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The future space mission LISA will observe a wealth of gravitational-wave sources at millihertz
frequencies. Of these, the extreme-mass-ratio inspirals of compact objects into massive black holes
are the only sources that combine the challenges of strong-field complexity with that of long-lived
signals. Such signals are found and characterized by comparing them against a large number of
accurate waveform templates during data analysis, but the rapid generation of templates is hindered
by computing the∼ 103–105 harmonic modes in a fully relativistic waveform. We use order-reduction
and deep-learning techniques to derive a global fit for the ≈ 4000 modes in the special case of
an eccentric Schwarzschild orbit, and implement the fit in a complete waveform framework with
hardware acceleration. Our high-fidelity waveforms can be generated in under 1 s, and achieve a
mismatch of . 5× 10−4 against reference waveforms that take & 104 times longer. This marks the
first time that analysis-length waveforms with full harmonic content can be produced on timescales
useful for direct implementation in LISA analysis algorithms.

Introduction. As gravitational-wave (GW) astron-
omy continues to bear fruit [1], preparatory work is un-
derway for a future generation of ground- and space-
based observatories that span the astrophysical GW spec-
trum [2–4], and whose success will depend on further
advancements in the technology and methods of GW
detection. The theorist’s contribution to this endeavor
lies primarily in the construction of waveform models to
describe GW signals from astrophysical phenomena, as
well as the application of statistical analysis to infer their
presence in noisy data and their source properties. For
highly relativistic sources, the computational burden of
solving Einstein’s equations in numerical modeling is fun-
damentally at odds with the Monte-Carlo nature of mod-
ern signal-processing and Bayesian-inference techniques.

Extreme-mass-ratio inspirals (EMRIs) are the most
conspicuous example of such dissonance. These are the
late capture orbits of stellar-mass (µ ∼ 1–100M�) com-
pact objects into the massive (M ∼ 105–107M�) black
holes in galactic nuclei. They radiate millihertz GWs,
and will be a key source class for the space mission LISA
[4] upon its launch in the next decade. An EMRI signal
typically has∼ 105 observable cycles carrying the imprint
of the compact object’s complex dynamical motion deep
in the central black hole’s gravitational field. This wealth
of information is double-edged: it will allow probes of
galactic-nuclei astrophysics and strong-field gravity to
unprecedented precision [5, 6], but it places exacting con-
straints on the accuracy and efficiency of both modeling
and data analysis for EMRIs — to a combined extent far
surpassing that for other important LISA sources.

Calculations from black-hole perturbation theory, and

in particular from the ongoing gravitational self-force
program [7], are on target to produce EMRI waveforms
that meet the accuracy requirements of LISA science
[8, 9]. Such models are computationally intensive, and
hence ill suited for direct use in analysis algorithms that
are tailored to the EMRI problem [10–14]. As in the case
of numerical-relativity waveforms for comparable-mass
binaries, self-force waveforms must be supplemented and
approximated by template models that are: i) efficiency-
oriented, ii) extensive in their description of both intrin-
sic and extrinsic effects, and iii) end-to-end from source
parameters to detector response. The challenge is to
achieve this with a controlled and tolerable loss of ac-
curacy. Strategies developed for the comparable-mass
case, such as the standard construction of reduced-order-
modeling (ROM) surrogates (e.g., [15]), are less likely to
scale feasibly to the signal duration, harmonic complexity
and information volume of the full EMRI problem.

The semi-relativistic “kludges” [16–20] are the only ex-
isting examples of EMRI template models. Kludges trade
accuracy for efficiency by means of a modular build and
various computational approximations. Their common
distinguishing feature is a reliance on some weak-field
assumption at one or more stages of their construction.
The speed and generality of kludge models has greatly fa-
cilitated numerous LISA studies on mission performance,
data analysis approaches and potential scientific appli-
cations. However, kludges incur significant error with
respect to fully relativistic models for many sources in
the observable space of EMRIs [17], and have little room
for improvement due to the limitations of the weak-
field assumption. This inherent cap on accuracy may
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count against the continued development and adoption
of kludge models, at least in the long term.

In this Letter, we report promising headway against
the main obstacle to the rapid generation of fully rel-
ativistic EMRI waveforms: efficiently computing the
slowly evolving amplitudes of the ∼ 103–105 harmonic
modes that comprise a single waveform in the canoni-
cal angular and frequency-based decomposition [21, 22].
Through the integration of ROM and deep-learning tech-
niques [23], an analytic model for these amplitudes is fit-
ted to numerical data from a frequency-domain Teukol-
sky solver [24]. The key to our approach is the use of
regression rather than interpolation, resulting in a less
precise but global fit that returns the full set of ampli-
tudes simultaneously. This allows the inclusion of rela-
tivistic amplitudes in template models, where they are
combined with existing fast methods for generating the
phasing trajectories to varying levels of accuracy.

As the mode-amplitude model is a neural network, it is
composed of simple linear-algebra operations and hence
amenable to acceleration through a highly parallelized
implementation for graphics processing units (GPUs).
We exploit this to construct the first EMRI waveform
model with sub-second runtimes in a realistic setting,
i.e., analysis-length signals (∼ 107M at sampling rate
1/(2M)), and full harmonic content (retaining up to
1− 10−9 of total power at initial orbital eccentricities of
up to 0.7 [25]). The present model describes the source-
frame GW field for eccentric orbits in Schwarzschild, with
inspiral trajectories that are accurate at adiabatic order.
Our code infrastructure is designed with the end goal of
providing analysis-ready template models; specifically, it
will readily accommodate post-adiabatic trajectories in-
formed by future self-force calculations, as well as the
eventual extension to generic Kerr orbits and the inte-
gration of a compatible LISA response model.

Adiabatic waveforms. An EMRI’s disparate masses
(M,µ � M) create a wide separation between its or-
bital and radiation-reaction timescales. This allows EM-
RIs to be modelled through a two-timescale expansion
[26]. In the leading adiabatic part of this expansion,
the equations of motion follow from flux balance laws.
Though a purely adiabatic treatment of waveform phas-
ing will be insufficiently accurate to describe a typical
EMRI signal over its full duration [27], adiabatic trajec-
tories can still be used for data analysis within a hierar-
chical semi-coherent search scheme [10, 19], or for more
slowly evolving binaries with µ/M < 10−6 [28, 29]. Some
of the most important post-adiabatic phase effects can be
easily added by allowing a particular phase to evolve on
the long timescale [30]. The computation of mode am-
plitudes is also only required at adiabatic order [9], even
for the most stringent analysis task of inference. This is
due to the disproportionate dependence of GW matched
filtering on waveform phasing, rather than its amplitude.

For an EMRI with a non-rotating central black hole,

the adiabatic evolution of the orbital energy E and an-
gular momentum L is given by (Ė , L̇) = −(Ė, L̇), where
an overdot denotes differentiation with respect to coor-
dinate time t, and (Ė, L̇) is the total flux of energy and
angular momentum radiated through null infinity and the
event horizon. It is useful to parametrize the system by
an equivalent set of quasi-Keplerian orbital elements: the
semi-latus rectum (henceforth “separation”) p and eccen-
tricity e, with E2 = p−1(p−2−2e)(p−2+2e)/(p−3−e2)
and L2 = p2M2/(p − 3 − e2) [31]. In this parametriza-
tion, stable bound orbits exist for p > ps = 6 + 2e and
0 ≤ e < 1, where ps denotes the separatrix [32]. Each
instantaneous orbit (p, e) is associated with a radial and
azimuthal frequency, denoted by Ωr and Ωϕ respectively.

In the Newman–Penrose formalism [33], the GW field
h at null infinity is related to the Weyl curvature scalar
ψ4 via ḧ = 2ψ4, where h = h+−ih× with the usual trans-
verse traceless polarizations h+,×. For each orbit (p, e),
ψ4 may be obtained by solving the Teukolsky equation
[34] in the frequency domain; this requires a decompo-
sition of the form ψ4 =

∑
lmnRlmn(r)Ylm(θ, ϕ)e−iωmnt,

where Ylm are spherical harmonics with spin weight −2,
and ωmn = mΩϕ + nΩr are the mode frequencies. It is
convenient to define and solve for the complex Teukolsky
amplitudes Z∞,Hlmn , which describe the limiting behaviour
of Rlmn as r →∞ and r → 2M respectively [21].

The GW strain for a detector at some suitably distant
coordinates (t, r, θ, ϕ) is then given by [22]

h =
1

r

∑
lmn

Almn(t− r)Ylm(θ, ϕ)e−iφmn(t−r), (1)

where Almn = −2Z∞lmn/ω
2
mn, and φmn = mΦϕ + nΦr

with Φr,ϕ(t) =
∫ t

0
dτ Ωr,ϕ(p(τ), e(τ)). In the results we

show, we put t = φ = 0 at periastron; other initial con-
ditions are easily accommodated by adjusting the phase
of Almn [27, 30]. The sum over modes spans the indices
2 ≤ l ≤ lmax, |m| ≤ l and |n| ≤ nmax, with lmax and nmax

determined by some convergence criterion (e.g., [35]).
For the present work, we set (lmax, nmax) = (10, 30), re-
sulting in the sum of 7137 modes (but the explicit eval-
uation of only 3843, by exploiting mode symmetry [21]).

Fast trajectories. To generate fast inspiral trajecto-
ries (p(t), e(t),Φr,ϕ(t)) for use in template models, we
need to rapidly evaluate (ṗ, ė) across the domain of (p, e).
In a flux-driven trajectory for adiabatic waveforms, (ṗ, ė)
is given in terms of the flux (Ė, L̇) through null infinity
and the horizon, which can be calculated directly from
the Teukolsky amplitudes [21]. However, numerical solu-
tions for the amplitudes are computationally costly and
can only be precomputed at a limited number of points
in (p, e) space. Fast flux-driven trajectories must thus
rely on an accurate and efficient interpolation scheme for
the fluxes derived from this numerical data.

In this work, we first introduce a new parameter
u = ln (p− ps + 3.9), then calculate Teukolsky ampli-
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tudes and fluxes on a uniform grid in (u, e), where 1.37 ≤
u ≤ 3.82 with spacing 0.05 and 0 ≤ e ≤ 0.8 with spacing
0.025. The grid in u gives p ∈ [ps + 0.03, ps + 41.6] and
places more points near the separatrix, where the data
varies more rapidly. Before interpolating the flux data,
we factor out the leading post-Newtonian (PN) behaviour
(ĖPN, L̇PN) [36] to reduce the impact of interpolation er-
ror. We then create bicubic splines for (Ė/ĖPN, L̇/L̇PN)
over (u, e), with PN factors restored after evaluating the
splines. The inspiral trajectory is computed at runtime
for initial values (p0, e0), by numerically integrating (for
p > ps + 0.1) the coupled ordinary differential equations
{ṗ, ė, Φ̇r,ϕ} with an adaptive eighth-order Runge–Kutta
method. As the flux varies on the radiation-reaction
timescale M2/µ, the solution is very smooth. This per-
mits large integration steps, so generating each trajectory
typically takes only a few milliseconds.

Going beyond flux-driven trajectories to make post-
adiabatic waveforms requires the inclusion of gravita-
tional self-force corrections [7]. This introduces orbital-
timescale variations into the equations of motion, which
slows the calculation of a self-forced trajectory to min-
utes or even hours [37]. Recently, this barrier was over-
come using near-identity transformations [38], allowing
the transformed equations of motion to be evaluated in
milliseconds. Key post-adiabatic corrections at second
order in the mass ratio [8] are being calculated in the two-
timescale framework [9], which will incorporate a similar
averaging procedure. Thus, the generation of the inspi-
ral trajectory is unlikely to constitute a computational
bottleneck for post-adiabatic models either.

Neural-network amplitudes. With the inspiral trajec-
tory on hand, the remaining computationally nontrivial
operation in Eq. (1) (besides the sum over modes at high
resolution in time) is the evaluation of the mode ampli-
tudes Almn(t).1 Although these are very slowly evolving
and can be downsampled significantly in time, a conven-
tional spline-interpolation approach requires the creation
and evaluation of ≈ 4000 splines over the (p, e) space.
Furthermore, future waveforms for generic Kerr orbits
would involve ∼ 105 splines over the four-dimensional
space of separation, eccentricity, orbital inclination and
primary spin. This is problematic, as the ability of most
interpolation schemes to simultaneously maintain accu-
racy and efficiency rapidly degrades for & 3 variables.

To address the issue of high dimensionality (in both
the space of modes and the space of orbits), we propose
the approach of precomputing an analytic global fit for
the mode amplitudes. The particular method we use
is Roman [23], which combines the compressive power of
ROM with the high-dimensional regression capabilities of

1 We fit Almn directly rather than Z∞lmn, to avoid numerical di-
vergences due to fitting error whenever ωmn approaches zero.

deep neural networks. Roman was developed within the
paradigm of ROM in GW modeling and analysis [39], and
provides an alternative to the combination of surrogate
waveforms [40] with the inference technique of reduced-
order quadrature [41] (albeit at the expense of a more
difficult initial fit). However, one open problem with the
direct usage of ROM to fit full waveforms is accuracy.
While the errors incurred by leading models (e.g., [42])
are sufficiently small for present ground-based applica-
tions, waveform templates for LISA data analysis will
require far more stringent modeling [43].

In this work, we apply Roman to the fitting of mode
amplitudes instead. A greedy algorithm [44] is first used
to construct a reduced basis B for (the span of) the
Teukolsky amplitude data on the uniform grid in (u, e).
This allows the vectorized amplitudes Ai = vec(Almn) ∈
C3843 ∼= R7686 to be represented in the reduced form

Ai(u, e) =
∑
j

αj(u, e)Bji ≡ αj(u, e), (2)

where αj ∈ C99 ∼= R198 for an effective compression fac-
tor of around 40. A deep neural network is then trained
on the reduced data set {u, e, αnum} as a regression model
for α(u, e). The architecture and training of the network
is identical to the main example in [23], with the following
exceptions: i) Our network contains 20 hidden layers a`,
where the first six comprise 2`+1 nodes and the remain-
ing layers have 256 nodes each. ii) As the training-set
size of 1640 is small, Monte Carlo validation [45] is used
to prevent overfitting, with 20 random examples held out
at each epoch. iii) The mini-batch size is 810. iv) The
loss function is the standard L2 loss |α−αnum|2 averaged
over each mini-batch, where | · | is Hermitian. Our net-
work is trained over 3 × 104 epochs (four hours on one
CPU core), after which it is evaluated at runtime for a
set of input points {(p, e)} to simultaneously output the
corresponding set of mode amplitudes {α · B}. Finally,
we renormalize each amplitude vector by a more accurate
estimate for the vector norm, which is obtained through
bicubic interpolation of the numerical norms.

Parallelized implementation. The long-lived nature of
EMRI signals will necessitate parallel implementations of
template models and analysis algorithms, which can then
be fully capitalized on through hardware acceleration. To
date, accelerator hardware such as GPUs are very un-
derutilized in GW astronomy. However, there are a few
examples of GPU usage for both modeling and analy-
sis: the generation of EMRI waveforms with time-domain
Teukolsky solvers [46, 47]; binary-black-hole waveform
modeling and population inference for ground-based ob-
serving [48]; as well as massive-black-hole-binary wave-
form creation and parameter estimation for LISA [49].

In this work, our flux-driven trajectory and Roman am-
plitudes are combined in Eq. (1) to form an efficient adia-
batic waveform model h+,×(t) for eccentric Schwarzchild
orbits, parametrized by the set {M,µ, p0, e0, r, θ, ϕ}.
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FIG. 1. Evolution of mismatch between fast and fiducial
waveforms from (p0, e0) to (p, e), for 12 EMRIs with M =
106M�, µ ∈ [15, 304]M�, and (p0, e0) along the model domain
boundary. Each small mass is chosen such that the EMRI
plunges after a year. These results are for (θ, ϕ) = (π/2, 0),
but do not depend strongly on the viewing angle. In the worst
case (top-left curve), the final 0.01% of the waveform causes
the mismatch to increase from under 4× 10−4 to 5× 10−4.

This model is implemented natively for GPUs, with
an otherwise-equivalent counterpart implementation for
CPUs. The source code is written in Python (interface),
C++ and CUDA, and is publicly available online [50].

GPU acceleration is crucial for relieving the main
computational bottleneck in the construction of a time-
domain EMRI waveform: the combination and summa-
tion of amplitude and phase information at a sufficiently
high sampling rate for fully coherent analysis (defined
here as 1/(2M) for concreteness). In our model, this
bottleneck is dealt with through a large-scale cubic-spline
interpolation of Almn(t) and Φr,ϕ(t) at a sparse (∼ 102)
set of points in time. The number of considered modes
is first reduced significantly (to ∼ 102–103) by a run-
time selection routine, where all modes at each point in
time are sorted by power and removed if they do not con-
tribute cumulatively up to some specified fraction of their
total power (typically & 1 − 10−5 for satisfactory wave-
form accuracy). Specific sets of modes can also be chosen
for particular analysis purposes, e.g., lmax = 2 to search
for EMRIs at large separation. The selected amplitude
(and phase) splines are then fed into a summation kernel,
where they are evaluated and summed at full resolution.

Results. The domain of validity for our waveform
model is defined as pmin ≤ p ≤ ps + 10 and 0 ≤ e ≤ 0.7,
where pmin = max {ps + 0.1, 7ps − 41.9}. Orbits at small
p and large e are excluded as they lack astrophysical rele-
vance, and are also difficult to fit due to their high degree
of variability. The large-p boundary is justified by the
reduced sensitivity of LISA at frequencies correspond-
ing to p & 20. We assess the individual accuracies of
the trajectory and amplitude modules against numerical
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FIG. 2. Six-hour snapshots of fast (orange) and fiducial
(blue) waveforms, one year before plunge (top) and just before
plunge (bottom). Waveforms are for the worst-case EMRI
(M,µ, p0, e0) = (106M�, 15M�, 10, 0.7), with a one-year mis-
match of 5×10−4. Small amplitude deviations are visible just
before plunge at (p, e) ≈ (7, 0.5), where the mode-distribution
error approaches its maximum across the domain of validity.

Teukolsky flux and amplitude calculations, using a test
data set of 232 orbits that spans the domain of valid-
ity (but has no orbit in common with the training set).
For the relative flux error (∆Ė/Ėnum,∆L̇/L̇num), both
components have a median value of 3 × 10−7. As the
vectorized Roman amplitudes are renormalized to simi-
lar accuracy, we consider their “mode-distribution” error
1 − <(A†Anum)/(|A||Anum|), which reduces to (half of)
the relative L2 error when |A| = |Anum|. The mode-
distribution error has a median value of 3× 10−5.

Our fast model is then benchmarked against a slower
fiducial model that uses standard bicubic-spline interpo-
lation for the amplitude of each mode (without mode
selection), as well as integration steps at full time res-
olution for the inspiral trajectory. The bicubic ampli-
tudes in the slow model are significantly more faithful
to the numerical test data than the Roman amplitudes,
with a median mode-distribution error of 3 × 10−11. To
quantify the overall error in the fast waveform with re-
spect to the slow fiducial waveform, we examine their
mismatch: 1−<(h†hfid)/(|h||hfid|), defined here without
noise weighting for simplicity. The mismatch is domi-
nated by amplitude error, as the phase difference ∆φ be-
tween the fast and slow trajectories typically has a maxi-
mal value of ∼ 10−3 over the full duration of a waveform.

Fig. 1 shows how the mismatch from (p0, e0) up to
(p, e) changes for a representative set of EMRIs in the
domain of validity, as they evolve towards the separatrix
over a duration of ∼ 107M . The EMRI with the largest
e0 and the smallest p0 plunges at high eccentricity e ≈
0.5, and has the “worst-case” full mismatch of 5× 10−4;
snapshots of this waveform at initial and plunge time are
shown in Fig. 2. In general, the signal-to-noise ratio ρ of
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FIG. 3. Computational wall time for fast and fiducial wave-
forms, broken down into individual modules. All times are
averaged over ≥ 5 evaluations of the worst-case waveform on
a single CPU core (and GPU), where the CPU is an Intel
Xeon Gold 6132 and the GPU is an NVIDIA Tesla V100.

a GW source determines the required level of mismatch
∼ 1/ρ2 for inference purposes [43], and so the accuracies
achieved by a waveform with Roman amplitudes should
be adequate for LISA EMRIs (where ρ . 102). In terms
of efficiency, wall times for the slow model (∼ 1 hr for the
worst-case waveform with ∼ 103 modes) are dominated
not just by mode summation, but also the evaluation of
mode amplitudes (see Fig. 3). This is not the case for
our fast model, where the bottleneck is reduced solely to
summation, and wall times are reduced to ∼ 1 min on a
CPU and further to ∼ 102 ms on a GPU.

Conclusion. The efficient computation of fully rela-
tivistic EMRI waveform templates has yet to be achieved
under the constraints of LISA data analysis, as a signifi-
cant bottleneck is posed by the interpolation and evalu-
ation of the ∼ 103–105 mode amplitudes. In this Letter,
we propose that the bottleneck can first be relieved by
combining order-reduction and deep-learning techniques
in the amplitude fit [23], and then virtually removed
through the use of GPU acceleration. We demonstrate
this by introducing the first EMRI waveform model with
sub-second runtimes for analysis-length signals with full
harmonic content. Access to higher modes during analy-
sis is important not just for precise inference, but also for
finding signals in the first place: using our model, we find
that a quadrupolar waveform with lmax = 2 typically has
a mismatch of ≈ 0.1 against a fiducial waveform, which
may be suboptimal even for search [19].

Our present waveform model is accurate at adiabatic
order for eccentric Schwarzschild orbits, and thus can al-
ready be used to construct search templates for EMRIs
with a non-rotating large mass. However, LISA data
analysis needs template models that describe generic
Kerr EMRIs at sufficient accuracy for inference. The
framework presented in this Letter is designed to accom-
modate the increased accuracy and extensiveness of such

models while retaining efficiency. Post-adiabatic wave-
forms require the replacement of flux-driven trajectories
with self-forced trajectories, which will be equally effi-
cient [9, 38]. Practical schemes for dealing with transient
resonances [51–53] can be included as well. Although the
mode amplitudes are required only at leading order [9],
they must be extended to cover the space of Kerr or-
bits; our fitting technique is promising for dealing with
the increased dimensionality. The source-end waveform
also has to be integrated with a realistic LISA response,
which could be done through a frequency-domain approx-
imation for both waveform [30] and response [11, 14], or
by developing accelerated versions of more accurate time-
domain simulators [54, 55]. Finally, the modular nature
of the framework allows the incorporation of additional
physics as well. This could include environmental effects,
e.g., accretion disks [56] and massive perturbers [57, 58],
or new physics, e.g., beyond-general-relativity corrections
[59] and beyond-standard-model physics [60, 61].
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