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Using synthetic lattices of laser-coupled atomic momentum modes, we experimentally realize a
recently proposed family of nearest-neighbor tight-binding models having quasiperiodic site en-
ergy modulation that host an exact mobility edge protected by a duality symmetry. These one-
dimensional tight-binding models can be viewed as a generalization of the well-known Aubry-André
(AA) model, with an energy-dependent self-duality condition that constitutes an analytical mobil-
ity edge relation. By adiabatically preparing low and high energy eigenstates of this model system
and performing microscopic measurements of their participation ratio, we track the evolution of the
mobility edge as the energy-dependent density of states is modified by the model’s tuning parame-
ter. Our results show strong deviations from single-particle predictions, consistent with attractive
interactions causing both enhanced localization of the lowest energy state due to self-trapping and
inhibited localization of high energy states due to screening. This study paves the way for quanti-
tative studies of interaction effects on self-duality induced mobility edges.

Disorder-induced localization of quantum mechanical
wavefunctions represents a fundamental change in the na-
ture of eigenstates [1]. Analog simulators based on pho-
tonic materials [2] and ultracold atoms [3] have opened
up new possibilities for exploring localization phenom-
ena in coherent and controllable settings. Some of the
earliest observations of localization for both light [4] and
atoms [5, 6] were achieved with deterministic quasiperi-
odic potentials in the Aubry-André (AA) model [7–10].
However, the AA model is rather fine tuned and does
not manifest a mobility edge, i.e., energy-dependent lo-
calization transition that separates localized states from
extended ones as a function of energy. Mobility edges
are expected to be the generic behavior of more general
quasiperiodic models in one [11–22] and higher dimen-
sions [23–27], and also accompany the appearance of de-
localized states for models with short-range disorder in
higher dimensions [28].

Recently, mobility edges (MEs) in non-interacting
models have been observed in three-dimensional disor-
dered systems [29–32], as well as in reduced dimensions
with quasiperiodicity in experiments based on ultracold
atoms [33–35]. In these cases, however, accurate exper-
imental control over the location of the mobility edge
is lacking, as its analytic functional form is unknown.
It is in principle possible to circumvent this issue in
quasiperiodic systems by exploiting tight-binding mod-
els that have an exact mobility edge that can be derived
from an energy dependent self-duality condition (i.e., the
discrete Schrödinger equation maps back onto itself upon
a series of weighted Fourier transforms from real to mo-
mentum space) [13–15, 17, 36–39]. Experimental realiza-
tion of an analytical mobility edge can help resolve the
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FIG. 1. The generalized self-dual Aubry-André model.
(a) The generalized Aubry-André potential and lattice site
energies of Eq. (2) shown for φ = 0 and tuning parameter
α = −0.5, 0, 0.5, with corresponding distributions of lattice
site energies εn. (b) Calculated eigenenergies and participa-
tion ratios (PR, in color) vs. α for a non-interacting model
just below the critical quasiperiodicity strength at ∆/J = 1.8
(N = 51 sites). Away from α = 0, eigenstates localize at dif-
ferent energies, forming a mobility edge. Dashed black lines
show analytically predicted energy values of the ME (Eq. (3)).

effects of interactions on the energy dependent localiza-
tion transition [18, 20, 37, 39], which remains a subtle
and open theoretical question.

In this work, we experimentally realize a generalized
Aubry-André (GAA) model that has an exact mobility
edge [36] and demonstrate control over the ME physics by
employing synthetic lattices of laser-coupled atomic mo-
mentum modes [40, 41]. Crucially, in the absence of inter-
actions this model has an energy dependent self-duality
that gives rise to the mobility edge. In experiment, we
probe the presence of the ME, by measuring the local-
ization properties of the low and high energy states of
the system, and vary the energy of the ME via a tuning
parameter. We map out localization phase diagrams for
these energy states, demonstrating that the ME is shifted
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by atomic interactions but that overall the localization
transitions and the ME survive. Our work showcases the
capacity of cold atoms for the exploration of localization,
MEs, and interactions in quasiperiodic lattice models.

The Hamiltonian realized in this work, Htot = HGAA+
Hint, involves both the tight-binding GAA model pro-
posed in Ref. [36] and a contribution due to atomic in-
teractions. The GAA Hamiltonian is

HGAA = −J
∑
n

(
c†n+1cn + h.c.

)
+
∑
n

εnc
†
ncn, (1)

where J is a nearest-neighbor tunneling amplitude, cn
destroys a boson at site n, and the GAA quasiperiodic
site energies read

εn = ∆
cos(2πnb+ φ)

1− α cos(2πnb+ φ)
, (2)

with quasiperiodicity amplitude and phase given by ∆
and φ, respectively. We choose b =

(√
5− 1

)
/2, though

the localization results we present here hold for any ir-
rational number [36]. The tuning parameter α ∈ (−1, 1)
controls the shape of the potential and the distribution
of site energies, as shown in Fig. 1(a). At α = 0, Eq. (2)
reduces to the standard AA form, with a cosine disper-
sion and cosine distribution of site energies leading to an
energy-independent localization transition. For α 6= 0,
the GAA model exhibits an exact ME at energy E fol-
lowing the relationship [36]

αE = 2J −∆, (3)

for the positive J and ∆ values we consider. For GAA
Hamiltonian eigenstates satisfying Eq. (3), the corre-
sponding Schrödinger equation is invariant under a series
of weighted Fourier transforms between real and momen-
tum space (i.e., self-dual), which implies the eigenstates
are not localized in either basis and are thus critical.

Atomic interactions enrich the physics of this sys-
tem. Low energy s-wave collisions between atoms in
the momentum modes [42] are described by Hint =

(U/2Nat)
∑

i,j,k,l c
†
i c
†
jckcl. Here U = gρ is the mean-field

interaction energy per atom for a sample of Nat atoms
occupying a single mode, ρ is the atomic number density,
g = 4π~2a/M is the interaction term, M is the atomic
mass, and a is the scattering length. Here, we consider a
approximate description of the interactions [43], treating
them with a mean-field Gross-Pitaevskii formalism that
considers the interactions as an effectively local intra-
mode attraction with a collective energy scale U . We find
that this treatment, while ignoring some details [43], pro-
vides a simple mean-field-level comparison that captures
most of the salient features.

To probe the expected ME of this system, we deter-
mine the localization properties of the GAA eigenstates.
We quantify localization through the participation ratio,
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FIG. 2. Probing localizatioN by adiabatic Hamilto-
nian evolution. (a) Cartoon of the experimental sequence.
Atoms initially localized for ∆/J =∞ are slowly loaded into
an eigenstate of the GAA model at a final quasiperiodicity-
to-tunneling ratio ∆/J . Bar color relates to the normalized
participation ratio (see color bar inset in (b)), for α = 0 and
no interactions. Bottom: Atomic momentum distributions,
corresponding to populations in the synthetic lattice, of the
ES for α = 0 in the localized regime (∆/J = 4.2), near the
delocalization transition (∆/J = 2.1), and in the delocalized
regime (∆/J = 0.9). (b) Numerically-calculated participa-
tion ratios (PR) overlaid on the eigenenergies of the GAA
model for α = −0.5, φ = π, and N = 201 sites. High-energy
states localize at larger quasiperiodicity strengths than low-
energy states, highlighting the presence of the mobility edge
of Eq. (3) (dashed black line). The colors of the energy curves
relate to states’ PR/N values, according to the inset color bar.
(c) PR/N vs. ∆/J for GS (open blue circles) and ES (yellow
diamonds) under α = −0.5, 0, 0.5. Numerical curves incor-
porate the exact experimental tunneling ramp and assume a
mean-field energy U/J = 0.48 (U/h = 300 Hz) for the dashed
curves and zero interactions (U/J = 0) for the solid curves.
Error bars in (c) denote one standard error of the mean.

PR = 1/ΣnP
2
n , where Pn is the normalized atom popu-

lation at site n. The PR effectively counts the number of
sites that “participate” in hosting a state. It ranges from
PR ∼ N in the extended regime to PR = 1 for states
localized to a single site. For α 6= 0, states on oppo-
site sides of the ME correspond to PRs close to opposite
extremes of this range (see Fig. 1(b)).

The strong dependence of localization behavior on α
can be understood by considering how this parameter in-
fluences the site energy distribution (see Fig. 1(a)). For
α < 0, the site-energy distribution is weighted towards
higher energy values. In a heuristic picture, more sites
“sit” on top of potential wells rather than at their bot-
toms. Thus, for negative α, a higher (lower) quasiperiod-
icity strength is required to induce localization for states
at high (low) energy, as there are many more (fewer)
nearby sites to which they can resonantly hop. For posi-
tive values of α, the complete opposite behavior is found,
with the localization behavior of the high and low energy



3

states swapped. In this way the ME is directly control-
lable through the parameter α, as suggested by Eq. (3).

We experimentally realize the GAA model with con-
trol over α in a synthetic lattice [44] of coupled atomic
momentum modes [40, 41]. We start with an optically
trapped Bose–Einstein condensate of ∼ 105 87Rb atoms.
We then use a pair of counter-propagating lasers (wave-
length λ = 1064 nm) to drive Bragg transitions that can
change the atomic momentum in increments of 2~k (with
k = 2π/λ and ~ the reduced Planck’s constant). While
one of the lasers has a single frequency, the other beam is
engineered to have many distinct components. Together,
these lasers drive a set of two-photon Bragg transitions
that create effective “tunneling links” between the syn-
thetic lattice “sites” (relating physically to modes with
momenta pn = 2n~k, with n the site index). By indepen-
dently tuning the strength, phase, and detuning for each
of the Bragg transitions, we respectively control the tun-
neling amplitude, tunneling phase, and site-to-site energy
difference of each link in the synthetic lattice. Here, we
make use of the generic site energy control to exactly im-
plement the GAA potential of Eq. (2) on a 21-site lattice
for |α| ≤ 0.5 [43]. The direct measurement of populations
at each synthetic lattice “site” is achieved by performing
absorption imaging after a time-of-flight period.

To explore the presence of a ME, we seek to adiabati-
cally prepare the low and high energy eigenstates of the
system. We initialize population in the central site of a
lattice with all tunneling links set to 0 and with GAA
site energies imposed. The phase term of Eq. (2) is set
to be φ = π (0) to ensure that the initial lattice site
has the lowest (highest) energy. We linearly ramp up
the tunneling from 0 to a final value of J/h = 625 Hz
over 0.75 ms, and hold at that value for 1.25 ms. At the
single-particle level and in its adiabatic limit, this ramp-
ing procedure prepares the lowest (highest) energy eigen-
state of the full Hamiltonian when initializing at the low-
est (highest) energy site in the zero-tunneling limit [43].
As shown in Figs. 2(a,b), this ramp can be viewed as
tuning the system from the limit of infinite quasiperiod-
icity (∆/J = ∞, where our initialized state maps to a
localized eigenstate), to a final ∆/J ratio.

This procedure is expected to be robust in the insu-
lating regime and absent interactions. For our 0.75 ms
ramp, diabatic corrections become important as the
eigenstates hybridize upon encountering a delocalization
transition. While the loading procedure does not faith-
fully prepare the eigenstates in the metallic regime, it is
well-suited to determining the delocalization transition in
the absence of interactions [43]. Interactions change this
picture slightly: for the GS and for the ES when α & 0,
the initialization and ramping procedures remain mostly
intact, with only slight non-adiabaticities introduced [43].
Our preparation of the lowest energy eigenstate, or GS, is
robust to the presence of atomic interactions. In contrast,
our single-site preparation does not capture the effect of

screening for the ES, and in practice our prepared ES is
in fact a distribution of high energy eigenstates.

Figure 2(a) demonstrates this procedure performed
for the highest energy state of the canonical AA model
(α = 0), demonstrating localization above the critical
quasiperiodicity strength (∆/J)c = 2 and extended delo-
calization below it. By studying the localization proper-
ties of samples initiated to prepare the lowest and high-
est energy eigenstates (ground state denoted “GS” and
highest excited state denoted “ES”), we expect to find
evidence of an energy-dependent localization transition
when α 6= 0. The numerically-calculated PR values of
the eigenstates in the non-interacting limit for α = −0.5
are shown in Fig. 2(b). They illustrate a clear energy
dependence in agreement with the prediction of Eq. (3)
(dashed black line), with the GS and ES localization tran-
sitions found near ∆/J = 1 and ∆/J = 3, respectively.

The experiment features interactions that can shift the
localization transitions away from single-particle predic-
tions. We capture this numerically by solving the Gross-
Pitaevskii equation (GPE) for a homogeneous mean-field
interaction energy of U/h = 300 Hz (U/J = 0.48 in terms
of the final tunneling value) [43]. Interacting GPE sim-
ulations of the PR values are shown in Fig. 2(c) as the
dashed blue (yellow) lines for the GS (ES), accounting
for the exact experimental parameter ramp (with U = 0
solid-line curves included for comparison).

Figure 2(c) shows the energy-dependent localization
behavior for α = −0.5. We plot the normalized PR val-
ues, PR/N , which should range from 1/21 (gray hori-
zontal line) in the site-localized limit to . 2/3 in the
extended regime. We observe PR/N values that remain
low for a range of large ∆/J values, giving way to a sharp
increase as the states delocalize. To note, the experimen-
tal PR/N measurements do not reach the expected value
of 2/3 deep in the metallic regime. This is likely due to a
combination of diabatic effects associated with the ramp
(included in the simulation curves) as well as decoherence
between the momentum modes due to spatial separation.
Still, from the distinct separation of the measured local-
ization transitions for the GS and ES we can infer the
existence of an intervening ME.

Consistent with the GPE simulations, we do not ob-
serve a significant influence of interactions for α = −0.5.
The α = 0 case reduces to the standard AA model. Thus,
in the absence of interactions, all eigenstates should de-
localize at the same critical value of ∆/J = 2. How-
ever, we observe in Fig. 2(c) that the transition splits for
the lowest and highest energy states, signaling a mobil-
ity edge that arises solely from atomic interactions [45].
For α = +0.5 (Fig. 2(c)), our data show an inversion
of the mobility edge: the excited state localizes at a
weaker quasiperiodicity amplitude than the ground state.
This inversion is expected due to a symmetry of the non-
interacting Hamiltonian (HGAA), which exchanges the
lowest and the highest energy states as α → −α (and
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φ→ φ+ π for an exact inversion in a finite system). For
α = +0.5, we also observe a shift of the GS localization
transition away from the U = 0 theory prediction.

We find qualitative agreement with the behavior ex-
pected based on the GAA model, observing a ME that
inverts as we go from α = −0.5 to α = +0.5. How-
ever, we do not observe the simple symmetry between
the GS and ES predicted by the GAA model (Eq. 2)
as α changes sign. Instead, we find an asymmetric re-
sponse, with a larger magnitude of separation between
the GS and ES transitions for α = +0.5 as compared to
α = −0.5, and the appearance of a mobility edge even for
the α = 0 case. These observations are consistent with
interaction-driven shifts of the transitions and the fact
that the interacting GAA model has an enlarged sym-
metry, by which the GS and ES localization properties
exchange if we take U → −U as α → −α. These results
demonstrate that, despite interactions strongly breaking
the self-dual symmetry of the non-interacting model, the
ME is renormalized and survives interactions.

Our simple mean-field description of the system’s effec-
tively local and attractive interactions [42, 43, 46] allows
us to provide an intuitive picture for how the localiza-
tion properties of the GS and ES are respectively affected.
For states at low energy, the interaction-induced chemical
potential shifts inhibit delocalization in the synthetic lat-
tice. This instability towards self-trapping for attractive
interactions [47] shifts the ground state localization tran-
sition towards lower quasiperiodicity strengths for all val-
ues of α. In contrast, for states at high energy, attractive
interactions can effectively screen the GAA quasiperiodic
potential, thus promoting delocalization [47, 48].

Figure 3 provides a more comprehensive picture for
the localization behavior of the interacting GAA model,
achieved by studying the GS and ES localization transi-
tions for a larger set of α values. For the GS and ES,
we perform the same preparation ramps as described for
Fig. 2, starting from the ∆/J =∞ limit. For each sam-
pled α value, we determine the “critical” ∆/J at which
delocalization occurs, relating to an increase of the nor-
malized participation ratio (PR/N) above a threshold
value set to 0.19 [43]. The collections of critical ∆/J
values, shown respectively as open (white) diamonds
and black disks for the ES and GS, serve to define the
localization-delocalization boundaries for these states.

In the absence of interactions, these two curves should
be symmetric about an inversion of α → −α, with a
crossing at α = 0 that relates to the absence of a ME in
the canonical AA model. The interactions modify this
picture, however. The crossing of these localization tran-
sition lines is shifted away from α = 0 to α ∼ 0.3 − 0.4.
This is in agreement with the expectations from the in-
teraction phenomena of self-trapping and screening.

Beneath the data, we show the simulated difference
in PR/N for the ideal GS and ES with interactions
(U = 0.48J) [49]. This difference of the participation

/ J
∆

-0.5 -0.25 0 0.25 0.5
0

2

4

α

3

1

Insulator

Metal

GS insulator

ES insulator

ESPR     )−GS( PR / N
0 0.2-0.4 -0.2

FIG. 3. Localization phase diagram of the GS and
ES. Critical quasiperiodicity values for the onset of GS and
ES delocalization (filled circles and open diamonds), overlaid
on the difference in normalized participation ratio (PR/N ,
with difference shown according to the inset colorbar) of the
numerically calculated extremal eigenstates for a mean-field
interaction U = 0.48J . The GS and ES transition “lines” do
not coincide, indicating a mobility edge, and they cross away
from α = 0, indicating a shift due to atomic interactions.
Vertical error bars denote the 90% confidence intervals of the
fit used to determine the critical ∆/J values [43].

ratios reveals a behavior similar to what is observed in ex-
periment, such as a shift of the crossing point away from
α = 0. It also indicates a region at large ∆/J in which
both states are insulating and a region at small ∆/J in
which both states are metallic. Finally, it shows two re-
gions in which mobility edges can be directly inferred
based on the localization of only one of these states.

We note that, while we find fair agreement between the
observed GS localization boundary and the predicted be-
havior of the true lowest energy eigenstate, there is con-
siderable deviation of the experimental ES result. This
discrepancy results from non-ideal ES initialization due
to the influence of interactions. In short, our procedure
of preparing eigenstates by initializing population at a
single site in the ∆/J = ∞ limit works ideally when
there are no interactions. It continues to work for the GS
when effectively attractive interactions are considered.
For the highest energy eigenstate, however, interaction-
driven screening, which would lead to population at mul-
tiple sites, should be present if the interaction strength
U is non-negligible at the start of the ramp, which is
the case in our experiments. Our initialization proce-
dure thus fails to initialize this screened maximal energy
state, and our prepared ES in fact represents a collec-
tion of high energy states. Our measurement of criti-
cal ∆/J values for the ES that are quantitatively lower
than those predicted for the true ES is consistent with
non-ideal state initialization [43]. Still, our results in-
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dicate the observation of a parameter-tunable mobility
edge that is influenced by interactions.

Together, our presented experimental data and the
simulation results can be viewed as the localization phase
diagram for the extremal states of the GAA model with
local, attractive mean-field interactions. Because the ex-
tremal energy states are the first or final state to undergo
a localization transition for increasing ∆, the combined
upper and lower boundaries in Fig. 3 can be viewed as
defining the critical boundaries for the onset of a mo-
bility edge. This result constitutes the first experimen-
tal realization of an exact mobility edge by emulating
the generalized Aubry-André model in the presence of
interactions [36]. In the future, these results may be ex-
tended [50] to allow the precise determination of the en-
ergy of the mobility edge in this and other quasiperiodic
models [51], as well as to determine the role of critical
wavefunctions in enhancing interaction effects [52–56].
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