

p2

)

.
(15)

A large number of short bangs serves as a reasonable ap-
proximation to an annealing segment. Fig. 1 suggests
that QAOA is indeed attempting to approximate the
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FIG. 2: QAOA output energy as a function of the circuit
depth p (i.e., number of bangs), for an n = 10 MaxCut in-
stance on a 4-regular graph. Dashed lines are the QAOA
energies; solid horizontal lines are the energies obtained from
gradient descent.

bang-anneal-bang protocol found by gradient descent.
Note that this behavior is only seen when QAOA is con-
strained to a fixed time but with increasing QAOA depth
p. QAOA without the time constraint does not approach
a Trotterization [29, 37].

For further evidence, Figs. 2 and 3 plot respectively
the energy and “approximation quotient” of the QAOA
output state as functions of the number of layers p.
Here the approximation quotient is defined as (EGD −
EQAOA)/EGD, where EGD and EQAOA are the output
energies of gradient descent and QAOA. We see that the
QAOA protocol performs worse than gradient descent,
but with an error that decreases as p increases. Fitting
the error to a power law Cp−ν , we find ν ≈ 2.2 for all tf .
This is reasonably consistent with the scaling expected
from Eq. (15).

It should be noted that even though time-constrained
QAOA approximates the bang-anneal-bang protocol, it
may be the more effective approach in practice. QAOA
has a much smaller parameter space to explore – the
durations of the pulses as opposed to an entire function
– and pulses may be simpler to implement experimentally
than arbitrary combinations of Hamiltonians.

Conclusions. We have shown that for the control prob-
lem of minimizing the energy of a quantum state, the
optimal protocol under time constraints is often of the
bang-anneal-bang form. This shows that recent conjec-
tures about the optimality of QAOA based on Pontrya-
gin’s principle are not as general as previously thought.
Our results do not preclude bang-bang entirely, but they
do provide the theoretical framework in which non-bang-
bang protocols are possible. Furthermore, our numeric
results indicate that these non-bang-bang protocols are
extremely common for Ising models; though, there are
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known non-Ising examples where bang-bang is still opti-
mal [38–40]. Nonetheless, Pontryagin’s principle and op-
timal control theory do serve as valuable tools. We have
used them to prove that the optimal protocol must begin
and end with a finite-length bang when not enough time
is allowed for the desired state to be reached perfectly.
Furthermore, optimal control theory provides guidance
about the form of the protocol in the middle both ana-
lytically and numerically through the gradient, Φ(t).

Keep in mind that these results say nothing of the prac-
ticality of finding the optimal protocol. Since the algo-
rithms require simulating the time evolution of the n-spin
system, they are extremely expensive computationally on
a classical computer. The main attraction of QAOA is
that the time evolution required can be performed on
a quantum computer, implemented experimentally on a
real system [29, 41, 42]. The gradient descent method
used in the present paper would be more difficult to im-
plement on the same experimental setups that QAOA
is typically implemented on; though other hardware and
setups, such as [36] could utilize a similar gradient based
method for optimization. It is obviously of great interest
and utility to consider how one might better merge the
tools of optimal control theory with current experimental
capabilities.
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