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We examine the weak cosmic censorship conjecture (WCCC) for the extremal charged black hole in possible
generalizations of Einstein-Maxwell theory due to the higher order corrections, up to fourth-derivative terms.
Our derivation is based on Wald’s gedanken experiment to destroy an extremal black hole. We find that the
WCCC no longer holds for all possible generalizations. Thus, the WCCC can serve as a new constraint to the
higher order effective field theories. However, our constraint is independent of photon’s self-interactions so that
precision measurement of quantum electrodynamics cannot constrain the WCCC. For higher-dimension opera-
tors induced by the one-loop correction for the minimally coupled spinor and scalar to gravity, our constraint is
satisfied.

Introduction.– Even though the curvature singularity of a
black hole is hidden behind the horizon, it might still be pos-
sible to throw charged or spinning matter into a black hole
in particular ways that can destroy the horizon, revealing the
singularity previously hidden inside. This kind of gedanken
experiments was first proposed long ago by Wald [1] to test
the so-called Weak Cosmic Censorship Conjecture (WCCC)
[2], which asserts that the above gedanken experiments can-
not succeed in order to prevent the singularity from being vis-
ible. Although the WCCC can be checked easily for extremal
black holes, it is nontrivial to prove for near-extremal black
holes [1, 3] and for general forms of matter. Recently, signif-
icant progress for the general proof of the WCCC has been
made by Sorce and Wald [4] who adopted a general relativis-
tic formulation of the energy conservation which can work
for general forms of matter obeying the Null Energy Condi-
tion (NEC). In this way, they were able to avoid solving the
complicated dynamical problems of the in-falling matter in-
volving the self-force effect, and succeeded to show that the
WCCC holds for the black holes in Einstein-Maxwell theory,
up to second order variation of the black hole’s mass, charge
and angular momentum. Moreover, their method of exam-
ining the WCCC also provides a systematic framework for
general theories other than Einstein-Maxwell.

One compelling reason to examine the WCCC for more
general theories of gravity and electromagnetism is that the
standard Einstein-Maxwell theory, which can be a good ap-
proximation at low energies, may need to be corrected at
higher energies. In the low-energy Effective Field Theory
(EFT), these quantum corrections can leave low-energy relics
in the form of higher-order derivative terms beyond Einstein-
Maxwell terms, modifying the black hole solutions, as well
as the relativistic laws of the energy-momentum conserva-
tion. These terms may also make the WCCC fail. If we take
the WCCC as a universal physical principle, then only those
higher order EFTs that admit the WCCC should be accepted.
This is in a similar spirit of using the weak gravity conjecture
[5, 6] which takes “gravity force is the weakest in nature” as a

new physical principle to constrain the higher order EFTs [6].
By dimensional counting, the leading order correction to

Einstein-Maxwell theory is photon’s quartic self-interaction
through a virtual scalar or spinor loop, which is a pure effect
of quantum electrodynamics without involving gravity. Its La-
grangian density takes the form [15]:

L ∝ c7FµνFµνFρσFρσ + c8FµνFνρFρσFσµ , (1)

and the coefficients c7 and c8 can be well-measured by exper-
iments [7]. The next leading order corrections to the Einstein-
Maxwell background is given by the graviton-photon-photon
interaction with a scalar or spinor loop. For the minimally-
coupled case, the one-loop effective actions for the Einstein-
Maxwell background induced by spinors and scalars are given
by [8, 9]

Lspinor ∝ 5RF2 − 26RµνFµρFν
ρ + 2RµνρσFµνFρσ , (2)

Lscalar ∝ −
5
2

RF2 − 2RµνFµρFν
ρ − 2RµνρσFµνFρσ , (3)

where we have neglected terms proportional to ∇µFµρ∇νFνρ,
as they do not appear in the metric equation of motion, thus
having no effects on the black hole metric or our parameter
bound. We will specifically check whether the two theories
violate the WCCC later.
EFTs, Black-Hole Solutions, and Extremality Condition.– To
demonstrate the power of the WCCC as a constraint to the
EFTs, in this work we consider the most general quartic order
corrections to Einstein-Maxwell theory, which is given by the
following EFT action:

I =

∫
d4x
√
−g(

1
2κ

R −
1
4

FµνFµν + ∆L) , (4)

where [16]

∆L = c1R2 + c2RµνRµν + c3RµνρσRµνρσ

+ c4RFµνFµν + c5RµνFµρFν
ρ + c6RµνρσFµνFρσ

+ c7FµνFµνFρσFρσ + c8FµνFνρFρσFσµ . (5)
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We will assume ci’s are small and restrict our consideration to
O(ci). The aforementioned self-interactions of four photons
are the terms with coupling coefficient c7 and c8 respectively.

For simplicity, we will consider only the charged non-
spinning black holes. The perturbative procedure of solving
such black hole solutions has been outlined in [10], leading to
a family of solutions parametrized by the mass and the charge
(M,Q). Here we list some partial results relevant for our con-
siderations [17], namely the Maxwell gauge field

At = −
q
r

+
2q3

5r5

[
c5κ + c6κ

(
6 −

5mr
q2

)
+ 8c7 + 4c8

]
, (6)

and the tt-component of the metric [18]

−gtt =1 −
κm
r

+
κq2

2r2 + c2

(
κ3mq2

r5 −
κ3q4

5r6 −
2κ2q2

r4

)
+ c3

(
4κ3mq2

r5 −
4κ3q4

5r6 −
8κ2q2

r4

)
+ c4

(
−

6κ2mq2

r5 +
4κ2q4

r6 +
4κq2

r4

)
+ c5

(
4κ2q4

5r6 −
κ2mq2

r5

)
+ c6

(
κ2mq2

r5 −
κ2q4

5r6 −
2κq2

r4

)
+ c7

(
−

4κq4

5r6

)
+ c8

(
−

2κq4

5r6

)
+ O(c2

i ) . (7)

Here we define the reduced mass m ≡ M/4π, the reduced
charge q ≡ Q/4π and κ = 8πGN , where GN is the gravitational
constant. Note that in (7) there is no O(c1) correction.

As shown by Ref. [10], as long as

m ≥

√
2
κ
|q|

(
1 −

4
5q2 c0

)
, (8)

the singularity of the space-time will be hidden by a horizon;
more precisely, the outer horizon located at the outer most
solution of gtt(rH) = 0. Here

c0 ≡ c2 + 4c3 +
c5

κ
+

c6

κ
+

4c7

κ2 +
2c8

κ2 , (9)

and c0 → 0 recovers the Reissner-Nordstrom solution of
Einstein-Maxwell. For a fixed m, as q increases to, and then
exceeds, the critical value at which equality holds in (8), two
horizons will merge and subsequently disappear, revealing the
singularity. In this way, the extremal solution is defined by
imposing equality in (8). This implicitly defines a function
qext(m) for the extremal solution. For each m, the horizon ra-
dius of the extremal solution is given by

rext
H =

mκ
2

+
4

5m

(
c2 + 4c3 +

10c4 + c5 + c6

κ
−

16c7 + 8c8

κ2

)
.

(10)

On this extremal horizon, the electrostatic potential is

Φext
H = − (ξaAa) |H =

√
2
κ

(
1 +

4c′0
5q2

)
, (11)

where ~ξ = ~∂t is the time-like Killing vector of the space-time,
and

c′0 = −
10c4

κ
−

2c5

κ
−

2c6

κ
+

4c7

κ2 +
2c8

κ2 . (12)

Henceforth we refer to (m, q) solutions that strictly satisfy the
inequality (8) as regular solutions, those that take equality as
extremal solutions, and those that violate the inequality as sin-
gular solutions. We may still refer to them as “black holes”,
even though the horizon may or may not be destroyed.
Gedanken Experiment to Destroy the Horizon.– In gedanken
experiments that attempt to destroy the horizon, e.g., as set
up by Wald [1, 4], we shall always (if tacitly) assume sta-
bility of our family of solutions. That is, starting off with a
regular solution (m, q), as we “throw matter into” it, the final
space-time geometry and field configuration will settle down
to another solution in our family. If our “way of throwing
matter”, for example described by the on-shell metric pertur-
bations, field perturbations and matter stress-energy tensor in
the initial slice, is parameterized by w, then the final solution
should be given by (m(w), q(w)).

In this language, the WCCC dictates that a starting regular
solution (m, q) long before “throwing matter” will only lead
to (m(w), q(w)) that are still regular. As a special case, let us
now consider a starting extremal solution (m, qext(m)), and a
particular approach of throwing matter, we can write

m(w) = m + wδm + O(w2) , q(w) = qext(m) + wδq + O(w2) .
(13)

The condition for the starting extremal solution to not become
singular, at first order in w, is given by

δm −

√
2
κ

(
1 +

4c0

5q2

)
δq ≥ 0 . (14)

We therefore need to find out whether physical laws in our
modified theory imposes that (14) must hold for all infalling
matter — or to find a particular way of throwing matter that
violate (14). The advantage of starting-off at the extremal so-
lution is: once Eq. (14) is violated, then any infinitesimal w
will lead to destruction of the horizon, and we can restrict
ourselves to linear perturbation.

By contrast, starting from a non-extremal black hole with
(m, qext(m)−ε), a finite step size for w must be made to surpass
the extremality contour, and in this case the higher derivatives
of m(w) and q(w) may become important, requiring the com-
putation of higher-order variations. This was indeed the situ-
ation encountered by Hubeny [3], which was latter addressed
by Sorce and Wald [4] by considering the second order vari-
ations. Intuitively, one would expect the sub-extremal black
holes will obey the WCCC if the extremal ones do, but the
second order variations are needed for a rigorous examination
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on the sub-extremal case. In this paper we shall restrict our-
selves to the extremal black holes.

As it turns out, condition (14) coincides with the require-
ment that the horizon area must increase as matter fall into
extremal black holes [19]. More specifically, if we denote by
A(m, q) the area of the horizon, then one can show that

∂mA(m, q)/∂qA(m, q)|q=qext(m) = dqext(m)/dm , (15)

and that dA(m + wdm, qext(m) + wdq)/dw = 0 is equivalent
to the equality in Eq. (14). In this way, the violation of con-
dition (14), or the destruction of the extremal horizon, relies
on the possibility of area decrease at linear order. This can
be possible for the theories we consider even when the NEC
is satisfied, because Raychaudhuri equation is now modified,
and the NEC does not always lead to attractive gravity.
Test Particle.– For a regular solution (m, q), consider a test par-
ticle with reduced mass δm0 and reduced charge δq0, falling
in from infinity. Using the minimally coupled action of

S p = 4π
∫

dτ (δm0 − δq0~u · ~A) , (16)

the reduced canonical momentum of the particle, ~p = δm0 ~u−
δq0 ~A, satisfies ~ξ · ~p = const along the particle’s trajectory; at
linear order in δm0 and δq0, we do not have to consider the
radiation reaction. Applying this to the particle at infinity and
on the horizon, we obtain

δm0

(
~u H · ~ξ

)
− Φc

Hδq0 = δm0

(
~u∞ · ~ξ

)
= −δE∞ , (17)

where ~u∞ and ~u H are the 4-velocities of the particle at infinity
and on the horizon, and we have used the fact that At does not
depend on t, hence ~ξ · ~A vanishes at infinity.

For the final space-time, assuming that it still belongs to the
same family, with (m + δm, q + δq). We can argue from the
charge conservation that δq = δq0, and, from the conservation
of ADM mass, as well as the fact that the energy of gravita-
tional radiation emitted by the in-fall process is O(δm2), that
δm = δE∞: basically, the charge and the energy of the particle
are added to those of the black hole. We will soon give a more
rigorous justification, but with this in hand we can write

δm − Φc
Hδq = −δm0

(
~u H · ~ξ

)
≥ 0 . (18)

The latter inequality is because ~u H · ~ξ ≤ 0: the 4-velocity of
the particle must be pointed toward the future as the particle
crosses the horizon. This can be saturated if the particle is
able to “rest right on top of the horizon”. Inserting Eq. (11)
into Eq. (18), we obtain the relation between δq and δm in this
in-falling test particle situation:

δm ≥

√
2
κ

(
1 +

4c′0
5q2

)
δq . (19)

This is clearly different from Eq. (14). However, before dis-
cussing its consequences, we shall introduce the framework
by Sorce and Wald, which provides more rigorous treatment

�0
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U

FIG. 1: The gedanken experiment to destroy an extremal black hole.
Charged matter, occupying the shaded region, crosses theH portion
of the extremal horizon.

of the energy conservation, and is able to treat more general
infalling matter.
Sorce-Wald method for generic matter.– We now sketch the
method of Sorce and Wald developed in [4, 12]. We follow the
notation of Wald, and denote by φ = (gab, Aa) the metric and
field degrees of freedom. We start off with an extremal black
hole, with (m, qext(m)), and define a Cauchy surface Σ0 at early
time, and a hypersurface Σ1 which starts at sufficiently late
time when the matter all fall in, and terminates at null infinity.
We denote byH the portion of the extremal horizon between
Σ0 and Σ1 (see Fig. 1). We then apply perturbation δφ, as well
as matter, with stress-energy tensor δTab and electric current
δ ja, also a form of perturbation, in an open neghborhood of
Σ0. We will setup our initial value problem in such a way
that δφ, δTab and δ ja all vanish in an open neighborhood U
surrounding the intersection ofH and Σ0. In principle, δφ and
δTab, δ ja should be evolved jointly into the future, but here we
assume stability of our family of solutions, and therefore can
impose that space-time geometry in an open neighborhood of
Σ1 is that of (m + δm, q + δq) [20].

A general Noether method to derive the law of energy con-
servation for such an in-falling process is developed by Iyer
and Wald [13], which we will briefly sketch as follows. Given
a theory Lagrangian L(φ) of gravity and matter, we can intro-
duce the Lagrangian 4-form L = Lε, where ε is the volume
form associated with the metric. Then, variation of L yields

δL = E(φ)δφ + dΘ(φ, δφ) , (20)

where E(φ) = 0 is Euler-Lagrangian equation, and Θ(φ, δφ)
is the symplectic potential 3-form. For an arbitrary vector
ξa, one can construct the associated Noether current Jξ =

Θ(φ,Lξφ)− iξL, which, because Jξ is conserved, i.e., dJξ = 0,
can be rewritten as Jξ = dQξ+ξ

aCa with the 3-form constraint
Ca = 0 when equations of motion are satisfied. For instance,
in Einstein-Maxwell theory, the 3-form constraint is given by

(Ca)bcd = εebcd(T e
a + j eAa), (21)

with Tab = 1
κ

(
Gab − κT EM

ab

)
the non-electromagnetic stress en-

ergy tensor, and j a = ∇bFab the charge current of the Maxwell
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source. Thus the on-shell condition Ca = 0 gives the equa-
tions of motion Gab = κT EM

ab and ∇bFab = 0. The form (21)
also holds when the higher-order derivative corrections ∆L are
present. Assuming E(φ) = 0 and ξa is a Killing vector, i.e.,
Lξφ = 0, it is easy to show that δJξ = diξΘ(φ, δφ) which is
then combined with δJξ = dδQξ + ξaδCa, and is integrated
over the hypersurfaceH ∪ Σ1 to yield∫

∞

[δQξ − iξΘ(φ, δφ)] = −

∫
H∪Σ1

ξaδCa , (22)

where we have used the Stoke’s theorem to turn the 3-surface
integral into the boundary integrals at the spatial infinity ∞
and at the intersection H ∩ Σ0, by also imposing δφ = 0 at
H ∩ Σ0.

If we assume ξa is the time-like Killing vector ta = (∂t)a for
non-spinning black holes, then we denote the change of the
ADM mass as

δM =

∫
∞

[δQξ − iξΘ(φ, δφ)] , (23)

and the charge crossing the horizon as,

δQ ≡

∫
H

εabcd δ j a , (24)

where the electric current δ j a and the stress tensor δT a
b can

be read off from the following on-shell relation [21]

(δCa)bcd = εebcd (δT e
a + Aaδ je) . (25)

Combine all above and require vanishing of δ je and δT e
a on

Σ1 as depicted in Fig. 1, we can turn (22) into the the following
law of energy conservation for the in-falling process of Wald’s
gedanken experiment,

δM− Φc
HδQ = −

∫
H

εebcd ξ
aδT e

a . (26)

On horizon H we can relate the 4-volume form ε to the 3-
volume form ε̃ by the relation εebcd = −4n[eε̃bcd] where ne is
the null vector normal to H . Using this relation and the fact
ξa ∝ na on H , the R.H.S. of (26) turns into 4

∫
H
ε̃δTabnanb,

which is non-negative if matter’s stress tensor obeys the NEC.
Thus, the variational identity (26) becomes an inequality for
matter obeying the NEC,

δM− Φc
HδQ ≥ 0 . (27)

This inequality serves as a constraint on the changes of the
black hole’s mass and charge for the in-falling process, and
will be used to check the WCCC by comparing with the con-
dition (14).
Parameter bounds from WCCC.– The Noether method by Iyer
and Wald provides a systematic way to calculate δM of (23)
and δQ of (24) for general theory by evaluating Θ, Q and
Ca. For example, these quantities for Einstein-Maxwell the-
ory have been derived in [13], and the results δM = 4πδm

and δQ = 4πδq are then used to show that the WCCC holds
for Einstein-Maxwell theory.

Here we apply the same method for our higher-order the-
ory (4). The derivation is tedious but straightforward, and the
result is given in the supplemental materials [22], based on
which we can evaluate the corresponding δM and δQ. As a
result, we find that δM = 4πδm because the corrections due to
higher order Lagrangian ∆L fall off too quickly to contribute
asymptotically to δM. Similarly, we arrive δQ = 4πδq+O(c2

i )
after tedious calculations [23]. The results are consistent with
the test particle case. Therefore, we conclude that (27), which
holds for general forms of matter obeying the NEC, gives the
same condition Eq. (19) as for the test particle.

Compare the energy condition (19) and the WCCC condi-
tion (14), it is not hard to see that we must have c′0 ≥ c0 for
the WCCC to hold for theory (4). Explicitly we have

c2 + 4c3 +
10c4

κ
+

3c5

κ
+

3c6

κ
≤ 0 . (28)

This is our key result, which gives the parameter bounds on
the low-energy EFT of quantum gravity by demanding that
this low-energy theory preserves the WCCC.
Values of c j and connections to other bounds.– With our new
bound (28) from the WCCC, it is then natural to ask how this
bound works in the real world. Although black holes in the
real world generally have nonzero angular momentum, our
bound could still serve as a necessary condition. We first
notice that the non-linear EM terms contribute to c7 and c8,
which do not appear in (28). This implies that the quantum
electrodynamics automatically bypass the WCCC constraint.
Plugging the values of c4, c5 and c6 from the EFT (2) or (3)
into the bound (28), we find the inequality also holds. An
important implication is then, the WCCC not only holds for
Einstein-Maxwell theory, but may also hold at one-loop level.
This could possibly mean the correctness of the conjecture in
the real world!

When the non-minimal coupling between matter and grav-
ity is present, however, the bound (28) may subject to change
under different situations. This is consistent with the fact that
the combination of c-coefficients in our bound is not invariant
under the field redefinition gµν → gµν + δgµν [14], where

δgµν = r1Rµν + r2gµνR + r3FµρFρ
ν + r4gµνFρσFρσ . (29)

With a proper choice of the matter-gravity coupling, it is even
possible that there yields no bound for the c-coefficients, and
that the WCCC always holds. A further discussion is beyond
the scope of this paper and we would like to explore it in the
future.

It is interesting to compare our WCCC bound (28) with
the bound obtained from the weak gravity conjecture (WGC),
which is [10, 14]

c2 + 4c3 +
c5

κ
+

c6

κ
+

4c7

κ2 +
2c8

κ2 ≥ 0 . (30)

Note that the WGC is a conjecture which states that gravity
should be the weakest force for any consistent theory of quan-
tum gravity. We see that the WGC bound will constrain c7 and
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c8 in contrast to the WCCC case. Moreover, these two bounds
seem orthogonal to each other as one is bound above zero and
the other bound below. Due to the seemingly orthogonality,
Combing the WCCC and the WGC bounds together will be a
useful tool to scrutinize the theory space of the higher order
EFTs.
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the future null infinity. A Cauchy surface that ends at spatial
infinity does not approach (m + δm, q + δq), fast enough; its
ADM mass is not equal to m + δm either, because it contains
the energy-momentum content of gravitational waves emitted
during the in-fall process, see e.g. [12]. Sorce and Wald simply
assumed that the late time solution is stable and non-radioactive
to bypass the above concern [4]. On the other hand, in this pa-
per we consider only the infall of matter into an extremal black
hole for which the dynamics is non-radioactive, thus the above
issue does not exist in our consideration.

[21] To arrive (25) we have imposed the on-shell conditions for the
theory (4) along with the additional minimally coupled matter
of stress tensor δT ab and charge current δ ja.

[22] See Sec. III of the supplemental materials for the explicit ex-
pressions.

[23] This can also be seen as follows. By the construction of source
theory, ja = ∇b(Fab − S ab) in which S ab is given in (5) of sup-
plemental materials and is ofO(ci), and using (3) of supplemen-
tal materials, Fab = F(0, j)

ab + S ab + O(c2
i ) where the superscript

(0, j) means to evaluate by plugging the background Reissner-
Nordström configurations and keeping up to O(ci) terms. We
then arrive ja = ∇bF(0, j)

ab + O(c2
i ), and use the Gauss’s law

the integral Q =
∫
H
εabcd ja =

∫
B
∗F(0, j) + O(c2

i ). Then, δQ =∫
B
(∗F(0, j)−∗F(0))+O(c2

i ) = δQ+O(c2
i ), where δQ = 4πδq is the

charge carried by the in-falling matter. Thus, δQ = 4πδq+O(c2
i )

is obtained.


