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The dynamics of entanglement in ‘hybrid’ non-unitary circuits (for example, involving both uni-
tary gates and quantum measurements) has recently become an object of intense study. A major
hurdle toward experimentally realizing this physics is the need to apply postselection on random
measurement outcomes in order to repeatedly prepare a given output state, resulting in an expo-
nential overhead. We propose a method to sidestep this issue in a wide class of non-unitary circuits
by taking advantage of spacetime duality. This method maps the purification dynamics of a mixed
state under non-unitary evolution onto a particular correlation function in an associated unitary
circuit. This translates to an operational protocol which could be straightforwardly implemented
on a digital quantum simulator. We discuss the signatures of different entanglement phases, and
demonstrate examples via numerical simulations. With minor modifications, the proposed protocol
allows measurement of the purity of arbitrary subsystems, which could shed light on the properties
of the quantum error correcting code formed by the mixed phase in this class of hybrid dynamics.

The dynamics of quantum entanglement is a topi-
cal area of research in several subfields of physics rang-
ing from quantum information and quantum gravity to
condensed matter and atomic physics [1-13]. Recent
works have begun to extend this line of research to non-
unitary settings, involving many-body systems subject
to repeated measurements [14-40]. Remarkably, this
has led to the discovery of novel entanglement phase
transitions in the dynamics of open quantum systems
modeled by circuits of random unitary gates interleaved
with local projective measurements [14-16]. These mon-
itored dynamics exhibit a phase transition as a function
of the measurement rate, separating a ‘disentangling’
phase (where the entanglement entropy obeys an area-
law) from an ‘entangling’ phase (where it obeys a volume-
law). These phases and transitions are only visible in in-
dividual quantum trajectories [41], corresponding to par-
ticular sequences of measurement outcomes. Such “mon-
itored dynamics” are an essential feature of near-term
quantum devices in which modulated interactions with
an environment, say via measurements, are necessary for
unitary control and feedback. Many questions, both on
the transition and on the steady-state phases themselves,
remain active areas of study—mnotably the universality
class of the transitions [21, 22, 31] and the nature of the
volume-law phase, which is understood as a dynamically-
generated quantum error-correcting code (QECC) hiding
information from local measurements [17-19, 26, 38].

Measuring entanglement generally requires the prepa-
ration of many identical copies of the same state (either
simultaneously or sequentially) [42-53]. In the presence
of measurements, this becomes extremely challenging as
it requires postselection: a quantum measurement is an
intrinsically random process whose outcomes are sampled
stochastically with Born probabilities, and a quantum
trajectory in this evolution is associated with a specific
record of measurement outcomes. Hence, preparing mul-
tiple copies of the same state incurs an exponential posts-
election overhead e©®LT) in the size L and depth T of the

circuit (assuming a finite rate of measurement p). There
are ways to partly overcome this challenge: (i) using a
single reference qubit as a local probe of the entangle-
ment phase transition [20], which considerably alleviates
the postselection overhead; (ii) in Clifford circuits, using
a combination of classical simulations and feedback to
force specific measurement outcomes by error-correcting
any “wrong” ones. Nevertheless, it is still desirable to di-
rectly access the entanglement properties of more general
non-unitary and non-Clifford evolutions.

In this Letter, we propose a novel method to access
quantum entanglement in a broad class of non-unitary
circuits without facing an exponential postselection bar-
rier. Specifically, we will consider non-unitary circuits
that are ‘spacetime dual’ (explained below) to unitary
evolutions; and we propose a method for measuring the
purity Tr(pz), related to the second Renyi entropy via
Tr(pz) = ¢ 52(P) for the whole system as well as for
arbitrary subsystems. This allows access to the purifi-
cation dynamics of an initially mixed state, which is in-
timately related to the entanglement dynamics of pure
states [18]. In particular, the volume-law entangled phase
maps onto the mized phase, in which the dynamics gen-
erates a QECC that protects information from measure-
ments, so that an initially mixed state remains mixed
for exponentially long times. Subsystem purity measure-
ments contain key information about the nature of this
as-of-yet poorly understood QECC [18, 26, 38].

We note that while the class of non-unitary circuits for
which our method applies is not completely general, it
still encompasses a broad space. To every unitary circuit
comprised of nearest-neighbor two-qubit gates, we can
associate a ‘spacetime-dual’ circuit (see below) which is
generically non-unitary [54]. Because this is a one-to-one
correspondence, the space of hybrid models we consider is
as large as the space of unitary circuits built from local
two-qubit gates. In particular our results apply to cir-
cuits with (a specific class of) unitary gates interspersed
with (specific types of) forced projective measurements.
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FIG. 1. Spacetime duality. By swapping the spatial and
temporal axes, a unitary gate U maps onto another, generally
non-unitary gate U.

Spacetime duality. Given a two-qubit unitary gate
U;, ‘,;‘2’2, mapping input qubits i; » (bottom legs) to output
qubits 015 (top legs), we define its spacetime dual U as
the matrix obtained by flipping the arrow of time by 90
degrees, i.e. viewing the left legs as inputs and the right
legs as outputs: Up'%? = ff:f;’f (Fig. 1). The result of
this transformation, U, is generally not unitary (gates U
such that U is also unitary are known as “dual-unitary”
and have been studied intensely recently [55-62]). The
generic non-unitarity of U, and the possibility that it
might counter entanglement growth, has also been em-
ployed to pursue more efficient tensor network contrac-
tion schemes [63, 64], and similar ideas we applied to
study the complexity of shallow (2+1)-dimensional cir-
cuits [65].

In general, one has U = 2VH, where V is unitary
and H is a positive semidefinite matrix of unit norm,
which can be seen as a generalized measurement (i.e. an
element of a POVM set [66], see [67] for more details).
As an example, U = 1 yields U = 2|B*) (B*|, where
|Bt) = (|00) + |11))/+/2 is a Bell pair state. Thus the
spacetime duality transformation generally maps unitary
circuits to non-unitary hybrid circuits involving unitary
gates as well as (weak or projective) measurements, up
to prefactors. Crucially, the measurements are forced:
the outcome is deterministic; no quantum randomness is
involved. In the example of U = 1, the outcome is always
|B*). The ability to avoid postselection in our protocol
stems from this observation.

Postselection-free measurement protocol. The idea is to
use a “laboratory” system, whose evolution is unitary, to
simulate a “dual” system whose evolution is non-unitary
and realizes purification dynamics. We will use ¢ (£) do
denote the arrow of time in the unitary (non-unitary)
evolution. The target purification dynamics starts with
a fully mixed state, p;, = 1/2% on an even number L
of qubits (we use a tilde for quantities defined in the
non-unitary time direction) [68]. This is evolved by a
non-unitary circuit including forced measurements, M.
The output state, pou, x MM* (Fig. 2(a)), may be par-
tially or completely purified. We focus on non-unitary
circuits M whose spacetime dual is a unitary circuit, i.e.
M = Uy with Uy, unitary; in this case, it is possible
to view pout as living on a time-like slice at the spatial
edge of a unitary circuit (Fig. 2(b)). Likewise the purity,
Tr(pZ,.) (Fig. 2(c)), maps under spacetime duality to a
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FIG. 2. (a) Purification dynamics: a fully mixed state p;, o< 1
(gray lines, bottom) is evolved by a hybrid circuit M, yielding
a state pour x MMt (purple lines, top). (b) If M = f]M with
U unitary, the purification process is ‘spacetime-dual’ to a
unitary evolution. pout lives on a time-like slice of the circuit
(purple legs, right). (c) Purity of the output state, Tr(pZ,:).
(d) Same tensor network viewed as a correlation function in a
unitary circuit. The arrow of time £ (¢) denotes hybrid (uni-
tary) evolution. (e) Protocol for measuring the purity of pout,
sketched for T' = 3. Tensor network legs are color-coded as in
(a-d). Qubits £1 are repeatedly initialized in the Bell state
state P = |B*) (B*| (upward purple arcs) and measured in
the Bell basis (downward purple arcs); the protocol succeeds
if all T Bell measurements yield |B+>. (f) The fraction of
runs that are successful up to time T', N4 (T')/Niot, yields the
purity of pous on L = 2T qubits.

(multi-point) correlation function in an associated uni-
tary evolution (Fig. 2(d)): a bipartite one-dimensional
chain in which the left half evolves under the unitary
U, the right half evolves under RU};R (R denotes spa-
tial inversion), and the only region where the evolution
is non-unitary is the central pair of qubits, where hori-
zontal bonds (space-like qubit worldlines) implement the
product of po,¢ with itself. We additionally note that uni-
tarity of Ups (coupled with special ‘depolarizing’ bound-
ary conditions, discussed in detail in [54]) elides all gates
outside forward and backward lightcones emanating from
the central pair of qubits, as in Fig. 2(e).

The goal of the following discussion is to provide an in-
terpretation of the non-unitary processes taking place at
the central bond, so that this tensor contraction can be
converted into an operational prescription for the mea-
surement of the purity. In the “laboratory” (unitary)
time direction, one has a chain of L = L+2 qubits evolved
for time T = L /2. We symmetrically label the qubits as
i ={%1,42,---+ (T + 1)}, and denote qubits i < —2 as
L (left), i = £1 as C (central), and i > 2 as R (right).
The system is initialized in the state p x 1, ® Pe ® 1,



where P = |B*)(B*| and |B*) = %000) +[11)) is a
Bell state. It is then evolved in time by a circuit with a
brickwork structure. First a layer of unitary gates, repre-
sented by super-operator Uy, acts on the ‘odd’ bonds—a
layer of the circuit Ups on LU{—1} and a layer of RU};R
on R U {+1}. Next, a similarly-defined unitary layer U{
acts on ‘even’ bonds, which do not include C. There, a
forced Bell measurement takes place: p — Pe®Tre(Pep).
The process terminates at time ¢t = T" with a final forced
measurement of Pe. Using the operator-state representa-
tion, in which |A) denotes an operator A as a state with
inner product (A|B) = Tr AT B, the forced Bell measure-
ment reads |p) — |Pe)(Pe|p), and the overall evolution
can be written as

T-1
Tr(pou) o (PlUg o [T U ® [Pe)(PelloU?|P), (1)

t=1

where |P) = |P:) ® |1zur). The purity of the hybrid
circuit output poyt is thus mapped to a (27)-point cor-
relation function of the projector Pe during a unitary
evolution obtained from the original hybrid circuit M
via the spacetime duality.

We are now in a position to recast the result in Eq. (1)
as an operational protocol for measuring the purity of
the state of interest, pout. The protocol consists of the
following steps: (1) Choose an integer T' and prepare a
2(T + 1)-qubit chain in the state p = 1, ® Pe ® 1r/47.
Set t = 1. (2) Evolve odd bonds unitarily under U;.
(8) Perform a Bell measurement on C. If the outcome is
|B*), continue; otherwise, stop and record a failure. (4)
If t = T, stop and record a success; otherwise, evolve
even bonds unitarily under U;, increment ¢ by one, and
go back to step 2. Let the number of “successful” runs
out of Ny, trials be Ny (T'); then,

,n'(Pgut |f,=2T,f‘=T) =Ny (T)/Ntot , (2)

where pout|j_op 7+_ denotes the output state of hybrid

dynamics on a system of L=2T qubits evolved for time
T = T. This is the central result of this Letter. Note that
while we have not kept track of numerical prefactors in
this derivation, the proportionality constant in Eq. (2)
turns out to be exactly one, see [54].

We emphasize that the above protocol, despite fea-
turing projective measurements and runs ending in “fail-
ure”, does not use postselection. Indeed, “failures” incre-
ment the denominator Ny in Eq. (2) and provide crucial
information for the purity measurement. In other words,
copies of the same state poy (identical up to control er-
rors) can be realized deterministically arbitrarily many
times. The exponential overhead of postselection is en-
tirely removed. Finally we remark that if one wants to
prepare poyy in real space (as opposed to a time-like slice
of the circuit as obtained above), this can be achieved
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with an approach based on gate teleportation [66], us-
ing 27 ancillas initialized in |[B*) Bell states and O(T?)
SWAP gates in a 1D geometry, see [54].

Entanglement phases. While a typical hybrid circuit
is generally not dual to a unitary circuit, the space of
models we address is still very large, and it is reasonable
to expect a rich variety of purification phases and entan-
glement phenomena within this class of models. Here we
begin to explore this space for the purpose of demonstrat-
ing that interesting purification phases are indeed possi-
ble, while leaving the longer-term enterprise of charting
this space to future work.

Surprisingly, despite the presence of measurements,
Eq. (2) suggests that the generic outcome of the purifica-
tion dynamics in these models should be a mixed phase,
in which poy has extensive entropy. Indeed, if the late-
time probability of obtaining | B*) as the outcome of the
Bell measurement on C approaches any value po, < 1,
then N4 (T)—which requires the outcome of all T' Bell
measurements to be |B*)—decays exponentially at late
times. Therefore the state has a finite entropy density s,
directly measurable from a decay time constant:

Tt(P2ulicarior) ~e 77 = m=@n)7. ()
This is another main result of this Letter.

The mixed-phase outcome should be expected when-
ever the unitary circuit Ups features any amount of
scrambling: then, any projector |[B*) (B™| injected in C
will irreversibly grow into a global operator, never refo-
cusing at C; thus the probability of later obtaining |B*)
as a Bell measurement outcome will be lower than 1, and
the above argument will give a mixed phase. However,
exceptions are possible in non-scrambling circuits.

As an illustration, we map out the purification phases
for a specific model. For computational simplicity and
closer comparison with the known phenomenology, we
choose a set of unitary Clifford circuits whose space-
time duals consist only of unitary gates and projec-
tive Pauli measurements. We consider a brickwork
layer of two-qubit Clifford gates chosen as indicated in
Fig. 3(a): Prob(1) = p, Prob(iSWAP) = (1 — p)J/2 [69],
Prob(SWAP) = (1 — p)(1 — J/2). Random single-qubit
Clifford gates act before and after each two-qubit gate
so there are no symmetries in the model. As SWAP and
iSWAP are dual-unitary while 1 o |B*) (B*| is a projec-
tor, p € [0,1] serves as the measurement rate for the dual
hybrid circuit. J € [0, 1] serves as an interaction rate,
with J = 0 giving a non-interacting ‘swap circuit’. We
note that the spacetime dual of this unitary model is not
too different from the original unitary-projective model
considered in Ref. [14]: single-site Z measurements are
replaced by two-qubit Bell measurements; gates are sam-
pled out of exactly half of the two-qubit Clifford group,
rather than the whole group. Remarkably, these seem-
ingly small changes yield a completely different phase
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FIG. 3. (a) Summary of the Clifford circuit model: proba-
bilities of 1, iISWAP and SWAP gates. (b) Schematic of pu-
rification phase diagram of the dualized circuit vs p, J. (c)
Entropy density of hybrid circuit output state pout vs p, J
(Clifford simulations on L < 4096 qubits).

diagram, sketched in Fig. 3(b).

Via stabilizer numerical simulations we find three pos-
sible outcomes across the (p, J) parameter space (results
for the entropy density are shown in Fig. 3(c)). A pure
phase is only possible at p = 1, where the circuit Uy, con-
sists purely of identity gates and po., = (|B*) (B*|)®T
is trivially a pure state. Remarkably, it is unstable to in-
finitesimal perturbations away from p = 1, in sharp con-
trast to other unitary-projective models where the pure
phase is generic for sufficiently high measurement rates.
For any J > 0 and p < 1 (i.e. almost all of parameter
space) we have a mixed phase: indeed, this is the default
outcome for generic interacting circuits. Finally, on the
J =0 (and 0 < p < 1) line, we have a critical purifi-
cation phase, with vanishing entropy density s, = 0 but
divergent entropy Sy ~ /T, which we characterize in the
following.

Setting J = 0, the circuit maps to a loop model with
two tiles, one associated to 1 (probability p) and one to
SWAP (probability 1 — p), see Fig. 4(a); the qubits move
ballistically under SWAP gates and backscatter under 1,
thus tracing random walks with step size £ distributed ex-
ponentially, Prob(£) o< (1 — p)/!. Worldlines that begin
and end in p,, define a pure Bell pair entirely contained
in the system, and thus contribute no entropy; on the
contrary, wordlines that begin at the lightcone bound-
aries (pin) and terminate in poy, or viceversa, yield a fully
mixed qubit in the output state and thus contribute one
bit of entropy (Fig. 4(b)). How many such worldlines are
there? Because the qubits undergo diffusion [70], only
those that enter the dynamics within O(T'/2) steps of
Pout are likely to contribute entropy, see Fig. 4(c). Thus
we have Sy(T') ~ /T, and a stretched-exponential purifi-
cation dynamics Tr(p2,,) ~ e=VT  to be compared with
the exponential decay in the mixed phase.

Subsystem purity and quantum code properties. Having
established the existence (and prevalence) of the mixed
phase in this class of models, it is interesting to in-
vestigate its properties, especially since the nature of
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FIG. 4. Critical phase of the non-interacting (J = 0) Clif-
ford circuit model. (a) Allowed gates, 1 (blue tile) and SWAP
(red tile). (b) A realization of the circuit for T = 5. The
purification dynamics proceeds left to right; the input qubit
worldlines (pin, left) are fully mixed; the output state (pout,
right) contains Bell pairs (arcs) and fully mixed qubits (1 sym-
bols). (b) Coarse-grained view of the purification dynamics
(T > 1). Only qubit worldlines that enter within a distance
& ~ TY? of pous (e.g. green shaded parabola) are likely to
diffuse to pout and contribute entropy.

the QECC defining the mixed phase remains in general
poorly understood [19, 26, 38]. To access such properties
in experiment, one needs to measure not only the entropy
of the entire state, but also of different subsystems.

First we note that for contiguous, even-sized subsys-
tems of the temporal slice where poy; lives, A = {0 <
T < 2ts}, the subsystem purity obeys Tr(p?, 4) =
N(ta)/Niot, and is therefore obtained for all t4 < T,
at no additional cost, by running the protocol up to time
T. This follows from elision of all gates that lie outside
a lightcone ending in A, see [54].

To access general bipartitions, the protocol must be
slightly modified. The key idea is “trace out” qubits in
the complement of the subsystem of interest, A, by means
of depolarization, e.g. by averaging over random unitary
gates (see [54]). We find that

Tr(pgut,A) = 2n£—noN+(T; A)/Ntot ) (4)

where n. (n,) is the number of even (odd) qubits in par-
tition A, on which a Bell pair is initialized (measured),
and N, (T; A) is the number of successful runs based on
a modified criterion: the protocol cannot fail on any of
the n, Bell measurements in the partition A; if a state
other than |B*) is obtained in such steps, it is reset to
|B*) and the protocol continues instead of failing [54].
The purity for such non-contiguous bipartitions in sta-
bilizer states can be used to obtain the contiguous code
distance d¢ont, an important property of the QECC that
protects the mixed phase (see [54]). Numerically, we find
that pout in the mixed phase defines a code with a power-
law divergent, subextensive mutual information and con-
tiguous distance (in the bulk of the system), similar to
the phenomenology of the mixed phase in other Clifford



models [26, 38].

Discussion. We have shown that a large class of non-
unitary circuits allows direct experimental access to pu-
rification dynamics without postselection, thus sidestep-
ping a major obstacle toward the observation of entan-
glement phases in monitored circuits. This is achieved
by viewing the (non-unitary) spacetime duals of unitary
gates as forced measurements. Qur protocol can be used
to measure the purity of the whole system as well as ar-
bitrary subsystems, and could enable the experimental
investigation of the spatial entanglement structure and
QECC properties in the mixed phase of these models.

While the class of models we study is a measure-zero
subset of all non-unitary circuits, it is nonetheless very
large—in one-to-one correspondence with the space of
local unitary circuits. In this Letter we have studied a
simple family of models as a demonstration; a thorough
exploration of this vast space and of the types of entangle-
ment dynamics it may contain is a fascinating direction
for future work.
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