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A topography in a Newtonian fluid occurs if there is a disturbance near the surface.  But what if 

there is no such disturbance?  We show by optical profilometry that a thin nematic film resting 

on a topological-defect-patterned substrate can exhibit a hill or divot at the opposing free (air) 

interface in the absence of a topological disturbance at that interface. We propose a model that 

incorporates several material properties and that predicts the major experimental features. This 

work demonstrates the importance of, in particular, anisotropic surface interactions in the 

creation of a free surface topography. 
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Freely flowing Newtonian fluids are, in general, unable to support an equilibrium 

topography at an interface with another fluid.  Nevertheless, there has been an ongoing effort to 

find counterexamples. Under certain conditions it is known that an orientable Newtonian fluid, 

examples of which are nematic (but not smectic [1]) liquid crystals (LCs), certain polymers, and 

aqueous mixtures of tobacco mosaic virus, can support a topography when there is a disturbance 

near the interface. This can occur, for example,  with small anisometric structures such as 

vesicles and tactoids [2,3,4,5,6], inclusions or defects residing at the free surface [7,8,9,10], or 

topological defects (TDs) that completely traverse the fluid film’s thickness and that have 

reached the air interface. Such TDs can be pinned to the solid substrate as, observed by Virga 

and Schadt  [11,12], or associated with mismatched boundary conditions in a chiral nematic LC 

[13,14].  But it is surprising that an orientable Newtonian fluid can possess an equilibrium free-

surface topography in the absence of a disturbance at or near that surface.  Why should this be?  

What sort of long range interactions could induce an “action-at-a-distance” [15] variation in the 

free-surface topography? 

In this Letter we show experimentally and theoretically that a topological defect of 

strength m = +1 (a so-called “boojum”) localized at the underlying substrate in a nematic LC can 

create a topography at the opposing nematic LC / air interface in the absence of any singularity 

traversing the film.  Our “hybrid” boundary conditions (nominally planar at the substrate and 

vertical at the air interface) result in a topography at the fluid / air interface based on a tradeoff 

among elasticity, the isotropic component of the surface energy (surface tension), and its 

anisotropic part (anchoring), providing the first equilibrium topography of a Newtonian fluid in 

the absence of a singularity at the perturbed free surface and that is based solely on the material 

properties of the film and its interfaces.  



 

Experimental details are described in Supplemental Material online [16,17].  A sample 

was prepared by AFM scribing a TD pattern of strength m=+1, φ=0° (radial) having a 

“confinement radius” l on a polymer-coated substrate [18].  A thin layer of liquid crystal 8CB 

was then spin-coated on the substrate.  The LC’s free-surface topography was measured by 

optical profilometry. 

Figure 1a shows a 3D reconstruction of the 

surface profile of the LC / air interface for film 

thickness d=610±30 nm above an underlying m=+1, 

φ=0° (radially) patterned surface. Immediately visible is 

a hill-like protrusion rising above a nearly flat nematic 

surface. Reflecting the underlying pattern, the hill is 

azimuthally symmetric, and its height h above the 

background increases monotonically toward r=0, 

reaching a peak height h=52±4 nm. This corresponds to 

9% of the film’s total thickness. (Note that we have 

observed h/d as large as 0.21 in the nematic phase.) 

The height distribution h(r) changes significantly 

with temperature (Fig. 1b).  It is virtually flat above the I–N transition temperature TNI ~ 41oC, 

with a tiny divot observed in Fig. 1b (in this sample only) due to a dust particle beyond r = l.  A 

small hill becomes visible at the core after cooling below TNI.  This hill grows in height as we 

cool further into the nematic, which is our focus. Figure 1c shows the peak height h vs. 

temperature, including the pretransitional behavior on approaching TNA. Although effects in the 

SmA phase are beyond the scope of the current work and will be published elsewhere, we note 

 

Fig. 1 a) Experimental 3D scatter plot 
of topography at the LC / air interface 
induced by an underlying TD at the 
substrate. b) Height profile change at 
selected temperatures. c) Peak height h 
vs. temperature, showing transition 
temperatures TNA and TIN. 



 

several features specific to the SmA phase and distinct from the nematic: formation of curved 

oily streak defects [Error! Bookmark not defined.] transverse to the patterned easy axis; 

significant transfer of LC to beyond the patterned region with a hill rising above the patterned 

region, all of which is now depressed from the surrounding area;  and an extremely sharp cone 

whose apex height (66±5 nm) now reaches 10% of the film’s asymptotic thickness. These 

smectic cones have been observed with absolute heights as large as h=200 nm (for d=1200nm) 

and relative heights as large as 65% (h=50nm, d=75nm). 

Returning to nematic films, the height, shape, and even the sign of the topography are 

found to depend on the film 

thickness d:  Thinner films 

exhibit taller hills as a fraction 

of the film thickness, with h 

generally decreasing with 

increasing film thickness. 

Additionally, for thinner films 

(d∼100 nm), we observe that 

hills are more likely to have a 

dome-like (rather than cusp-

like) shape (Fig. 2a), but 

become more conical with a 

singularity at the peak for thicker films (∼600 nm, Fig. 2b,c). For the dome-like topography, its 

rounded shape in conjunction with the vertical boundary conditions at the air interface ensure 

that variations in the director at the substrate smooth out rapidly with increasing z.  Thus no 

 

 

Fig. 2 a) Dome-like behavior for a film of thickness d=75 nm.  
b) Cone-like topography for d=660 nm film on the same 
patterned substrate. c) Profiles of slices through the core of 
the same physical sample at several different thicknesses. The 
extent of the two inner vertical lines corresponds to the 2l=70 
µm radially patterned diameter; the two outer vertical lines to 
the full 85 µm patterned square. d) Image of a divot for 
d=1030 nm film. 

 



 

disclination line projects from the patterned surface defect through the LC to the top surface.  

This behavior is due to an energy balance and is borne out by our modeling below.  Thus, the 

dome-like behavior indicates the presence of a boojum at the patterned surface, and that the 

free-surface topography is not generated by a local surface defect or transmitted by a bulk 

disclination line — this is unlike the case reported in Refs. 11,12,13,and 14. Instead the 

topography is mediated through anchoring, as well as elastic forces from the patterned substrate 

to the free surface.    We also note that the height of the hill also depends on l, the distance out to 

which the radial (m=+1, φ=0°) TD is patterned:  h increases monotonically with pattern 

diameter 2l in the SmA phase (h=8, 10, and 14±2 nm for l=15, 25, and 35 µm, respectively for 

d=500±20 nm just below TNA) , with similar but smaller (and thus noisy) results in the nematic 

phase as well.  Finally, Fig. 2d shows a divot. 

We also compared our nematic results to a region of the same substrate that had been 

patterned with an underlying m=+1, φ=π/2 topological defect — this corresponds to an 

alignment pattern of concentric circles.  This pattern exhibits no significant topography, 

suggesting that the source of the topography is not simply elastic relaxation near the core — 

indeed, both the radial and concentric circle patterns have the same total 2D elastic energy 

density (in the single elastic constant approximation) at the defect core.   



 

We examine the three major 

terms of the free energy: surface 

tension, elastic forces, and anchoring.  

In both the radial and concentric circle 

geometries, surface tension at the free 

surface tends to minimize curvature, 

promoting a uniformly flat topography 

(Fig. 3a).  Next are elastic forces, with 

the director constrained (nearly) normal 

to the free surface.  Focusing on the radial easy axis pattern, very close to r=0 the director must 

melt; become biaxial [19,20,21] when tightly confined in specific geometries [22,23,24], a 

condition that is not met in our experiments; or become vertically-aligned at the substrate. The 

latter scenario is effectively the common escaped radial configuration [25,26] and is consistent 

with our setup.  For the latter case the far-field region beyond r > l finds its polar orientation q 

undergoing a bend/splay distortion along the z-axis to meet the hybrid-alignment boundary 

conditions.  The total energy of this far-field region can be reduced by increasing the local film 

thickness to spread the distortion over a larger z-distance. With a constant volume constraint, 

material must be transported away from the core region near r=0, thus promoting a divot for both 

configurations (Figs. 2d and 3b).  We note that these nematic divots derive from very different 

physics than those in the SmA phase [27,28]. 

The third term, anchoring, is the source of the hill-like behavior (Fig. 3c) for the radial 

pattern. Due to the hybrid boundary conditions, there is a director torque at the surfaces, and the 

LC must be pretilted slightly, by angle θf(r), from the normal at the free surface (vanishing as 

 

Fig. 3  Cartoon visualizing the resulting topography 
from the energy contributions of a) surface tension 
promotes flatness, b) elastic forces promote divots, c) 
and d) underlying splay in the weak-anchoring regime 
for both senses of director escape, the first promoting 
hills and the second divots, and e) underlying twist in 
the weak-anchoring regime promoting neither hills nor 
divots. 

 



 

). This pretilt anchoring cost can be mitigated by a deformation of the free surface to form 

a hill (Fig. 3c) or a divot (Fig. 3d), depending on the sense of pretilt at the substrate. Figure 3e 

shows the case of a concentric circle easy axis pattern, with a twist distortion along an axis 

passing through r=0 at the substrate. Elastic energy relaxation requires that  be azimuthal, 

although owing to azimuthal symmetry =0.  Thus free-surface anchoring promotes neither 

hill nor divot, leaving elasticity as the main driving force for the topography.  That the 

topography is negligible for m=+1, j=p/2 (Fig. 3e) suggests that the elastic forces are weak. 

The relative tradeoff among the three energy contributions determines the magnitude of h 

and its sign. We observed the pretilt phenomenon experimentally, wherein heating and cooling 

through TNI randomly nucleates the sense of pretilt – this is due to the bi-directional scribing –  

thereby interchanging hill and divot. We note that scribing the patterns uni-directionally 

predisposes one sense of substrate pretilt, with hills for radially-inward scribing and divots for 

outward scribing. Thus, the shape of the topography depends on force balance, with anchoring 

typically dominating.  This, in turn, depends on the LC’s materials parameters, the scribing 

pattern, the scribing radius l, and the film thickness d. 

We now turn to an overview of the modeling with a patterned defect at the substrate; a 

more extensive exposition will be published elsewhere. The free energy of the system consists of 

the usual surface tension, elastic, and anchoring contributions, 

𝐹 = $
% ∫ 𝑓( (𝐧, 𝛁𝐧)𝑑𝑉 + ∫ 1𝜎 − 4

%
(𝐧. 𝐧6)%78( 𝑑𝐴,    (1) 

where 𝜎 is the surface tension; the elastic contribution is 𝑓 = 𝐾$$(𝛻 ⋅ 𝐧)% + 𝐾%%(𝐧 ⋅ 𝛻 × 𝐧)% +

𝐾>>|𝐧 × 𝛻 × 𝐧|%; 𝐾$$ = 𝐾%% = 𝐾>> = K are the splay, twist and bend elastic constants in the equal 

constant approximation; and 𝑊 is the anchoring strength coefficient. The second integral is taken 

over the free surface with the director 𝐧 fixed at the lower substrate. 
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Two length scales, 𝜁 = 𝐾/𝜎 and 𝜉 = 𝐾/𝑊, characterize the relative influence of the 

three terms.  Far above the 𝑁 − SmA transition, approximate values for these are 𝜁 ∼ 0.4	𝑛𝑚 ≪

𝜉 ≲ 100	𝑛𝑚; hence the upper surface remains flat and the director adopts the configuration in 

Fig. 3a. Note that the director deviates slightly from vertical above the pattern due to the finite 

anchoring strength. As the nematic approaches the 𝑁 − 𝑆𝑚𝐴 transition, two effects occur: First, 

𝐾%% and 𝐾>> diverge [29]; second, the SmA phase grows inward from the substrate [30], 

enhancing surface order and, importantly,  increasing the surface anchoring 𝑊 [31,32]. This 

tends to enhance h for both hills and divots on nearing TNA. 

Now suppose the free interface can vary. The surface tension term in Eq. 1 resists 

deformations (Fig. 3a). Elastic stresses tend to push the interface upwards to mitigate dq/dz: As 

described above, this leaves a divot near r=0 where dq/dz=0 (Fig. 3b).   The anchoring term 

requires careful consideration: It is typically thought to promote alignment of the director with 

respect to a fixed easy axis 𝐧6 defined relative to the surface normal. Here we reverse the 

causality and investigate how a spatially changing n can induce variations in 𝒏6  and hence the 

topography of the surface. 

To do so, the free surface is parameterized in dimensionless (scaled by d) cylindrical 

coordinates (𝜌, 𝑢, 𝑍) as 𝐗 = {𝜌, 𝑢,𝐻(𝜌)} and hence the surface normal is 𝐬Z = {−𝐻′(𝜌),0,1}/

(1 + 𝐻′(𝜌)%). Here , L = l / d, and the prime denotes .  Similarly, the director at 

the surface is parametrized to lie at a constant azimuthal angle 𝜙 to the radial direction, 𝐧 ≡

{𝑛^, 𝑛_, 𝑛`} = {sin𝜃(𝜌)cos𝜙, sin𝜃(𝜌)sin𝜙, cos𝜃(𝜌)}. Hence, the anchoring term in Eq. 2 

becomes 

𝐹g = −𝜋𝑊𝑑 ∫ (ijkl(^)mno(^)ijkpkqrl(^))s

t$uno(^)s
v
w 𝜌𝑑𝜌,   (2) 

/H h d= / R¶ ¶



 

revealing a coupling between topography, 𝐻′(𝜌), and orientation 𝜃(𝜌). Notice that the coupling 

vanishes if 𝜃 = 0, where the director is vertical, and similarly if 𝜙 = 𝜋/2, where the director is 

azimuthal; here a spatially varying director does not induce topography. 

Experimentally, H<<1, suggesting a perturbative approach. We therefore series expand 

about a solution where the director is nearly vertical at the free surface and fixed by elasticity, 

𝜃 ≈ 𝛼𝜃$(𝜌), and the interface is nearly flat, 𝐻(𝜌) ≈ 𝛼𝐻$, where a is an expansion parameter. 

We include the surface tension, 

𝐹{ = 2𝜋𝜎𝑑| t1 + 𝐻′(𝜌)%
v

w
𝜌𝑑𝜌 

and a volume constraint 2𝜋𝜆𝑑 ∫ 𝐻vw (𝜌)𝜌𝑑𝜌 but neglect the elastic stress as this as this has 

leading order 𝛼> while the other terms are of order 𝛼%.  With these considerations, the linearized 

Euler-Lagrange equation is obtained, 

(1 + 𝑤)(𝐻$′ + 𝜌𝐻$″) + 2𝑤cos𝜙(𝜃$ + 𝜌𝜃$′) + 𝜆𝜌 = 0,  (3) 

where 𝑤 = 𝑊/𝜎. A suitable ansatz for 𝜃$ is 𝜃$ =
�
%
tanh(𝜋𝜌/2)/(1 + 𝛤) where 𝛤 = 𝑊𝑑/𝐾. 

Inserting this into Eq. 3, we obtain a solution, 

𝐻(𝑅) = 𝐻w −
�^s

%�($ug)
− %gijkp�j�[ijk�(�^/%)]

($ug)($u�)
.   (4) 

The constants 𝜆 and 𝐻w are determined by imposing the boundary condition 𝐻′(𝐿) = 0 and 

volume constraint ∫ 𝐻vw (𝜌)𝜌𝑑𝜌 = 0. From the solution (Eq. 4), the magnitude of the 

dimensionless topography 𝛥𝐻 ≡ 𝐻(𝐿) − 𝐻(0) may be estimated, 

𝛥𝐻 =
𝑤cos𝜙[4log(cosh(𝜋𝐿/2)) − 𝜋𝐿tanh(𝜋𝐿/2)]

2(1 + 𝑤)(1 + 𝛤) , 

and solutions are plotted in Fig. 4a for different 𝐿. The profile becomes increasingly conical with 

increasing L.  Thus, we have the following takeaways: i) our analytic model articulates the 



 

mechanism(s) for the topography, ii) it predicts that a topography is observed only for the case of 

a radial surface pattern, consistent with experiment, and iii) it predicts that the topography scales 

with confinement distance L, also consistent with observation. 

We also perform numerical simulations relaxing the strong assumptions of the above 

model. The full free energy (Eq. 1) with three 

elastic constants is minimized subject to a 

volume constraint both with respect to the 

director and the shape of the domain using one 

of the authors (TJA’s) morpho code [33]; an 

initial 2D rectangular domain is used and all 

quantities are represented using linear 

interpolation on a triangular finite element 

mesh. The height is fixed at 𝜌 = 𝐿 on the right 

hand boundary. A typical height profile is 

displayed in Fig. 4b and closely resembles 

those from the analytical model despite the 

much less restrictive assumptions of the 

calculation. Additionally, we display the 

normal component of the generalized force 

𝜕𝐹
𝜕𝒙𝒊

∙ 𝐬Z  on the 𝑖th boundary vertex due to the 

respective terms (Fig. 4c) 

To summarize, we have shown experimentally and theoretically that the topography of a 

nematic LC, i.e., an orientable Newtonian fluid, at an air interface can be determined by the easy 

 

Fig. 4 a)  Cartoon of flat interface solution (inset) 
and  analytical height profile for different 𝐿; 𝑤 =
0.1, 𝛤 = 10, 𝜙 = 0. Asymptotic solution for 𝐿 →
∞ is shown in red for comparison. b) Numerically 
minimized height profile with finite elements.  c) 
Generalized forces on the boundary vertices due to 
different terms in the elastic energy.  

 



 

axis pattern of the underlying substrate.  The interplay of surface tension, elasticity, and 

especially anchoring alone determines the shape of the free-surface topography, without the need 

of a singular defect running from the substrate to the air interface. 
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