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Comment on “Inverse Square Lévy Walks
are not Optimal Search Strategies for d ≥ 2”

It is widely accepted that “inverse square Lévy walks
are optimal search strategies because they maximize
the encounter rate with sparse, randomly distributed,
replenishable targets” [1], when the search restarts in
the vicinity of the previously visited target, which
becomes revisitable again with high probability, i.e., non-
destructive foraging [2]. Three objecting claims are
raised in Ref. [1] for d ≥ 2: (i) the capture rate η has
linear dependence on the target density ρ for all values
of the Lévy index α; (ii) “the gain ηmax/η achieved by
varying α is bounded even in the limit ρ → 0” so that
“tuning α can only yield a marginal gain”; (iii) depending
on the values of the radius of detection a, the restarting
distance lc and the scale parameter s, the optimum is
realized for a range of α.

We agree with claim (i), but as we will see, it is not
relevant in d ≥ 2 to whether or not inverse square Lévy
walk searches are optimal for non-destructive foraging.
Claim (iii) is also correct, however this claim was made
already in Refs. [2–5]. In particular Ref. [2] showed that
α = 1 is optimal only in the limit lc → a, which is
the main condition of non-destructive foraging, with the
quantity lc in Ref. [1] being none other than the distance
ro in Ref. [2]. Otherwise for large lc the optimal strategy
in the limit ρ → 0 is to go along straight lines, i.e.
α → 0. Moreover, it is known since 2003 that a range
of α can be optimal (see Fig. 1 of Ref. [3], Figs. 2–3 of
Ref. [4] and Figs. 1 and S1 of Ref. [6], none of which
are cited in Ref. [1]). Crucially, claims (i) and (iii) do
not per se contradict the main finding of Ref. [2] that
α = 1 is optimal under the specific conditions of non-
destructive foraging (or of destructive foraging in patchy
landscapes) [2–10].

To test claim (ii), we have numerically simulated the
identical model proposed in Ref. [1] (see Fig. 1). The
scaling for η with ρ proposed in Ref. [2] and proved in
Ref. [8] for d = 1 does not hold in d = 2, in agreement
with Ref. [1]. However, we find, for small enough
δ = lc/a− 1, that η develops a maximum at α = 1 with
an arbitrarily large gain relative to the ballistic (α→ 0)
and Brownian (α = 2) limits, contradicting claim (ii)
about “marginal gain” in Ref. [1].

The main problem with Ref. [1] is that Eq. (3) fails in
the limit lc → a of non-destructing foraging. Eq. (3)
yields a gain Kd ∼ 1/[A(aβ −B lβc )] in Eq. (5), with
β = −1 for α < 1 and β = α − 2 for α > 1. This gain,
which agrees with claim (ii), is wrong in the limit lc → a.

Finally, we present a heuristic argument for the correct
scaling of Kd for d = 2 when lc → a. Note that lc
is the distance at which the target stops hiding. The
limit δ → 0 has biological relevance in this “hide-and-
seek” model [10]. Let σ = s/a and η0(α, δ, ρ, σ) =

Figure 1. η0 = η/(ρa) vs. α, for N = 106 Poisson distributed

targets on a square of size
√
N/ρ with periodic boundary

conditions, averaged over 105 targets found.

η/(ρa). When δ → 0, the (radial) motion of the forager
near the border of the detection circle is essentially
one dimensional, hence the rigorous theory of the Riesz
operator [8] on the interval of length L with absorbing
ends becomes applicable. For σ > δ the efficiency
increases when σ decreases because there are fewer large
jumps away from the previous target that make re-
encountering it difficult. When σ ≈ δ the efficiency
reaches its maximum. In the limit σ ≈ δ → 0 we expect
the same scaling behavior as in d = 1: η0 ∼ δ−α/2 for
α < 1 and η0 ∼ δ−1+α/2 for α > 1. Hence η0 has an
arbitrarily strong maximum at α = 1 when σ ≈ δ → 0, in
agreement with Fig. 1, and in disagreement with the title
and claim (ii) of Ref. [1], restoring thus the original result
for non-destructive foraging in Ref. [2] of the optimality
of inverse square Lévy flights.
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