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We propose the first Skyrmion Spin Ice, realized via confined, interacting liquid crystal skyrmions.
Skyrmions in a chiral nematic liquid crystal behave as quasi-particles that can be dynamically
confined, bound, and created or annihilated individually with ease and precision. We show that
these quasi-particles can be employed to realize binary variables that interact to form ice-rule states.
Because of their unique versatility, liquid crystal skyrmions can open entirely novel avenues in the
field of frustrated systems. More broadly, our findings also demonstrate the viability of LC skyrmions
as elementary degrees of freedom in the design of collective complex behaviors.

Artificial spin ices (ASI) [1–10] are frustrated materi-
als modelled as arrays of interacting, frustrated, binary
variables arranged along the edges of a lattice. At the
vertices, where these Ising spins meet, their configura-
tions obey the ice rule [11, 12], which often leads to
various forms of constrained disorder. ASIs can be de-
signed for a wide variety of unusual emergent behav-
iors [10] often not found in natural materials [13, 14].
Their seminal [1, 2] and to this day most explored [8–10]
realizations employ lithographically fabricated, magnetic
nanoislands. Nonetheless, the same set of ideas behind
these materials extend beyond magnetism, and spin ice
physics has been exported to other platforms, such as
superconductors [5–7, 15], confined colloids [4, 16, 17],
magnetic skyrmions [18], and elastic metamaterials [19].

In this work we demonstrate numerically Liquid Crys-
tals (LC) as a new, timely platform for spin ice
physics [20]. By confining liquid crystal skyrmions in bi-
nary traps with two preferential positions at the ends [3]
we recreate Ising spin variables. Then their frustrated
mutual repulsion leads to the ice rule [3, 21].

Nematic LC are typically made of elongated molecules
which can access phases of orientational order but no
spatial order. They exhibit a random distribution of
their centers of masses yet with the alignment of their
principal axis along a local director n̂(~x). Their ne-
maticity can be captured by a traceless tensor Qα,β =
S (3n̂αn̂β − δα,β) /2, S being the so-called scalar order
parameter quantifying orientational order.

Our LC cell (Fig. 1a) consists of a chiral nematic LC
confined between two parallel surfaces. The system is
successfully described via a phenomenological free energy
per unit volume
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The first line is the Landau–de Gennes [22, 23] thermal
term describing the nematic to isotropic second order
phase transition in temperature (parameters a, b, and c
are chosen to ensure a reasonable value for S, see Supp.

Mat. (SM) ). In the second line, elastic energies (of sin-
gle elastic constant L) penalize the gradient of Q and
favor a twist with cholesteric pitch p. The last line re-
flects the homeotropic surface anchoring of strength K
at the boundaries (z = 0, Nz) and the coupling to a uni-
form electric field E, applied in the z direction. ∆ε is the
dielectric anisotropy of the LC favoring easy-axis (along
z) or easy-plane (perpendicular to z) alignment depend-
ing on its sign. We will express the coefficients of the
alignment terms, K and α = ∆εE2, in dimensionless
units by setting α0 = LSq20 = 1 and K0 = LSq0 = 1
where q0 is the natural twist. Then, K/K0 = p/2πξK
and α/α0 = (p/2πξE)2 where ξK = LS/K is the an-
choring extrapolation length and ξE =

√
LS/α is the

electrostatic coherence length. Expressing Eq. (1) in di-
mensionless terms (see SM) reveals that the ratios α/α0

and (K/K0)/(Nz/p) determine the alignment strength.

Frustration in the form of alignment in the vertical
direction can be used to stabilize particle-like solutions
called skyrmions. Fig. 1a shows the mid-plane of one
such full skyrmion, where the polar angle of the director
~n rotates by 180◦ from its center to periphery leading to a
topological charge 1

4π

∫ ∫
dxdy ~n · (∂x~n×∂y~n) = 1, as the

mapping of the directors to the surface of a sphere covers
the surface once. In Fig. 1b, we show skyrmions with the
same topology whose size and shape are controlled by K
and α, for a cell thickness Nz = 0.36p. When K 6= 0,
skyrmions form barrel-like spherulites which can be fully
embedded inside the cell. As K is further reduced and
α becomes dominant, the z dependence becomes small,
as also seen in experiments [24, 25]. The special case of
K = 0 yields a z-invariant structure [26, 27], and can be
modeled as 2D allowing the possibility of simulating very
large systems. Finally, Fig. 1c demonstrates size control
via the electric field which was previously studies in detail
[28]. Main text includes only 2D simulations and full 3D
simulations are presented in SM.

Crucially, unlike merons [28–31], LC Skyrmions are
local objects (not accompanied by defects) that can
be generated and decimated at will as long lived iso-
lated particles–they neither disappear, nor spontaneously
appear [26, 32–34]. They can be actuated, and ar-
ranged to exhibit a variety of collective dynamics [35–
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FIG. 1. Skyrmion structure. (a) Mid-layer of a vectorized
skyrmion in LC cell with homeotropic anchoring and map-
ping of directors on to the surface of a sphere (b) External
electric field (coupling coefficient α) and surface anchoring
(coupling coefficient K) can be used in various proportions
to sustain long lived skyrmions. Different skyrmion shapes
appear depending on K and α. The ratio of the cell thickness
to the cholesteric pitch is Nz/p ≈ 0.36. (c) Top view of 2D
skyrmions (K = 0) stabilized by background field (stability
range 5.5 > α > 3 as shown in [28] ). Reducing field strength
results in increased skyrmion size and increased deformabil-
ity near obstacles produced by strong vertical alignment (blue
circles).

37]. Skyrmions can be confined, and manipulated [28]
via light, electric fields and surface chemistry [24, 25, 38–
40]. They are attracted by regions of weak (and re-
pelled by regions of strong) easy-axis alignment [26, 41].
Also, skyrmions are repelled from regions exposed to light
which increases the helical pitch p [42]. Finally, confine-
ment by electrical field is not made problematic by fringe
effects or lack of sharp gradients in real systems, as we
have shown [26, 41].

To build a spin ice, we need to confine skyrmions in bi-
nary traps that can be considered pseudo-spins [17], using
the mechanisms above. The task is non-trivial. Previ-
ous works on colloids [3, 4] suggests a dumbbell-shaped
confinement (Fig. 2a). This choice would not work for
skyrmions because traps with closed ends would suppress
their mutual elastic interaction. The second panel of
Fig. 2-(a) shows how to go from dumbbells to our much
simpler and general geometry with open ends. There,
smaller black circles represent trap ends and bigger cir-
cles provide the narrower mid-section of the trap.

The usual nomenclature [17] for skyrmions’ configura-
tions at the vertices are shown in Fig. 2b-c along with
their spin representation for a square and hexagonal lat-
tice respectively. It is expected [3], as a result of non-local

b
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FIG. 2. Constructing Binary Variables out of Trapped
Skyrmions. (a) Dumbbell traps with closed ends would
suppress skyrmion-skyrmion interaction hence are modified
to final design with open ends. (b) Schematics of vertex
configuration types in order of decreasing energy for square
skyrmionic ice. Red circles represent the skyrmions, and ver-
tex types are listed in order of decreasing energy. Ice-rule
configurations are the two Type IV vertices corresponding to
2 skyrmions in the vertex, and two out of the vertex. (c) Ver-
tex configurations in order of decreasing energy for hexagonal
skyrmionic ice. Ice-rule configurations are the three Type II
vertices (two skyrmions in, one out) and 3 Type III (one in,
two out) vertices.

frustration [21], that collective lowest energy states obey
the ice rule [11, 12]: 2 particles in the vertex and 2 out,
for the square geometry and 1-in/2-out or 2-in/1-out for
the hexagonal one. Further, the square geometry should
lead to an ordered state and the hexagonal to a disor-
dered one.

We run simulations of the LC systems of 2D
skyrmions by solving the over-damped dynamic equation
∂tQ(r, t) = −Γ δF/δQ(r, t) (where F =

∫
f(r) d3r and Γ

is the mobility constant) using a finite differences method
and with periodic boundary conditions [26, 28, 41]. Traps
are realized via either extra field or surface anchoring.
We initiate the system in an unrelaxed state with 288
skyrmions in the square geometry and 192 in the hexag-
onal geometry placed randomly inside the traps. This
entails about three million elements updated at each time
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Type II Type III Type V Type IVType I

FIG. 3. Relaxed skyrmion spin ices obey the ice rule. Top: Skyrmions initially swollen and then de-swollen, relax to
lower energy states. Bottom: 2D square and hexagonal ice with surface anchoring/field relax to ice-rule obeying states with
defects. The square geometry shows an ordered state where domains of different “antiferromagnetic” orientations of ice-rule,
type IV vertices are separated by domain walls (green lines) of ice-rule obeying Type III (blue) and ice-rule violating Type
II (yellow) and Type V (white). The hexagonal geometry converges to a disordered manifold of ice-rule obeying Type II (2-
in/1-out) and Type III (1-in/2-out) vertices. Excitations are ice-rule violating Type I (3-in, yellow) or Type IV (3-out, white)
vertices. White lines superimposed on the lattices highlight the midpoint of the traps. Aspect ratios of the traps are 0.52 for
square and 0.41 for hexagonal lattices. Other simulation parameters are listed in supplementary materials.

step, which we implement by exploiting the intrinsic par-
allelism of GPUs (see SM). Systems were updated for 107

time steps for the square and 3 × 107 time steps for the
hexagonal lattice. At the beginning, we reduce the back-
ground field to swell the skyrmions until they occupy
almost their entire traps (Fig. 3, top and SM) so as to
bring them in close interaction, and then we deswell the
skyrmions and let the system relax.

Figure 3 shows snapshots of the final states for the two
geometries. Square ice converges to an ordered “anti-
ferromagnetic” [3, 43, 44] tessellation of ice-rule-obeying
type-IV vertices, with two skyrmions close to, and two
away from, each vertex. Deviations from type IV corre-
spond to ice-rule obeying Type III, but also to violations
of the ice rule in the form of monopoles [45], or Type II
and V. Together, these excitations form familiar domain
walls (drawn according to the method in ref. [46]) among
the two possible orientations of “antiferromagnetic” or-
der. Hexagonal ice also converges properly to an ice state

where, unlike square ice, a disordered mixture of Type II
and Type III obey the (pseudo) ice rule (1-in/2-out and
2-in/1-out), together with sparse monopole defects (Type
I, IV).

Structural parameters control proximity to the ice rule.
Consider the aspect ratio of traps ω/D, where ω is the
width of the middle of the trap and D is the length of
the edge of the lattice. If ω/D is too small (pink region
in Fig 4-(a,b)), the skyrmions are frozen in the trap; if
too large (violet region), the trap is no longer binary
and the skyrmions can sit at the center. The transition
to this second regime is interesting as it can lead to the
realization of a still largely unexplored classical spin-1 ice
model where spins can be −1, 0, 1, and will be explored
in future work. At intermediate values (green region) we
are closest to the ice-rule.

The distinction between the three regions is fuzzy, also
because the system preserves memory of its prepara-
tion. Figures 4-(a,b) show that cyclically swelling and
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FIG. 4. Limits of the ice rule validity. (a,b) Defect ratio vs. size of the central circle in the trap for square and hexagonal
lattices. Purple region: ω values too large for trap asymmetry. Pink region: ω values too small to allow skyrmion motion.
Green region: ice behavior observed. (c) Suitable obstacle size depends on the type of wall mechanism and its strength. Results
for obstacles produced by light and by various strengths of surface anchoring K inside the obstacles are shown. (d) Skyrmion
size also influences how traps work. Ice rule is not observed for very large or very small skyrmions. (e) Defect counts vs.
random noise added to the width of traps. The noise is uniformly distributed between ±∆ω with D = 60 and ω/D = 0.6.
Other simulation parameters are listed in SM.

deswelling the skyrmions helps the system find lower en-
ergy states and extends the suitable range for ice con-
figurations after 2-3 cycles, and leads to states closer to
the ice rule. More cycles do not change the final state.
Figure 4-(c), shows how curves of ice-rule violations vs.
aspect ratio for square ice varies depending on obsta-
cle properties. Obstacles generated by weaker anchoring
(K = 1.6) are softer and allows increased mobility for
the skyrmions thus helps the system reach the ice-state.
Also, note that K = 16 and K = 160 have identical ef-
fects, indicating that the effect saturates rapidly in K.
Light exposure was modeled by reducing q0 → q0/1.2
and produces an effect similar to changing K → 1.2K as
the relevant ratio is K/LSq0.

Another relevant structural parameter is skyrmion
size. In previous work [28] we found that unconfined
skyrmions exist for 3 < α < 5.5 (smaller size at larger
α). The confining effect of traps, however, allows for
skyrmions to exist even for α = 0. It becomes then inter-
esting to study the combined effect of trap aspect ratio
and skyrmion size. Figure 4-(d) shows a contour plot of
the defect count vs. ω/D and α demonstrating different
regimes, including a blue area where defects are less than
10%. In agreement with Fig. 4-(a), already discussed, the
ω/D > 0.5 region correspond to minimal defects. There,

we observe an ample blue region where the ice configura-
tion is reached easily and not affected much by the value
of α. When skyrmions become too small (α > 4.5), how-
ever, they do not interact, and we see more defects. On
the opposite side, if skyrmions are too big compared with
trap width they cannot properly move within the trap,
and defects also increase. The demarcating line among
regimes is therefore approximately linear.

Finally, previous spin ices are relatively robust against
weak quenched disorder [47–49]. To test our proposal we
introduce disorder in the positions of the bigger circular
walls while keeping the trap ends unchanged, leading to
a random shift in ±∆ω. Figure 4-(e) shows that disor-
der affects the square geometry more than the hexago-
nal. That is expected, as square spin ice has an ordered
ground state and its excitations are strongly correlated
via the domain walls of Fig. 3. Instead, sparse monopole
defects in hexagonal spin ice are weakly correlated.

One last note. The reader will have noticed that the
statistics of Fig. 4 (c,d,e) can reach zero defects whereas
Fig. 4 (a) does not (intentionally chosen to illustrate con-
nected unhappy vertices). The reason is that the system
employed in Fig. 4 (c,d) is four times smaller and thus
can more easily reach low energy states. In (e), the sys-
tem size is the same as in (a) but the simulation time is
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4 times as long (parameters are shown in SM).

We have demonstrated numerically LCs as a new plat-
form for spin ice physics on the two most common
gemoetries. In future works, we will explore extension
to more complex geometries [14, 50–52]. Unlike previous
platforms, LC can allow dynamic change of structure,
for instance for cycling between topologically equivalent
geometries of different ice behavior, for memory effects.
Unlike trapped colloids, the skyrmions can change size,
can be created or destroyed optically on the fly, to explore
decimation, ice-rule fragility [16], or doping [53]. Their
mutual interaction can be controlled, from anisotropic
to isotropic, by changing the direction of the background
field [54, 55]. A growing abundance of techniques for con-
trolling the collective behavior of LC topological defects
suggest employmen for actuation in soft robotics, optical
applications, and functional materials design. Our pro-
posal to realize spin ice with LC skyrmions is a promising
development in this direction which we believe will stim-
ulate experimental efforts.
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