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In recent years, the out-of-time-order correlator (OTOC) has emerged as a diagnostic tool for
information scrambling in quantum many-body systems. Here, we present exact analytical results
for the OTOC for a typical pair of random local operators supported over two regions of a bipartition.
Quite remarkably, we show that this “bipartite OTOC” is equal to the operator entanglement of the
evolution and we determine its interplay with entangling power. Furthermore, we compute long-time
averages of the OTOC and reveal their connection with eigenstate entanglement. For Hamiltonian
systems, we uncover a hierarchy of constraints over the structure of the spectrum and elucidate
how this affects the equilibration value of the OTOC. Finally, we provide operational significance
to this bipartite OTOC by unraveling intimate connections with average entropy production and
scrambling of information at the level of quantum channels.

Introduction.— A characteristic feature of certain
quantum many-body systems is their ability to quickly
spread “localized” information over subsystems, thereby
making it inaccessible to local observables. Although uni-
tary evolution retains all information, this local inacces-
sibility manifests itself as equilibration in closed systems,
and has been termed “information scrambling” [1–5].

For Hamiltonian quantum dynamics, scrambling can
be probed by examining the overlap of a time-evolved

local operator V (t) := U†t V Ut with a second static op-
erator W . This overlap is commonly quantified via the
strength of the commutator1

CV,W (t) :=
1

2
Tr
(

[V (t),W ]
†

[V (t),W ] ρβ
)

(1)

where ρβ denotes the thermal state at inverse-
temperature β. From the perspective of information
spreading, CV,W (t) is a natural quantity to consider
since it constitutes a state-dependent variant of the Lieb-
Robinson scheme; the latter enforces a fundamental re-
striction on the speed of correlations spreading in non-
relativistic quantum systems [6–9]. In Eq. (1), it is con-
venient to consider pairs of operators V,W which at t = 0
act nontrivially on different subsystems, thus commute;
we follow this convention here.

The commutator CV,W (t) is intimately linked to the
out-of-time-order correlator (OTOC) [10, 11] which is a
4-point function with an unconventional time-ordering

FV,W (t) := Tr
(
V †(t)W †V (t)Wρβ

)
. (2)

The connection between the two arises when V,W are
unitary; Eq. (1) then immediately reduces to CV,W (t) =

1 In fact, CV,W (t) =
1

2

∥∥[V (t),W
]∥∥2 for the norm associated with

the inner product 〈X,Y 〉β = Tr
(
X†Y ρβ

)
, β <∞.

1 − Re [FV,W (t)]. In this paper we focus on the infinite
temperature, β = 0 case.

Through the years, several key signatures of quantum
chaos [12–15] have been introduced. The initial exponen-
tial growth of the OTOC was proposed as a diagnostic of
quantum chaos [16–23]. However, a careful analysis has
revealed that information scrambling does not always ne-
cessitate chaos [24–29].

Per se, the OTOC’s ability to probe dynamical features
clearly depends on the choice of operators V,W . How-
ever, it is desirable to be able to capture these features
as independently as possible from the specific choice of
operators. This insensitivity can be achieved by averag-
ing over a set of operators, a strategy also considered in
Refs. [22, 30–35]. It is crucial to remark that for the aver-
aged OTOC to faithfully capture information spreading,
the averaging process must preserve the initial locality
of the system, i.e., which subsystems V,W initially act
upon — an observation that was quintessential in reveal-
ing the correct behavior of the OTOC and its connection
with Loschmidt echo [35].

Given a bipartition of a finite-dimensional Hilbert
space H = HA ⊗ HB ∼= CdA ⊗ CdB , we will henceforth
focus on averaging CVA,WB

(t) over the (independent) uni-
tary operators VA and WB , whose support is over sub-
systems A and B, respectively. The resulting quantity

G(t) := 1− 1

d
Re

∫
dV dW Tr

(
V †A(t)W †BVA(t)WB

)
, (3)

depends only on the dynamics and the Hilbert space cut,
where we denote VA = V ⊗ IB , WB = IA ⊗ W and
the averaging is performed according to the Haar mea-
sure [36]. We will refer to G(t) for brevity as the bipartite
OTOC, and analyzing its properties will be the focus of
the present paper.

It was recently shown in Ref. [35], where G(t) was
first introduced, that under the assumptions of (i) weak
coupling between A and B, and (ii) Markovianity, that



2

G(t) exhibits a close connection with the Loschmidt
echo [37, 38]; the latter has been widely employed to
characterize chaos [39, 40]. Here, we first show, without
any of the previous assumptions, that G(t) is, in fact,
amenable to exact analytical treatment, and we uncover
its direct relation with entropy production, information
spreading, and entanglement. We also rigorously prove
that the average case is also the typical one, hence justi-
fying the averaging process. Our main results are stated
in the theorems that follow. All proofs of the claims ap-
pearing in the text can be found in the Supplemental
Material [41].

The bipartite OTOC.— We begin by bringing G(t) in
a more explicit form which will be the starting point for
a sequence of results. This can be achieved by working
on the doubled space H⊗H′, where H′ = HA′ ⊗HB′ is
a replica of the original Hilbert space.

Theorem 1. Let SAA′ be the operator over H⊗H′ that
swaps A with its replica A′ and d = dim(H). Then

G(t) = 1− 1

d2
Tr
(
SAA′U⊗2t SAA′U†⊗2t

)
. (4)

The analogous expression for BB′ also holds.

The above formula immediately exposes a connection
between the bipartite OTOC and the operator entangle-
ment of the evolution Eop(Ut), as defined in Ref. [42]
(see also [41] for the relevant definitions). The two quan-
tities, remarkably, coincide exactly. This observation also
allows one to express the entangling power [43] eP(Ut) as
a function of the bipartite OTOC for the symmetric case
dA = dB . The former quantifies the average entangle-
ment produced by the evolution and has been established
as an indicator of global chaos in few-body systems [44–
47].

Theorem 2. Let GU denote the bipartite OTOC for the
evolution U . Then, (i) Eop(Ut) = GUt , and (ii) for a
symmetric bipartition dA = dB,

eP(Ut) =
d

(
√
d+ 1)2

(GUt +GUtSAB −GSAB ) . (5)

For the finite temperature case, Eq. (4) admits a
straightforward generalization which we report in [41].
However, a direct connection with operator entanglement
and entangling power may not be so simple.

How informative is the average G(t)?— Usually, one
is interested in behavior of the OTOC for a typical choice
of random unitary operators. Due to measure concentra-
tion [48], we prove that the two essentially coincide, i.e.,
the probability that a random instance deviates signifi-
cantly from the mean is exponentially suppressed as the
dimension of either of the subsystems A and B grows
large.

Proposition 3. Let P (ε) be the probability that a ran-
dom instance of CVA,WB

(t) deviates from its Haar aver-

age G(t) more than ε. Then,

P (ε) ≤ 2 exp

(
−ε

2dmax

64

)
, (6)

where dmax = max{dA, dB}.

In the definition of the bipartite OTOC and to obtain
the replica formula Eq. (4), we have so far considered av-
eraging over the uniform (Haar) ensemble which contin-
uously extends over the whole unitary group. Although
natural from a mathematical viewpoint, this choice can
turn out to be rather complicated on physical and nu-
merical grounds [49]. Nonetheless, we show in [41] that
Haar averaging can be replaced by any unitary ensem-
ble that forms a 1-design [50–53] without altering G(t).
Such ensembles mimic the Haar randomness only up to
the first moment, which is the depth of randomness that
the OTOC can probe [22]. The latter assumption is thus
much weaker than Haar randomnsess. For instance, con-
sider the case of a spin-1/2 many-body system split into
two parts, A and B. Instead of averaging over Haar ran-
dom unitaries VA and WB , that typically do not factor,
the 1-design (equivalent) picture prescribes to instead
consider only fully factorized unitaries with support over
A and B, e.g., products of local Pauli matrices.

Time-averaging the bipartite OTOC.— In finite di-
mensional quantum systems, nontrivial quantum expec-
tation values or quantities such as CV,W (t) do not con-
verge to a limit for t → ∞. Instead, after a long time
they typically oscillate around an equilibrium value [54–

59] which can be extracted by time-averaging X(t) :=

limT→∞
1
T

∫ T
0
dtX(t). We now turn to examine this

long-time behavior G(t) of the bipartite OTOC as a func-
tion of the Hamiltonian and the Hilbert space cut.

Let us begin with the case of a chaotic dynamics, which
entails level repulsion statistics [15] and an “incommensu-
rable” relation among the energy levels. As such, chaotic
Hamiltonians satisfy (either exactly or to very good ap-
proximation) the no-resonance condition (NRC): The en-
ergy levels and energy gaps feature nondegeneracy. This
has important implications for the long-time behavior of
their bipartite OTOC, as we will see soon.

Let us spectrally decompose H =
∑
k Ek |φk〉〈φk| and

use ρ
(χ)
k := Trχ (|φk〉〈φk|) to denote the reduced density

operator over χ = A,B corresponding to the kth Hamil-
tonian eigenstate (χ corresponds to the complement).
Below, 〈X,Y 〉 := Tr(X†Y ) denotes the Hilbert-Schmidt
inner product [60], which gives rise to the operator 2-

norm ‖X‖2 :=
√
〈X,X〉 .

Proposition 4. Consider a Hamiltonian satisfying the
NRC. Then

G(t)
NRC

= 1− 1

d2

∑
χ∈{A,B}

(∥∥R(χ)
∥∥2
2
− 1

2

∥∥R(χ)
D

∥∥2
2

)
(7)
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where R(χ) is the Gram matrix of the reduced Hamilto-

nian eigenstates {ρ(χ)k }dk=1, i.e.,

R
(χ)
kl := 〈ρ(χ)k , ρ

(χ)
l 〉 (8)

while
(
R

(χ)
D

)
kl

:= R
(χ)
kl δkl.

Let us first point out some basic, yet important prop-
erties of the above formula. The matrix R(χ) is real and
symmetric, while R

(χ)
D is positive-semidefinite and diag-

onal. Moreover, the completeness of the Hamiltonian

eigenvectors imposes
∑
k ρ

(χ)
k = dχI, thus the rescaled

R̃(χ) := R(χ)/dχ are doubly stochastic, i.e.,
∑
i R̃

(χ)
ij =∑

i R̃
(χ)
ji = 1 ∀j. As R̃(χ) is a (rescaled) Gram matrix, its

eigevalues are nonnegative, upper bounded by 1, and at
most d2χ of them are nonzero [60]. This last property fol-

lows from the fact that Rank R̃(χ) = dim Span{ρ(χ)k }k ≤
d2χ. Observe also that

∥∥R(A)
D

∥∥2
2

=
∥∥R(B)

D

∥∥2
2

as two states

ρ
(A)
k and ρ

(B)
k always have the same spectrum (up to ir-

relevant zeroes).
Bipartite OTOC and entanglement.— Proposition 4

makes it possible to bridge the long-time behavior of the
bipartite OTOC with the entanglement structure of the
Hamiltonian eigenstates. Let us begin with the sym-
metric case where dA = dB and all |φk〉 are maximally
entangled with respect to the A-B Hilbert space cut.
This limit uniquely determines the time-average for the
NRC case, regardless of the exact Hamiltonian eigenba-
sis. In general, however, knowledge of the entanglement
is not enough to uniquely determine the equilibration

value; the inner products R
(χ)
kl go beyond probing just

the spectrum of the reduced states. A simple substitu-
tion in Eq. (7) gives for the maximally entangled case

GME(t)
NRC

= (1 − 1/d)2. We will later show the upper
bound G(t) ≤ 1−1/d2min, therefore the equilibrium value
for the bipartite OTOC in this case is nearly maximal,
as expected for highly entangled models (e.g., [61, 62]).

How robust is this conclusion for chaotic Hamiltoni-
ans with a possibly asymmetric bipartition? Typical
eigenstates of chaotic Hamiltonians, as also predicted by
the eigenstate thermalization hypothesis [63–65], are be-
lieved to obey a volume law for the entanglement entropy.
Moreover, their entanglement properties in the bulk re-
semble those of Haar random pure states [66–68]. We
will now show that high entanglement for the Hamilto-
nian eigenstates necessarily implies that the deviation of

the actual equilibration value from GME(t)
NRC

is small.
It is convenient for this purpose to quantify the amount

of entanglement via the linear entropy [69, 70] of the re-
duced state E(|ψAB〉) := Slin (Trχ |ψAB〉〈ψAB |), where
Slin(ρ) := 1 − Tr(ρ2). The latter will also emerge natu-
rally later when we express the bipartite OTOC in terms
of entropy production. Notice that E ≤ 1 − 1/dmax :=
Emax, which is achievable only for dA = dB .

Proposition 5. If Emax − E(|φk〉) ≤ ε holds for at
least a fraction α of the Hamiltonian eigenstates, then

∣∣GME(t)
NRC
−G(t)

NRC∣∣ ≤ αJ + (1− α)K, where

J :=
6ε

dmin
+

5ε2

2
+ 2

λ2 − 1

d2max

(9a)

K :=

(
1 +

2

dmin

)
(1− α) +

2

d
+ 4(ε+

√
ε) (9b)

and λ = dmax/dmin.

The above bound provides a sufficient condition
such that the bipartite OTOC equilibrates around

GME(t)
NRC

. It is expressed in terms of the fraction α
of the highly entangled eigenstates, their entanglement
and the asymmetry of the A-B bipartition. Notice that
the bound simplifies considerably for the case α = 1 and

dmin = dmax =
√
d, that is,

∣∣GME(t)
NRC

− G(t)
NRC∣∣ ≤

ε(6/
√
d + 5ε/2) which should hold to a good approxi-

mation for Hamiltonians with high entanglement in the
bulk of the energies. Applied to chaotic Hamiltonians2,
the bound of Proposition 5 indicates that the bipartite

OTOC will equilibrate near GME(t)
NRC

, with deviations
up to O(1/d2min). For a fixed ratio λ and as d grows,

G(t)
NRC

hence converges to GME(t)
NRC

for all chaotic
systems. Since G(t) ≤ 1 − 1/d2min, fluctuations around
the time-average are necessarily insignificant, justifying
the term equilibration.
Beyond chaotic Hamiltonians.— We now relax the

“strong” level repulsion, i.e., NRC, criterion and uncover
how a hierarchy of constraints, each implying a different
strength of chaos, is reflected in the equilibration value
of the bipartite OTOC.

Integrable models, which possess a structured spec-
trum, are expected to violate the NRC. Nevertheless, no-
tice that Eq. (7), although derived under the NRC, can
still be evaluated for an (arbitrary) choice of orthonor-
mal eigenvectors of the Hamiltonian. We will refer to the
resulting value as the NRC estimate of the time-average
and we will shortly show that this estimate always con-
stitutes an upper bound of the actual equilibration value
(and coincides with it for chaotic Hamiltonians). This is
both of conceptual and practical importance, as evaluat-
ing the NRC estimate is considerably less intensive than
calculating the exact value.

In fact, one can make a broader claim. For that,
we first sketch three types of averaging processes over
G, increasingly shifting away from the strong chaoticity
limit. Each of them gives rise to a corresponding es-
timate for the (exact) equilibration time-average value

G(t). (i) G
Haar

: Averaging over (global) Haar ran-
dom unitary operators U ∈ U(d) in place of the time-
evolution. This averaging process is “beyond chaos”, in

2 Here chaoticity concretely means that the Hamiltonian spec-
trum satisfies the NRC and that the entanglement of the typ-
ical eigenvectors in the bulk, which determine the equilibra-
tion value, resembles that of Haar random vectors [71, 72], i.e.,
Tr

(
ρ2χ

)
≈ (dA + dB)/(d+ 1) thus ε = O(1/dmin) and α ≈ 1.
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FIG. 1. Logarithmic plot of various G estimates, along with
the exact time-average, for fixed dA = 2 as a function of the

total number of spins n. G
Haar
∞ = 3/4 corresponds to the Haar

estimate for n → ∞. For the chaotic phase of the TFIM
(g = −1.05, h = 0.5), the NRC constitutes a satisfactory,
though imperfect, approximation. The chaotic and integrable
phases (h = 0) can be clearly distinguished through the equi-
libration behavior of the bipartite OTOC. For the integrable
XXZ model (we set J = 0.4, ∆ = 2.5), the NRC+ estimate
coincides (up to numerical error) with the exact time-average.
Inequality (11) holds valid in all cases.

the sense that it does not conserve energy, in contrast
with time-averaging over any Hamiltonian evolutions. Its
estimate (only a function of the dimension) is given later

in Eq. (10). (ii) G(t)
NRC

: Time-average, assuming the
Hamiltonian has nondegenerate energy levels and non-
degenerate energy gaps. The corresponding estimate is

Eq. (7). (iii) G(t)
NRC+

: As before, but assuming the
Hamiltonian may have degenerate spectrum, but the en-
ergy gaps (between the different levels) are nondegener-
ate. Its estimate depends only on the eigenprojectors of
the Hamiltonian and can be found in [41].

The value of the Haar average can be performed ex-
actly, with result

G
Haar

=
(d2A − 1)(d2B − 1)

d2 − 1
. (10)

The following ordering holds.

Theorem 6. For any given Hamiltonian, the cor-
responding estimates are related with the exact time-
average G(t) as

G
Haar ≥ G(t)

NRC
≥ G(t)

NRC+

≥ G(t) . (11)

The above constitutes a proof that coincidences in the
spectrum of a Hamiltonian up to the “gaps of gaps” (i.e.,
degeneracy over the energy levels and their gaps) always
reduce the equilibration value of the bipartite OTOC.

Let us now numerically compare each of the estimates
for two models of spin-1/2 chains with open-boundary
conditions: (i) transverse-field Ising model (TFIM) with
nearest neighbour interaction, HI = −

∑
i(σ

z
i σ

z
i+1 +

gσxi +hσzi ) (ii) nearest-neighbor XXZ interactionHXXZ =
−J

∑
i(σ

x
i σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1). Recall that HI

for h = 0 is integrable in terms of free-fermions, while
HXXZ by Bethe Ansatz techniques. The two types of so-
lutions yield qualitatively different spectra; free fermion

solutions necessarily violate nondegeneracy of the gaps.
This is reflected in the accuracy of the estimates (see Fig-
ure 1). Although the NRC estimate provides essentially
the exact equilibration values for the chaotic phase of the
TFIM, it overestimates them in the integrable phase. On
the other hand, NRC+ is essentially exact for the inte-
grable case of the HXXZ due to the lack of coincidences
in the gaps. The results obtained here corroborate ex-
isting studies in the literature, where the (short- and)
long-time behavior of the OTOC was studied for various
many-body systems, see Refs. [73–75].
Bipartite OTOC and subsystem evolution.— We have

so far focused on examining the behavior of the bipartite
OTOC from the perspective of closed systems, i.e., over
the full bipartite Hilbert spaceHA⊗HB . One can instead
express G(t) as a function of the reduced time-dynamics
over only either HA or HB (and the corresponding du-
plicate), at the expense of giving up unitarity. This can
be easily realized by formally performing a partial trace
in Eq. (4), which immediately results in the following
equivalent expression for the bipartite OTOC.

Proposition 7. Let Λ
(A)
t (ρA) :=TrB

[
Ut

(
ρA ⊗

IB
dB

)
U†t

]
be the reduced dynamics over A when the environment B
is initialized in a maximally mixed state. Then,

G(t) = 1− 1

d2A
Tr
[
SAA′

(
Λ
(A)
t

)⊗2
(SAA′)

]
. (12)

The analogous expression for BB′ also holds.

The quantum map Λ
(χ)
t is unital, i.e., the maximally

mixed state is a fixed point. As such, the transformation

ρχ 7→ Λ
(χ)
t (ρχ) results always in an output state whose

spectrum is more disordered than the input one [76]. As
a result, when ρχ is pure, the effect of the reduced time-
dynamics is to scramble and hence produce entropy. Let
us now turn to examine this connection more closely.
Bipartite OTOC as entropy production.— We now

show that the bipartite OTOC G(t) is nothing but a mea-
sure of the average entropy production over pure states,
with the latter quantified by linear entropy Slin.

Theorem 8.

G(t) =
dχ + 1

dχ

∫
dU Slin

[
Λ
(χ)
t (|ψU 〉〈ψU |)

]
(13)

where χ = A,B and |ψU 〉 := U |ψ0〉 corresponds to Haar
random pure states over Hχ.

In this manner, the bipartite OTOC can be fully char-
acterized by linear entropy measurements over any of the
A,B subsystems. To obtain a satisfactory estimate of the
mean in the RHS of Eq. (13), one does not, in practice,
need to sample over the full Haar ensemble. An ade-
quate estimate can be obtained with a rapidly decreasing
number of necessary samples, as the dimension dχ grows.

More precisely, let P̃ (ε) be the probability of the entropy
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Slin

[
Λ
(χ)
t

(
|ψ〉〈ψ|

)]
deviating from

dχ
dχ+1G(t) more than ε

for an instance of a random state. We show in [41] that

P̃ (ε) ≤ exp

(
−dχε

2

64

)
. (14)

The linear entropy, although, per se, a nonlinear func-
tional, can be turned into an ordinary expectation value
if two (uncorrelated) copies of the quantum state are si-
multaneously available, 1 − Slin = Tr

(
Sρ⊗2

)
for S =

SAA′SBB′ . This fact can be exploited simplify its exper-
imental accessibility [77–81]. More recently, protocols
based on correlating measurements over random bases
have also been developed to measure entropies [82–85],
as well as OTOCs [86, 87]. As a result, Theorem 8 and
the typicality result Eq. (14) suggest that the bipartite
OTOC is, in turn, tractable via linear entropy measure-
ments. We provide more details in [41].

From Eq. (13) one can also infer the upper bound

G(t) ≤ 1 − 1/d2χ := G
(χ)
max announced earlier that fol-

lows from the range of the linear entropy function. The

bound is thus achievable only when Λ
(χ)
t is equal to the

completely depolarizing map T (χ)(·) := Tr(·) Iχ
dχ

.

Finally, we remark that linear entropy occurs rather
naturally in relation with the bipartite OTOC, as demon-
strated by Theorem 2 (where it lies implicitly in the def-
inition of operator entanglement and entangling power)
and Theorem 8. This fact has its roots in the definition
of the OTOC, which is intimately related to the Frobe-
nious norm. Relevant relations for the linear entropy
have been also reported in [31]. Starting from the in-
equality Slin(ρ) ≤ S(ρ) between the linear and von Neu-
mann entropies (S(ρ) := −Tr[ρ log(ρ)]), one can also ob-
tain the corresponding estimates for the latter.

Bipartite OTOC and information spreading.— The
bipartite OTOC measures the average ability of the re-
duced time-evolution to erase information, as captured
by the entropy production over a random pure state.
This naturally raises the question as to whether G(t) can

also be understood as a measure of distance between Λ
(χ)
t

and the depolarizing map T (χ), that is, in the space of
quantum channels (i.e., Completely Positive and Trace
Preserving (CPTP) maps [88]).

A straightforward answer can be obtained by resort-
ing to the duality between quantum states and oper-
ations [88]. Let ρE := E ⊗ I(|φ+〉〈φ+|) denote the
(Choi) state corresponding to the CPTP map E , where

|φ+〉 := d−1/2
∑d
i=1 |ii〉 is a maximally entangled state.

Proposition 9. The bipartite OTOC is a measure of
the distance between the reduced time-evolution and the
depolarizing map:

G(t) = G(χ)
max −

∥∥ρ
Λ

(χ)
t
− ρT (χ)

∥∥2
2
. (15)

As an application, the proposition above can be uti-

lized to bound the distance
∥∥Λ(χ)

t −T (χ)
∥∥
♦

given by the
diamond norm [89, 90]; the latter is a well-established
measure of distance between quantum channels3 since
it admits an operational interpretation in terms of dis-
crimination on the level of quantum processes [91]. The

distinguishability of the two operations satisfies
∥∥Λ(χ)

t −

T (χ)
∥∥
♦
≤ d

3/2
χ

√
G

(χ)
max −G(t) (see [41]), therefore if

G
(χ)
max−G(t) decays faster than d−3χ , then asymptotically

the two channels are essentially indistinguishable.
Summary.— We showed that the bipartite OTOC is

amenable to exact analytical treatment and, quite re-
markably, is equal to the operator entanglement of the
dynamics. This identity allows one to establish a rig-
orous quantitative connection between the OTOC and
the notion of entangling power, a well-established quan-
tifier of few-body chaos. This may provide insights into
recent work involving “dual-unitaries” and many-body
chaos [92–95]; the latter maximize operator entangle-
ment [95, 96]. We then turned to late-time averages of
the bipartite OTOC and provided a hierarchy of esti-
mates for systems that violate the conditions of a “generic
spectrum”. Finally, we unraveled the operational signifi-
cance of the OTOC by establishing intimate connections
with entropy production and information scrambling at
the level of quantum channels. Possible future directions
include applying further these theoretical tools to con-
crete many-body systems and uncovering relations with
thermalization, localization, and other many-body phe-
nomena.
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Bastarrachea-Magnani, P. Stránský, S. Lerma-
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Time evolution of correlation functions in quantum
many-body systems, Physical Review Letters 124,
110605 (2020).

[60] R. Bhatia, Matrix analysis, Vol. 169 (Springer-Verlag,
2013).

[61] Y. Huang, F. G. Brandao, Y.-L. Zhang, et al., Finite-
size scaling of out-of-time-ordered correlators at late
times, Physical Review Letters 123, 010601 (2019).

[62] A. W. Harrow, L. Kong, Z.-W. Liu, S. Mehraban, and
P. W. Shor, A separation of out-of-time-ordered corre-
lator and entanglement, arXiv:1906.02219 (2019).

[63] J. M. Deutsch, Quantum statistical mechanics in a
closed system, Physical Review A 43, 2046 (1991).

[64] M. Srednicki, Chaos and quantum thermalization, Phys-
ical Review E 50, 888 (1994).

[65] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization
and its mechanism for generic isolated quantum sys-
tems, Nature 452, 854 (2008).

[66] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
From quantum chaos and eigenstate thermalization to
statistical mechanics and thermodynamics, Advances in
Physics 65, 239 (2016).

[67] Y. Huang, Universal eigenstate entanglement of chaotic
local hamiltonians, Nuclear Physics B 938, 594 (2019).

[68] T.-C. Lu and T. Grover, Renyi entropy of chaotic eigen-
states, Physical Review E 99, 032111 (2019).

[69] R. Horodecki, P. Horodecki, M. Horodecki, and
K. Horodecki, Quantum entanglement, Review of Mod-
ern Physics 81, 865 (2009).

[70] S. Bose and V. Vedral, Mixedness and teleportation,
Physical Review A 61, 040101 (2000).

[71] E. Lubkin, Entropy of an n-system from its correlation
with a k-reservoir, Journal of Mathematical Physics 19,
1028 (1978).

[72] A. Hamma, S. Santra, and P. Zanardi, Quantum en-
tanglement in random physical states, Physical Review
Letters 109, 040502 (2012).
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