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We propose tunable chiral bound states in a system composed of superconducting giant atoms
and a Josephson photonic-crystal waveguide (PCW), with no analog in other quantum setups. The
chiral bound states arise due to interference in the nonlocal coupling of a giant atom to multiple
points of the waveguide. The chirality can be tuned by changing either the atom-waveguide coupling
or the external bias of the PCW. Furthermore, the chiral bound states can induce directional dipole-
dipole interactions between multiple giant atoms coupling to the same waveguide. Our proposal is
ready to be implemented in experiments with superconducting circuits, where it can be used as a
tunable toolbox to realize topological phase transitions and quantum simulations.

Introduction.— Over the past decades, supercon-
ducting quantum circuits (SQCs) have emerged as a
powerful platform for quantum information process-
ing [1–9]. For this development, the strong coupling
that can be achieved between superconducting qubits
(artificial atoms) and microwave photons has played an
important role [10–12]. Unlike conventional atom-light
interaction, the atomic size in an SQC platform can
be comparable to the wavelength of light, indicating
that the dipole approximation is no longer valid [13–
21]. Such atoms are called superconducting giant atoms.
They are nonlocally coupled to multiple points of a
waveguide [14, 21–27]. Interference effects between these
points significantly modify the atom-matter interaction,
and, therefore, change the collective behavior of the
atoms [14, 17, 19]. Furthermore, non-Markovian effects,
due to time delay of waves propagating between distant
coupling points, can play an important role in giant-atom
dynamics [16, 18, 20]. All these exotic phenomena have
no counterpart in conventional atom-light systems.

Recently, a number of studies have explored chiral
quantum phenomena in waveguide quantum electro-
dynamics, which enables cascaded quantum circuits,
directional qubit interactions, and simulations of many-
body physics [28–39]. To achieve these chiral features,
many approaches have been proposed for designing uni-
directional waveguides, including subwavelength confine-
ment in nanophotonic systems [40–45], spatiotemporal
modulation [37], topological engineering [36, 46], and
structures integrated with synthetic gauge fields [31,
47]. The corresponding chiral quantum behavior can
emerge via either real propagating photons or virtual
nonradiative photons [30–32, 36, 48]. In particular, chiral
quantum systems based on virtual photons can induce
directional dipole-dipole interactions between qubits [36],
as demonstrated recently in an SQC experiment using
a topological waveguide [46]. Experimental realizations

of most previous proposals remain elusive in SQCs,
so the study of chiral quantum phenomena in SQCs
is still in its infancy [39]. Furthermore, the chiral
interactions in previous proposals cannot be tuned well,
which limits their applications in quantum information
processing [49–52].

In this work, we present an alternative tunable chiral
quantum system in SQCs. Its directional nature stems
from interference effects due to nonlocal coupling of
superconducting giant atoms to a Josephson photonic
crystal waveguide (PCW). The PCW is constructed by
a Josephson-chain metamaterial [53–64], which can be
tuned via an external flux bias. The nonlocal coupling
of a giant atom to two points of the PCW results in the
appearance of chiral bound states, whose chiralities can
be freely tuned. Tunable chiral many-body interactions
of multiple giant atoms is realized through exchange of
virtual photons between overlapping such bound states.
Giant-atom-induced tunable chiral bound states.—

As shown in Fig. 1, we consider a giant superconducting
atom coupled to two points x± of a Josephson-chain
PCW via capacitances Cg±J . In contrast to conventional
nanophotonic waveguides [65–75], this microwave PCW
has a wide range of tunable parameters, including the
unit cell length and impedance controlled by the external
flux [76–79]. The detailed construction and spectrum of
a Josephson PCW can be found in Secs. I and II in the
Supplementary Material [80].

When the atomic transition frequency ωq is in the
PCW bandgap, and close to the top of the lowest energy
band ωk in the first Brillouin zone (BZ), the interaction
Hamiltonian is

Hint =
∑
k∈BZ

~∆ka
†
kak +

∑
k∈BZ

~
(
gka
†
kσ− + g∗kakσ+

)
, (1)

where ∆k = ωk − ωq is the frequency detuning, σ± are

the atom raising and lowering operators, ak (a†k) is the
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FIG. 1. Sketch of the system. A superconducting giant
atom (red) couples via capacitances Cg±

J to two points x±
of a PCW (squares, superconducting quantum interference
devices [SQUIDs]). The green (blue) SQUIDs denote high
(low) impedance. In our work, we assume the periodic
impedance modulation as a cosine wave. The results remain
robust when we consider other shapes of modulation signals
(e.g., a square wave) [80]. The points x+ and x− are assumed
to be within one period of the modulation (yellow area). The
left (right) photonic component of a bound state is shown in
blue (orange).

annihilation (creation) operator of the photonic mode
with wavevector k in the lowest energy band, and the
nonlocal atom-waveguide coupling strength is given by
(see Sec. III in Ref. [80])

gk =
∑
i=±

gike
ikxiuk(xi), with g±k '

e

~
Cg±J
CΣ

√
~ωq
Ct

. (2)

Here CΣ (Ct) is the total capacitance of the atom (PCW),
and uk(x) = uk(x+ λm) is the Bloch wavefunction with
a tunable modulating wavelength λm of the PCW. We
compute uk(x) and gk numerically based on experimental
values of the SQUID-chain PCWs in Refs. [59, 61, 63].

We find the bound state of the system by solving
Hint|ψb〉 = ~εb|ψb〉, with eigenenergy εb and eigenstate
|ψb〉 = cos(θ)|e, 0〉 + sin(θ)

∑
k ck|g, 1k〉, in the single-

excitation subspace. Previous studies of small atoms
in waveguides [68–74], and one on giant atoms in an
coupled-resonator waveguide [81], have shown that the
bound state decays exponentially and symmetrically in
both directions.

For the case of a giant atom, the real-space
wavefunction of the photonic component of the bound
state is approximated by (see Sec. IV in [80])

φb(x) = sin(θ)〈x|
∑
k

cka
†
k|0〉 =

∑
i=±

φib(x), (3)

with

φib(x) ∝
∫
gikuk(xi)u

∗
k(x)e−ik(x−xi)

εb −∆k
dk=Ai(x)eiθi(x), (4)

where φ±b (x) represent the photonic wavefunction
components of the bound state for a small atom coupling
at positions x±; A± and θ± denote their corresponding
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FIG. 2. Properties of a chiral bound state. (a) Phase
differences between φ+

b (x) and φ−
b (x) versus of x for

{x−, x+} = {0, 0.5λm}. (b) The bound state amplitude
|φb(x)| for the same setup. The solid (dashed) curve is the
numerical (analytical) result described by Eq. (4) [Eq. (6)].
(c) The imaginary and real part of gk versus k for the same
setup.

amplitudes and phases, respectively. The phases of atom-
waveguide coupling amplitudes [see Eq. (2)] at positions
x+ and x− cannot be simultaneously gauged out due
to the nonlocal coupling. This results in interference
between φ+

b (x) and φ−b (x) [see Eqs. (3), (4)], leading to
the formation of a chiral bound state.

As depicted in Fig. 1, we assume the PCW to be
infinitely long in both directions, and the original point
x = 0 at the middle of the low-impedance part in one
cell. The giant-atom coupling points x− and x+ are
located at {x−, x+} = {0, 0.5λm}. We find that the
bound-state components φ±b (x) distribute symmetrically
around the coupling points [80]. However, as depicted in
Fig. 2(a), their phase difference is δθ = θ+ − θ− ' 0 for
x� x−, while it is δθ ' π for x� x+. Numerical results
indicate that, maximum interference is achieved when
g+
k ' 3.4g−k , giving A+(x) ' A−(x). Consequently, the

right (left) bound state vanishes (is maximally enhanced)
due to destructive (constructive) interference. Figure
2(b) shows the real-space distribution of φb(x), which
is strongly localized to the left of the giant atom. Note
that, for other positions of the coupling points, there exist
different interference patters between φ±b (x), which lead
to different chirality. Detailed discussions can be found
in Sec. IV in Ref. [80].

The chiral bound state can be phenomenologically
interpreted as a result of interference, as explained above.
We now make a quantitative analysis. When a small
atom is coupled to a PCW, as studied in Refs. [71–75],
the atom-waveguide coupling amplitude gk is a constant
independent of the wavevector k, i.e., gk ' gk0 , with
k0 = km/2, and km = 2π/λm. The giant-atom case is
different, as shown in Fig. 2(c), where we plot the real
and imaginary parts of gk versus k. Note that, around
k0, the real part of gk is approximately constant, but the
imaginary part changes linearly with k. We therefore
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rewrite gk as

gk ' (A+ iBδk), (5)

where δk = k − k0, A represents the average real part
of gk around k0, and B is the slope of the imaginary
part of gk. Due to the nonlocal coupling of the giant
atom to the PCW, B has a non-zero value, and cannot
be gauged out. In addition, by considering the effective-
mass approximation [70, 71], the dispersion relation of
the lowest energy band of the PCW around the band
edge can be expressed as ∆k = −δ0 − αm(k − k0)2 (see
Sec. III in Ref. [80]), and φb(x) in Eq. (3) becomes

φb(x) ∝ [C−Θ(−x) + C+Θ(x)] exp

(
− |x|
Leff

)
, (6)

where Leff =
√
αm/δ0 is the decay length, Θ(x) is the

Heaviside step function, and C± are determined by the
imaginary and real parts of gk as

C± = A±B
√

δ0
αm

. (7)

In Eq. (6), we have assumed |x+ − x−| < λm �
Leff. This approximation holds in Fig. 2(b), where the
photonic component between the two coupling points
(brown area) is much smaller than the left and right
parts, and can be neglected. Therefore, when considering
the bound-state distribution, we view x± as both
approximately being at x = 0. For the parameters
used in Fig. 2, we have |C−| � |C+|. Consequently,
the photonic component of the bound state mostly
distributes to the left of the giant atom. Note that the
above analytical results fit well with the numerical ones,
as shown in Fig. 2(b).

We now define the chirality of the bound state as

Cb =
ΦL − ΦR
ΦL + ΦR

, ΦR/L =

∣∣∣∣∫ x±

±∞
|φb(x′)|2dx′

∣∣∣∣, (8)

where the chiral preferred direction is left (right) given
that Cb > 0 (Cb < 0), and Cb → 1 (Cb → −1) indicates
perfect left (right) chirality. Using Eq. (6), the analytical
form of Cb becomes

Cb =
C2
− − C2

+

C2
− + C2

+

. (9)

In Fig. 3(a), we plot both the numerical and analytical Cb
versus x+ by fixing x− = 0 and g+

k = g−k . The numerical
parameters of the whole system are adopted from the
experiments in Refs. [59, 61, 63] (see Sec. III in Ref. [80]).
The sign of Cb changes when the second coupling point
x+ is moved from the left side of x− to the right side. At
x+/λm ' ±0.7 [dashed lines in Fig. 3(a)], the chirality
reaches its maximum value |Cb| ' 0.95. In Fig. 3(b),
we fix {x−, x+} = {0, 0.75λm} and plot Cb versus the
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FIG. 3. Tuning the chirality of the bound state. (a) Chirality
Cb versus x+ for fixed x− = 0 and g+k = g−k . The dashed lines
indicate the maximum chirality |Cb| ' 1. (b) Chirality versus
g+k for fixed {x−, x+} = {0, 0.75λm} and g−k = 1 (giant-atom
case) or g−k = 0 (small-atom case).

coupling strength g+
k . The results in Fig. 3 show that the

chirality can be continuously tuned over the whole range
Cb ∈ (−1, 1) by changing either x+ or g+

k .

Unlike the case of nanophotonic waveguide quantum
electrodynamics [68, 75], an atom placed in the PCW
can see different semi-infinite waveguide structures to
the right and left of a coupling point. This symmetry-
breaking is what enables chirality. As shown in Fig. 3(b),
the symmetry-breaking enables the formation of a chiral
bound state not only with a giant atom, but also with
a small atom, which has not been explored in previous
studies. For |g+

k | � |g−k |, which corresponds to the
smal-atom case, we find Cb ' −0.49 when {x−, x+} =
{0, 0.75λm}. However, the chirality for a small atom is
never perfect (|Cb| < 1) and cannot be tuned by changing
the coupling strength, in contrast to the giant-atom case
[Fig. 3(b)]. Additionally, Cb is quite sensitive to the
coupling position. A detailed discussion is provided in
Ref. [80].

Chiral dipole-dipole interactions.— When multiple
small atoms are coupled within the bandgap of the same
PCW, effective dipole-dipole interactions between them
are induced through the exchange of virtual photons in
the PCW. The interaction strength is determined by the
overlap between the decaying evanescent fields of the
bound states [69–75]. In previous studies with cold-atom
systems [71, 75], where the atoms are equally spaced, the
nearest-neighbor interaction strength is constant. For
the chiral bound states induced by the coupling between
a PCW and giant atoms, the scenario is different.

As shown in Fig. 4, we consider giant atoms A and
B equally distributed along a PCW with an inter-atom
distance Dq. Here, the PCW impedance modulation is
simplified as square waves. One leg of each giant atom A
and B is coupled to the low-impedance points xA,B− . while

the second coupling points xA,B+ are placed either to the

left or to the right (different for A and B) of xA,B− at the
closest high-impedance position. Therefore, the bound
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FIG. 4. Setups for chiral dipole-dipole interactions betweeen
giant atoms. (a) Giant atoms A and B, separated by
a distance Dq, coupled to a Josephson-chain PCW. The
periodic impedance modulation is a square wave. The induced
effective dipole-dipole coupling is chiral with JAB � JBA. (b)
Relative to (a), the impedance modulation signal is shifted
with a distance ds = 0.5λm. The bound-state chiralities are
reversed, resulting in JAB � JBA.

states of giant atoms A and B satisfy CAb = −CBb . The
atomic pair {A,B} is repeated along the PCW, and can
be viewed as a dimer (see Fig. 4). The intracell dipole-
dipole interaction can be derived via standard resolvent-
operator techniques [80, 82, 83]:

Re[ΣAB(z)] = Re

[∫ k0

0

dk
2 Re(gkAg

∗
kB)

z −∆k

]
' JAB , (10)

where the real part JAB of ΣAB(z) describes the coherent
dipole-dipole coupling between intracell atoms. The
atomic decay effects can be strongly suppressed with a
large detuning δ0 [31, 36, 83] (see Sec. V in Ref. [80]).
The intercell coupling amplitude JBA can be found
similarly.

In Fig. 5(a), we numerically plot JAB and JBA, both
of which exponentially decay with Dq [69–73], for the
setup in Fig. 4(a). Since the bound-state chiralities of
A and B are opposite, the decaying evanescent fields
within a unit cell have much larger overlap than those
between different cells. This leads to a much larger
intracell dipole-dipole interaction JAB than the intercell
interaction JBA, i.e., the interaction is chiral even though
the giant atoms are equally spaced. Since the bound
states of A and B can be tuned to |Cb| ' 1, the atoms
only interact with the atoms in their chiral preferred
directions, but cannot interact with those in the opposite
direction, no matter how small the separation Dq is.
Topological phases with giant atoms.— The

impedance of the Josephson PCW can be modulated
via an external flux bias [80]. As shown in Fig. 4,
shifting the programmable modulation signal by ds,
the high-impedance positions will be moved [80]. For
ds = 0.5λm, the chiralities of the giant atoms in Fig. 4
are switched, leading to JAB � JBA. Figure. 5(b) shows
that JAB (JBA) decreases (increases) linearly with ds
around ds ' 0.25λm.

By modulating ds in time, we can simulate topological
phases. We assume that the frequency of each atom
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FIG. 5. Chiral interaction and topological phase transition.
(a) Dipole-dipole interaction strengths JAB and JBA

(normalized by JAB at Dq = 3λm) versus separation Dq.
(b) JAB and JBA for fixed Dq versus of the shift distance
ds [relative to Fig. 4(a)] for the PCW impedance modulation.
As the shift distance is increased towards ds = 0.5λm, the
chiral interaction strengths of JAB and JBA are exchanged,
leading to a topological phase transition.

is also modulated in time [5]. As shown in Fig. 4,
after tracing out the PCW, we map the atomic-chain
Hamiltonian to the Su-Schrieffer-Heeger (SSH) model

Hqc =
∑
i

[
JAB(t)σ−Aiσ

+
Bi + JBA(t)σ−Biσ

+
Ai+1 + h.c.

]
+
∑
i

∆q(t)(σ
z
Ai − σzBi), (11)

where ∆q(t) is the frequency detuning between atoms
A and B. The degeneracy point of the chain is at
{JBA − JAB ,∆q} = {0, 0} [80]. The adiabatic
Thouless pump trajectories (see Fig. 6), which encircle
the degeneracy point, are topologically equivalent, and
robust to disorders and perturbations [84–86]. As shown
in Fig. 5(b), for ds ' 0.25λm, the bound states of
atom A and B, do not show any chirality, leading to
JAB − JBA = 0. This corresponds to the topological
phase transition point [87–89].

In Fig. 6(b), we plot the adiabatic pumping process for
the evolution of an initial excitation localized at the left
edge of the atomic chain (see Sec. V in Ref. [80]). At the
end of each pump circle, the excitation is transferred to
the right edge state with a high fidelity due to topological
protection [84]. This process exploits the directional
interactions between giant atoms, and just needs to shift
the modulation signal by a small length, which is feasible
in SQC platforms.
Conclusion.— In this work, we have explored giant

superconducting atoms coupled to two points of a
Josephson-chain PCW. We showed that interference
arising due to the nonlocal coupling leads to chiral bound
states. The chirality of these states can be easily tuned
over the full range by either modulating the external flux
bias of the PCW or changing the coupling strengths.
For multiple giant atoms equally spaced along the
waveguide, the dipole-dipole interactions exhibit strong
chirality due to spatially asymmetric overlaps between
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FIG. 6. Topological protection. (a) The pump circle
in parameter space {JBA − JAB ,∆q}. The topologically
nontrivial pumping corresponds to a closed path encircling
the degeneracy point at the origin. (b) Time evolution of a
single excitation in the atomic chain (with 12 sites) under
adiabatic pumping loops (see Sec. V in Ref. [80]).

the bound states. Each atom can be tuned to only
interact with atoms in a preferred direction. Using this
chiral interaction, we demonstrated that our proposal
can realize a topological phase transition and topological
Thouless pumping. Extending our setup to 2D PCWs
might lead to more exotic quantum phenomena. We hope
that our proposal can be a powerful toolbox to achieve
chiral long-range interactions for quantum simulations
and many-body physics. The setups we have studied here
can be realized in experiments using currently available
state-of-the-art technology for superconducting circuits.
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