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The accurate computation of ground and excited states of many-fermion quantum systems is
one of the most consequential, contemporary challenges in the physical and computational sciences
whose solution stands to benefit significantly from the advent of quantum computing devices. Exist-
ing methodologies using phase estimation or variational algorithms have potential drawbacks such
as deep circuits requiring substantial error correction or non-trivial high-dimensional classical op-
timization. Here we introduce a quantum solver of contracted eigenvalue equations, the quantum
analogue of classical methods for the energies and reduced density matrices of ground and excited
states. The solver does not require deep circuits or difficult classical optimization and achieves an
exponential speed-up over its classical counterpart. We demonstrate the algorithm though compu-
tations on both a quantum simulator and two IBM quantum processing units.

PACS numbers: 31.10.+z

Introduction: Quantum computing has the potential
to remove the exponential scaling of the simulation of
many-fermion quantum systems by the direct represen-
tation and manipulation of quantum states [1–36]. Al-
gorithms for solving the energy eigenvalue equation of
many-fermion systems include quantum phase estima-
tion (QPE) [7, 17], adiabatic state preparation (ASP) [9],
and the variational quantum eigensolver (VQE) [10, 12,
14, 15, 22]. QPE requires deep circuits with substan-
tial error correction and ASP utilizes a slow and long
time evolution with the computational costs of both
methods quickly outpacing the capabilities of near-term
quantum computers. While VQE has shown practi-
cal improvements over QPE and ASP, it suffers from
high-dimensional classical optimization over a non-ideal
surface, typically relying upon derivative-free optimiza-
tion [37] whose computational cost increases rapidly with
system size. Here we introduce a quantum eigenvalue
solver that solves a contraction (or projection) of the
eigenvalue equation for efficient, scalable molecular sim-
ulations on quantum computers.

We develop a novel quantum eigensolver that optimizes
the lowest energy eigenvalue by solving a contracted
eigenvalue equation. The projection of the Schrödinger
equation onto 2-particle transitions from the wave func-
tion is known as the 2-particle contracted Schrödinger
equation (CSE) [38–48]. Here we consider the anti-
Hermitian part of the CSE known as the 2-particle anti-
Hermitian CSE (ACSE) [49–59], which has been used in
many-electron quantum theory to solve for the ground-
and excited-state energies and properties of strongly cor-
related atoms and molecules [60–67]. As shown previ-
ously, the solution of the ACSE has a close connection to
the variational minimization of the energy with respect
to a series of 2-body unitary transformations [49–51, 68].
The gradient of the energy with respect to the 2-body
unitary transformations is the residual of the ACSE, and

hence, the gradient with respect to these transformations
vanishes if and only if the ACSE is satisfied [49, 50, 68].
In the classical algorithms the solution of the ACSE for
the 2-particle reduced density matrix (2-RDM) is indeter-
minant without reconstruction of the 3-RDM [43, 45, 49–
55, 69]. In the quantum algorithm, however, we show
that through the preparation and measurement of the
quantum state, the ACSE can be solved for the 2-RDM
without any reconstruction or storage of the 3-RDM. The
algorithm exhibits a potentially exponential speed-up rel-
ative to the classical algorithm with complete RDM re-
construction.

A quantum contracted-eigenvalue-equation solver for
solving the ACSE is applied to several problems on IBM
quantum computers and an IBM simulator. On a quan-
tum computer we solve for the ground-state dissociation
of the hydrogen molecule. Both energies and 2-RDMs
are computed. On a one-qubit IBM device we also solve
a one-qubit Hamiltonian to demonstrate the trajectory
of the solution of the ACSE in iteratively optimizing the
ground-state energy. Lastly, we compute the ground-
state dissociation of the linear H3 molecule on a quantum
simulator. While the solution of linear H3 by the classical
algorithm yields a ground-state energy that is limited by
the accuracy of the approximate cumulant reconstruction
of the 3-RDM, the quantum-computing algorithm yields
a ground-state potential energy curve that can be con-
verged to the exact solution for all computed internuclear
distances.

Theory: We begin with the Schrödinger equation for a
many-electron quantum system

(Ĥ − E)|Ψ〉 = 0, (1)

with the Hamiltonian operator

Ĥ =
∑
pqst

2Kpq
st â
†
pâ
†
qâtâs, (2)
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where 2K is the two-electron reduced Hamiltonian ma-
trix, containing the one- and two-electron integrals, and
the second-quantized operators â†p and âp create and an-
nihilate an electron in the spin orbital p, respectively.
The projection (or contraction) of the Schrödinger equa-
tion onto the space of two-electron transitions generates
the CSE [38–46], and the anti-Hermitian part of the CSE
produces the ACSE [49–56, 69]

〈Ψ|[â†i â
†
j âlâk, Ĥ]|Ψ〉 = 0. (3)

The ACSE is important for many-electron quantum sys-
tems, especially—as we show below—in quantum com-
puting, because its residual contains the gradient for the
optimization of many-electron wave functions.

Consider the variational ansatz for the wave function
in which the wave function is iteratively constructed from
unitary two-body exponential transformations [49, 50,
68]

|Ψn+1〉 = eεÂn |Ψn〉, (4)

where Ân is an anti-Hermitian two-electron operator

Ân =
∑
pqst

2Apq;stn â†pâ
†
qâtâs. (5)

The energy at the (n + 1)th iteration through order ε is
given by

En+1 = En + ε〈Ψn|[Ĥ, Ân]|Ψn〉+O(ε2). (6)

Consequently, the gradient of the energy with respect to
2An is

∂En

∂(2Aij;kln )
= −ε〈Ψn|[â†i â

†
j âlâk, Ĥ]|Ψn〉+O(ε2). (7)

From this equation we observe two important facts [49,
50, 68]: (1) the residual of the ACSE is the negative
of the energy gradient with respect to all two-body uni-
tary transformations parametrized by 2Ân and (2) the
residual of the ACSE with respect to Ψn vanishes if and
only if the sequence of wave functions has converged at
n to a critical point of the energy. It is known that the
residual of the CSE vanishes with respect to a wave func-
tion if and only if the wave function is a solution of the
Schrödinger equation [43, 70]. While the ACSE is a sub-
set of the CSE [68], we find for the calculations presented
here that the wave function solutions of the ACSE satisfy
the Schrödinger equation.

The ACSE can be solved to compute the 2-RDM di-
rectly without storage of the many-electron wave func-
tion. In the algorithm previously implemented on classi-
cal computers [49–56, 69], the wave function at the nth

iteration is substituted into the definition of the 2-RDM

2Dpq
st = 〈Ψ|â†pâ†qâtâs|Ψ〉 (8)

to yield an expression for the 2-RDM at the (n + 1)th

iteration

2Dpq;st
n+1 =2 Dpq;st

n +ε〈Ψn|[â†pâ†qâtâs, Ân]|Ψn〉+O(ε2). (9)

where the operator Ân can be selected to be the resid-
ual of the ACSE, which causes the 2-RDM to follow the
energy’s gradient towards its minimum

2Aij;kln = 〈Ψn|[â†i â
†
j âlâk, Ĥ]|Ψn〉. (10)

By using the fact that Ân and Ĥ are two-body operators
in Eqs. (5) and (2), the 2-RDM at the (n+ 1)th iteration
can be expressed as a linear functional of the 1-, 2-, and 3-
RDMs at the nth iteration. The indeterminacy in these
recursion relations for the 2-RDM can be removed by
calculating the 3- through-N -RDMs at an exponential
cost or by reconstructing the 3-RDM approximately from
the 2-RDM [49–52]. For example, the cumulant part of
the 3-RDM in its cumulant expansion can be neglected or
approximated to provide a reconstruction of the 3-RDM
in terms of the 2-RDM [44, 49, 57].

We propose a novel algorithm for solving the ACSE for
the 2-RDM on the quantum computer, which is shown
in Table I. While the classical computer uses matrices
and vectors to represent quantum states, the quantum
computer allows us to prepare a form of the quantum
state itself in terms of qubits where the scaling of the
preparation is non-exponential [71] for states with poly-
nomially scaling Hamiltonians. Utilizing this capability,
we prepare the wave function at the (n+ 1)th in Eq. (4)
on the quantum computer (Step 3 of Table I) and per-
form measurements of its 2-RDM’s matrix elements in
Eq. (8) on the quantum computer (Step 4). In Step 5 we
optimize the parameter ε, which can be on the order of
unity, by minimizing the energy with respect to ε by a
single-variable model-trust Newtons method [72]. Before
we can perform the preparation in Step 3, however, we
need to compute the 2A matrix by evaluating the resid-
ual of the ACSE. While we could evaluate the ACSE on
the classical computer using Eq. (3) with cumulant re-
construction of the 3-RDM, we can compute the residual
of the ACSE on the quantum computer directly without
a formal approximation. We prepare the auxiliary states
|Λ±n 〉 in Step 1 of the algorithm

|Λ±n 〉 = e±iδĤ |Ψn〉 (11)

where δ is a small nonnegative parameter and measure
their 2-RDMs on the quantum computer to construct the
residual of the ACSE—the elements of the 2A matrix

2Aij;kln =
1

2iδ

(
〈Λ+

n |â
†
i â
†
j âlâk|Λ

+
n 〉 − 〈Λ−n |â

†
i â
†
j âlâk|Λ

−
n 〉
)

+ O(δ2). (12)

Due to statistical measurement noise δ must be non-
infinitesimal which makes the ACSE residual formula in
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FIG. 1. For a 1-qubit Hamiltonian the solution of the quan-
tum ACSE converges to the ground state, indicated by v−, in
about 8 iterations on a 1-qubit IBM quantum computer.

Eq. (12) necessarily approximate. The unitary propaga-
tors in Steps 1 and 3 are implemented by first-order Trot-
ter expansions. The number of measurements in Steps 2
and 4 is O(r4) where r is the number of orbitals (or O(r3)
with parallel tomography). For each measurement we re-
prepare the wave function from Ψ0. Steps (1-4) can be
repeated until convergence. In practice the rate of con-
vergence seems to be linear or better. The algorithm
can be initiated with any initial wave function includ-
ing the mean-field (Hartree-Fock) wave function. The
sources of error in the quantum solution of the ACSE for
the 2-RDM include the noise on the quantum computer
as well as the approximate gradient and limited tomog-
raphy statistics. Even with these errors, however, the
algorithm can build upon an initial Hartree-Fock wave
function to treat strongly correlated molecular quantum
systems. Importantly, Steps (1-4) provide exact expres-
sions without reconstruction of higher RDMs, yielding
an exponential advantage over classical algorithms in ob-
taining the 2D and 2A matrices.
Results: To illustrate the solution of the ACSE on the

quantum computer, we apply the quantum ACSE algo-
rithm to three applications: the solution of a generic one-
qubit Hamiltonian and the dissociation of the H2 and H3

molecules. Solutions of the one-qubit and H2 Hamiltoni-
ans are performed on the one- and five-qubit IBM quan-
tum computers Armonk and Ourense, respectively [73].
The H2 and H3 calculations use the compact and Jordan-
Wigner mappings [74], respectively. The dissociation of
H3 is implemented on a quantum simulator to probe the
method’s accuracy in the absence of noise.

We first examine the solution of a one-qubit Hamilto-
nian Ĥ = 1

2 (σ̂x − σ̂y + σ̂z) where σ̂x, σ̂y, and σ̂z are the
Pauli matrices in the x, y, and z directions. In the ba-
sis of the Bloch sphere we can express the Hamiltonian

FIG. 2. For the H2 molecule the figure shows (a) the energy at
each iteration in the solution of the ACSE at an internuclear
distance R of 2 Å and (b) the energy dissociation curve of the
molecule. The error in the ACSE on the quantum computer,
due to noise, is fairly uniform throughout the dissociation,
indicating that the ACSE captures the spin entanglement.

and the initial density matrix as vectors (1,−1, 1) and
(0, 0, 1), respectively. Beginning at the initial density-
matrix vector, the solution from the ACSE reaches the
ground-state vector, indicated by v−, in approximately 8
iterations on the quantum computer, as shown in Fig. 1.
The Â vector, indicated in Fig. 1 at each iteration by an
arrow, is orthogonal to the plane formed by the Hamil-
tonian and density-matrix vectors.

Second, we compute the dissociation of the hydrogen
molecule in a minimal Slater-type orbital (STO-3G) ba-
sis set. On the quantum computer the molecule is rep-
resented in the ACSE algorithm by a two-qubit compact
mapping. The energy at each iteration in the solution of
the ACSE for H2 at 2 Å is shown in Fig. 2a. The ACSE
energy from a quantum simulator converges to the energy
from full configuration interaction (FCI) in about 9-to-10
iterations. The ACSE energy on the quantum computer
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TABLE I. Quantum ACSE algorithm for 2-RDM optimization.

Algorithm: Quantum ACSE method for 2-RDM optimization
Given n = 0 and 0 < δ ≤ 1.
Choose initial wave function |Ψ0〉.
Repeat until ||2An|| is small.

Step 1: Prepare |Λ±n 〉 from |Λ±n 〉 = e±iδĤ |Ψn〉,
Step 2: Measure 2An from 2Aij;kln = 1

2iδ

(
〈Λ+

n |â†i â
†
j âlâk|Λ

+
n 〉 − 〈Λ−n |â†i â

†
j âlâk|Λ

−
n 〉

)
,

Step 3: Prepare |Ψn+1〉 from |Ψn+1〉 = eεÂ|Ψn〉,
Step 4: Measure 2Dn+1 from 2Dpq;st

n+1 = 〈Ψn+1|â†pâ†qâtâs|Ψn+1〉,
Step 5: Iterate Steps 3 and 4 to minimize the energy with respect to ε,
Step 6: Set n = n+ 1.

FIG. 3. The errors in the potential energy curves from the
equal-bond dissociation of the H3 molecule, relative to FCI,
are shown for the classical and quantum ACSE algorithms
with the quantum ACSE being more accurate by 6 orders
of magnitude. Dotted line indicates “chemical accuracy”
(1 kcal/mol).

converges in approximately the same number of itera-
tions to an energy that is approximately 25 mhartrees
higher than the FCI energy. This error is due to the
noise present on the quantum computer; in fact, a nearly
identical curve in the iterations is generated by a quan-
tum simulator with the Qiskit noise model, a noise model
based on the device T1, T2, and readout parameters.
Figure 2b shows the energy dissociation curve of the hy-
drogen molecule. While the noise error is visible in the
potential energy curve from the ACSE, the error is im-
portantly uniform throughout the curve, indicating that
the ACSE algorithm is capturing the significant electron
correlation from spin entanglement in the dissociation re-
gion.

Finally, we calculate the dissociation of the H3

molecule in the minimal Slater-type orbital (STO-3G)
basis set on a quantum simulator without noise. The pur-
pose of this calculation is to examine the accuracy of the

quantum ACSE algorithm on an ideal, noise-free quan-
tum computer. Stretching the two bonds of the molecule
equally causes a Mott metal-to-insulator transition with
the stretched geometry being highly correlated due to
nontrivial spin entanglement [28]. The energy errors from
the classical and quantum ACSE algorithms, relative to
the FCI energy, are shown in Fig. 3. In the classical
algorithm in Fig. 3 we evaluate 2A classically, that is
with cumulant-based reconstruction of the 3-RDM [44],
but we evaluate 2D with state preparation on a quan-
tum simulator. The ACSE algorithm developed previ-
ously on conventional computers [49–59] uses cumulant
reconstruction for both 2A and 2D. Most strikingly, the
energies from the quantum ACSE are about six orders
of magnitude more accurate than the energies from the
classical ACSE. Unlike the classical ACSE algorithm in
Fig. 3, the quantum ACSE algorithm does not require
any reconstruction approximation because the updates
of the 2A and 2D matrices are performed, in principle
exactly, through a combination of state preparation and
tomography. Figure 3 also shows that the quantum so-
lution of the ACSE remains accurate at stretched bond
distances where the electron correlation— the deviation
from the Hartree-Fock solution—is significant.

Discussion and Conclusions: Key features of the quan-
tum algorithm for solving the ACSE include: (1) com-
putation of the energy and 2-RDM without any approx-
imate reconstruction of higher RDMs as in the classical
algorithm and (2) evaluation of the energy gradient—
residual of the ACSE—on the quantum computer for ac-
curate and efficient gradient-based optimization. The
ACSE algorithm’s computation of the gradient on the
quantum computer offers a significant advantage over
VQE algorithms [10, 12, 14, 15, 22] that approximate the
gradient on the classical computer by derivative-free op-
timization methods [37] like the simplex method that are
limited to hundreds of degrees of freedom. The ACSE
also has much lower tomography costs than Lanczos-
based imaginary-time evolution methods [20, 24] that
can require higher RDMs. Unlike unitary coupled cluster
which uses a single unitary exponential transformation of
commuting operators [16], the ACSE method represents
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the wave function as a product of unitary exponential
transformations of two-body, non-commuting operators
that represent the higher excitations as non-trivial prod-
ucts of two-body operators; furthermore, the ACSE’s it-
erative approximation to the construction of the wave
function decreases Trotterization errors, errors from the
application of Trotter’s formula for representing the ex-
ponential transformation on the quantum computer.

The quantum algorithm for solving the ACSE pro-
vides a direct computation of ground-state energies and
2-RDMs with an efficient generation of the search direc-
tion from the ACSE residual. In the context of quan-
tum algorithms, it has the benefits of good ansatz depth,
modest tomography requirements, and no derivative-free
classical optimization. Importantly, while the focus here
is on the solution of many-fermion systems, the ACSE al-
gorithm is also applicable to solving many-boson systems,
and it can be generalized with p-qubit contracted eigen-
value equations and p-qubit RDMs to treat many-qubit
systems governed by arbitrary p-body interactions. Fu-
ture work will also explore the application of the ACSE
algorithm to electronic excited states and active-space
calculations for the treatment of strong electron corre-
lation in larger molecules. Because the quantum ACSE
algorithm is an iterative approach to computing the N -
representable 2-RDM [75–77] of a given eigenstate, it of-
fers a polynomial-scaling approach to computing energies
and properties of strongly correlated many-fermion quan-
tum systems on both near-to-intermediate-term and fu-
ture quantum devices with applications across quantum
chemistry and physics.
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