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No known analytic framework precisely explains all the phenomena observed in jamming. The
replica theory for glass and jamming is a mean field theory which attempts to do so by working
in the limit of infinite dimensions, such that correlations between neighbors are negligible. As
such, results from this mean field theory are not guaranteed to be observed in finite dimensions.
However, many results in mean field for jamming have been shown to be exact or nearly exact in
low dimensions. This suggests that the infinite dimensional limit is not necessary to obtain these
results. In this paper, we perform precision measurements of jamming scaling relationships between
pressure, excess packing fraction, and number of excess contacts from dimensions 2-10 in order to
extract the prefactors to these scalings. While these prefactors should be highly sensitive to finite
dimensional corrections, we find the mean field predictions for these prefactors to be exact in low
dimensions. Thus the mean field approximation is not necessary for deriving these prefactors. We
present an exact, first principles derivation for one, leaving the other as an open question. Our
results suggest that mean field theories of critical phenomena may compute more for d ≥ du than
has been previously appreciated.

Introduction – Granular materials exhibit universal
properties regardless of the material properties of the in-
dividual grains [1–3]. The jamming transition is a crit-
ical point near which properties such as pressure, pack-
ing fraction, or number of excess contacts, among others,
scale as power laws. Scaling theory summarizes and con-
denses these power law relationships, but no first princi-
ples theory of jammed systems at finite dimensions exists.
The replica mean field theory of glasses and jamming has
been shown to be exact in the infinite dimensional limit
[4, 5]. To do so it relies on the assumption that there
are no correlations between neighbors, fundamentally at
odds with low dimensional systems. As such, mean field
predictions should not be expected to hold in low di-
mensional jamming, and some results, most notably the
packing fraction at jamming, deviate from the mean field
predictions [2, 6]. However, despite the fact that low di-
mensional systems have highly correlated neighbors the
scaling relations are precisely the same as those found in
infinite dimensions [7–9]. Many other results predicted
by the mean field have also been observed in low dimen-
sional jamming, suggesting that they may be provable
without the mean field approximation [2, 3, 10–13].

Here, we move one step further in the comparison be-
tween low dimensional jamming and mean field jamming
by probing not only scaling relations but also prefactors
between a handful of properties: pressure P , excess con-
tacts δz, and excess packing fraction above jamming ∆ϕ.
We demonstrate the continued success of the mean field
in describing low dimensional systems by quantitatively
verifying the mean field predictions for these prefactors.
Thus, the mean field approximation is overzealous: one
need not have vanishing correlations in order to obtain
these results. In this spirit we provide a first principles
proof of the relation between pressure and excess packing

fraction free of the mean field assumptions. These results
call out for proofs for all of the other universal relations
of the jamming transition.
Background – Granular materials undergo a jamming

transition at a critical packing fraction ϕj . The number
of force bearing contacts between grains jumps abruptly
from zero to the minimum number sufficient to support
global rigidity and thus global pressure, Zc. In a packing
ofN frictionless, spherical particles in d dimensions, Zc =
Nd+ 1− d [1, 14].

We limit our study to spherical particles interacting
through a harmonic contact potential given by
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where ε is the energy scale, rij is the contact vector be-
tween particles i and j, σij is the sum of the radii of
particles i and j and Θ is the Heaviside step function.
Thus, the total energy U = 1
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We compute a unit and dimension independent pressure
using the microscopic formula [7, 15]

P ≡ − V̄p
ε

∂U

∂V
=

V̄p
εV d

∑
i,j

fij · rij , (3)

where V is the volume of the system and V̄p is the average
particle volume.

For soft spheres the packing fraction ϕ can be in-
creased, leading to new contacts and an increased pres-
sure. We thus consider three natural quantities that mea-
sure distance from jamming:
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• excess packing fraction, ∆ϕ = ϕ− ϕj

• excess contacts per particle, δz = (Z − Zc) /N
where Z is the number of contacts

• pressure P

The relationships between these quantities are pre-
dicted by mean field theory as [5]:

P = Cpϕ∆ϕ (4)

δz = CzpP
1/2 (5)

with prefactors Cpϕ and Czp which are functions only
of spatial dimension [7]. These and other scaling rela-
tionships have been previously explained by approximate
theories [16–19] and computationally confirmed in low di-
mensional jamming [1, 7, 8, 14]. They are summarized
concisely by the scaling theory of the jamming transi-
tion [9]. The scaling exponents in d ≥ 2 match those
in mean field, suggesting that the transition behaves like
a critical point with upper critical dimension du = 2.
Moreover, mean field theory predictions of these prefac-
tors can be derived as [5, 20]:

Cpϕ =
1

d
Ĉpϕ (6)

Czp =
d√
2d
Ĉzp (7)

where Ĉpϕ and Ĉzp are finite constants in the d → ∞
limit, which have not yet been explicitly calculated. Note
that these relations are presented in a particular choice
of units in the literature. We include details of the con-
version to our dimensionless units in the supplement. A
priori, it is not expected that these predictions will apply
in low dimensions, in which the mean field assumption
is not warranted. Even above upper critical dimensions,
mean field theories are not generally expected to cor-
rectly compute prefactors, or even the purportedly uni-
versal amplitude ratios. Beyond scaling exponents, to
our knowledge, the critical cluster shape in percolation
and related phenomena [21, 22] and the Binder cumu-
lant in the Ising model [23–25] are the only quantities
which are known to be equal to their mean field values
above the upper critical dimension. Even though these
prefactors for jamming scaling relationships have been
measured and reported [7, 26], because they are not ex-
pected to be equal to their mean field values they have
not received substantial theoretical attention. An ap-
proximate calculation of the related prefactor between
the shear modulus and number of excess contacts has
been performed in three dimensions [18].

Computational Methods – We use pyCudaPacking [2],
a GPU-based simulation engine, to generate energy min-
imized soft (or penetrable) sphere packings. We do so
for number of particles N = 8192− 32768 and dimension

Figure 1. Measured pressure scales linearly with scaled excess
packing fraction for systems from d = 2 to d = 10. Measured
values for ϕj in our protocol are included in the supplemen-
tal material. Black lines show fits for Cpϕ using eqn 4. We
exclude from the fit data with ∆ϕ/ϕj > 10−3, to avoid the ef-
fect of larger overlaps causing deviations from this power law.
Dotted lines show the extension of fits beyond fitted range.
Upper inset shows the measured values of Cpϕ (blue circles)
to scale in agreement with the mean field prediction eqn 6,
shown as a fit to a black line with Ĉpϕ ≈ 1.23. Moreover, they
are in precise agreement with predicted values from eqn 14
(black x’s). Lower inset shows measured values of Ĉpϕ calcu-
lated from the measured values of Cpϕ and eqn 6. While each
prefactor is measured from a single system, the prefactors for
a second, identically constructed dataset were calculated to
be well within the bounds of the marker size.

d = 2 − 10. Our results suggest that N = 8192 is large
enough to avoid finite size effects in d < 9, which we have
verified in d = 8 by comparing our packing at N = 8192
with one at N = 16384, finding no deviation. For d = 9
and d = 10 we use system sizes of 16384 and 32768 re-
spectively. The particles are monodisperse, except in 2D
in which we use equal numbers of bidisperse particles
with a size ratio of 1:1.4 to prevent crystallization.

The packings are subject to periodic boundary condi-
tions. We minimize the packings using the FIRE min-
imization algorithm [27] using quad precision floating
point numbers in order to achieve resolution on the con-
tact network near the jamming point.

Using the same methods as described in ref. [28], we
start with randomly distributed initial positions, and ap-
ply a search algorithm to create systems approximately
logarithmically spaced in ∆ϕ. At each step we use the
known power law relationship between energy and ∆ϕ
to calculate an estimate of ϕj . We use this estimate to
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Figure 2. Measured excess contacts scales with the square
root of pressure for systems from d = 2 to d = 10. Black lines
show fits for Czp using eqn 5. For our fits, we ignore high
pressure data as in figure 1, and additionally exclude data
with less than 40 excess contacts to avoid fitting to small
number fluctuations. Dotted lines show the extension of our
fits beyond fitted range. Lower inset shows the measured
values of Czp (blue circles), which scale in agreement with
the mean field prediction eqn 7, shown as a fit to a black line
and with Ĉzp ≈ 0.74. Upper inset shows measured values of

Ĉzp calculated from the measured values of Czp and eqn 7.
While each prefactor is measured from a single system, the
prefactors for a second, identically constructed dataset were
calculated to be well within the bounds of the marker size.

approximate ∆ϕ and determine the next value of ϕ in
an effort to logarithmically space ∆ϕ values. We then
adjust the packing fraction to this value of ϕ by uni-
formly scaling particle radii and minimizing the system.
We continue this process until the system is nearly crit-
ically jammed, i.e. has exactly one state of self stress.
We then use the known power law relationship between
pressure and ∆ϕ to fit the dataset and precisely calculate
ϕj (with error less than the smallest value of ∆ϕ) from
which we calculate ∆ϕ at each value of ϕ.

Results – Figure 1 shows the measured linear scaling of
pressure with packing fraction separately for each dimen-
sion. We fit the data to eqn 4 to find Cpϕ, considering
only data close to jamming to avoid fitting to high pres-
sure deviations from the scaling power law. The mea-
sured values of Cpϕ are shown in the inset to confirm the
1
d dimensional scaling predicted by mean field theory in

eqn 6. A fit to this scaling provides a value of Ĉpϕ of
1.23.

Figure 2 shows the measured square root scaling of

excess contacts with pressure separately for each dimen-
sion. We fit the data to eqn 5 to find Czp, the values of
which are shown in the inset. Beginning around 3 dimen-
sions, the values of Czp confirm the dimensional scaling
predicted by mean field theory in eqn 7, and a fit to this
scaling provides a value of Ĉzp of 0.74.

The values of both Cpϕ and Czp are roughly consistent
with values measured in previous studies [7, 26]. It has
been recently suggested that the prestress, i.e. the nor-
malized ratio of the first and second derivatives of the
potential as defined in ref [29], is a better candidate to
de-dimensionalize the relationship between pressure and
excess contacts. However, we find a substantially better
collapse of our expected form of pressure than with pre-
stress. For more details on prestress, see the attached
supplement.

Discussion – The close agreement of our data with the
mean field predictions in low dimensions suggests that
the mean field assumption is not essential to derive these
scaling and prefactor relations. In the spirit of discov-
ering proofs for these relations free of the mean field as-
sumption, we expand on an earlier calculation of the bulk
modulus scaling [17] to show that such a calculation can
also explain the scaling of Cpϕ with spatial dimension

and the precise value of Ĉpϕ.

From taking a derivative of equation 4, we see imme-
diately that Cpϕ may be expressed in terms of the bulk

modulus, K ≡ V d2U
dV 2 , at jamming:

Cpϕ =
V̄pV

ϕε

∂2U

∂V 2
=

V

Nε
K. (8)

We note that this approximation slightly overestimates
Cpϕ: the apparently linear average stress-strain curves of
jammed packings are actually the average of many piece-
wise linear curves with discontinuous drops in stress, thus
the average slope is slightly less than the instantaneous
slope [30].

At the unjamming point, the linear response of the sys-
tem is that of a network of unstretched springs. Thus,
at lowest order in pressure the bulk modulus is that of
an unstressed spring network, which may be calculated
in terms of the “states of self stress”, vectors of possi-
ble spring tensions, s ∈ RZ , which do not produce any
net force on a particle [17, 31, 32]. In general we will
use roman-text, unbolded letters to refer to vectors in
this space RZ . Here we explain how to carry out this
calculation for a monodisperse system in the unjamming
limit; a correction for polydispersity is handled in the
supplement.

We begin by defining the set of “affine bond exten-
sions”, a vector E ∈ RZ giving the amount by which
each bond vector would increase under a unit volumetric
expansion of the system. In linear elasticity, this simply
induces an expansion of each length by 1/d, so:
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E` =
1

d
r`, (9)

where we emphasize that ` indexes the contacts in the
system rather than the particles; r` is the distance be-
tween a particular pair of particles.

In the case that all springs have the same spring con-
stant k (e.g. monodisperse packings), the bulk modulus
may be written as the projection of these affine mod-
uli onto the states of self stress [17, 31, 32]. At jamming,
there is only one state of self stress, and so the bulk mod-
ulus may be computed exactly using the projection onto
only this one state of self stress [17].

K =
k

V

(
Z∑

`=1

s1,`E`

)2

(10)

In the near jamming limit, this one special state of self
stress exists all the way down to the jamming point and
can be expressed in terms of the vector of physical force
magnitudes, f. For the packing to be in equilibrium, this
set of contact forces must produce no net force on every
particle, and thus by definition the vector f is always a
state of self stress. The projection defined above requires
states of self stress to be normalized, and so the state of
self stress may be expressed as:

s1,` =
1√
f · f

f` =
1√
Z〈f2〉

f`. (11)

Furthermore at lowest order in P we have r = σ, and
we assume Z ≈ dN . Thus, equation 10 reduces to

K =
2Nkσ2

dV

〈f〉2

〈f2〉
=

2Nε

dV

〈f〉2

〈f2〉
(12)

and thus via equation 8

Cpϕ =
2

d

〈f〉2

〈f2〉
, (13)

for monodisperse spheres. The full calculation in the sup-
plement shows that in the polydisperse case this becomes

Cpϕ =
2

d

〈σf〉2

〈σ2f2〉
. (14)

We find that the distribution of contact forces does
not depend strongly on dimension, which we demonstrate
and discuss in the supplementary material, including ref-
erences [28, 33]. We thus predict the scaling of Cpϕ to
agree with the asymptotic mean-field scaling. Because
this proof does not invoke the mean field assumption,
we expect this scaling to be correct in all dimensions.

Moreover, we are able to calculate each value of Cpϕ by
measuring the ratio of force distribution moments. These
values are calculated as in equation 14, and are shown in
figure 1 to precisely predict the values of Cpϕ.

Conclusion – The mean field theory of jamming pre-
dicts both the scaling exponents and the dimensional
scaling of their prefactors. While the exponents have
been previously verified, we have demonstrated that even
some prefactors are well predicted in low dimensions by
mean field theory. Although these prefactors should be
considered especially sensitive to finite dimensional cor-
rections, we find the mean field prediction to be exact
in low dimensions. Is this a generic phenomenon, or
are the quantities we have chosen to study in this work
somehow specially unaffected by finite-dimensional cor-
relations? Experience with critical phenomena suggests
that although certain ratios of these prefactors (i.e. am-
plitude ratios) may be universal, the prefactors them-
selves should be both non-universal and challenging to
compute, which has led to them being neglected. Our re-
sults demonstrate however that these prefactors may be
computed exactly. These results call out for other theo-
ries of jamming and the glass transition which reproduce
the mean-field results without such assumptions, or per-
haps for a deeper understanding of why certain mean-
field computations may be exact in finite dimensions.
Additionally, our results suggest that in traditional criti-
cal phenomena mean field theory may compute more for
d ≥ du than has been previously appreciated.
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