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The ability to reroute and control flow is vital to the function of venation networks across a
wide range of organisms. By modifying individual edges in these networks, either by adjusting
edge conductances or creating and destroying edges, organisms robustly control the propagation of
inputs to perform specific tasks. However, a fundamental disconnect exists between the structure
and function: networks with different local architectures can perform the same functions. Here we
answer the question of how changes at the level of individual edges collectively create functionality
at the scale of an entire network. Using persistent homology, we analyze networks tuned to perform
complex tasks. We find that the responses of such networks encode a hidden topological structure
composed of sectors of nearly uniform pressure. Although these sectors are not apparent in the
underlying network structure, they correlate strongly with the tuned function. The connectivity
of these sectors, rather than that of individual nodes, provides a quantitative relationship between
structure and function in flow networks.

The ability to control the transport of materials be-
tween distant sites is central to the function of many bi-
ological flow networks. Often, the rerouting of fluid flow
can be controlled on demand as dictated by the needs
of the system. By dynamically contracting and dilating
blood vessels, the cerebral vasculature actively controls
blood flow to support local neuronal activity through-
out the brain [1, 2]; impairment of this ability has been
linked to neurological diseases [3, 4]. More generally, the
ability to tune edge conductances or locally restructure
node connectivity enables animals [5, 6], plants [7, 8],
fungi [9], and slime molds [10] to regulate flow through
the network to deliver or take up water, nutrients, oxygen
and metabolic byproducts as needed.

While vascular networks of individuals within a species
– and sometimes between related species – often share
common macro- and meso-scale network architectures,
local (micro-scale) network structures often differ, lack-
ing an established underlying geometric organizational
principle [11]. In spite of this structural variation, differ-
ent networks manipulate local structure to achieve the
same basic tasks. How do vascular networks with differ-
ent local structures manage to redirect flow to perform
the same collective functions? What is the relationship
between structure and function in this context?

To answer these questions, we first observe that all bio-
logical flow networks that tune themselves to reroute flow
must satisfy two classes of physical constraints. First, all
tuning processes are accompanied by changes in the pres-
sure response to external (or internal) stimuli. Whether
a system is aiming to achieve specific localized flow rates
(current), maintain perfusion of flow, etc., changes in
node pressures or pressure drops across edges in the net-
work must occur, even if they are not the direct means
of control. To linear order, pressure is controlled by a
combination of Darcy’s Law and conservation of mass,
resulting in a discrete Laplace’s equation which imposes
constraints that must be satisfied by any flow network.

Second, any task associated with rerouting flow re-
quires controlling pressure (e.g., enhancing local flow, as
just discussed) at “target” sites in the network in re-

sponse to pressure (associated with incoming or outgoing
flow) at a “source” elsewhere in the network. There is a
descriptive and mathematical similarity between the task
of controlling flow at a target in response to a pressure
source and the task, known as “allostery,” of controlling
binding of a molecule at some location on a protein by
binding a second molecule at a distant source site on
the protein. We therefore refer to functions associated
with regulating flow at target sites in response to distant
sources as “flow allostery.” While the details of specific
biological systems and tasks can impose additional con-
straints on a system, the constraints imposed by flow
allostery must be present.

To explore the effects of these two classes of constraints
in the context of flow transport, we create networks that
perform flow allostery in which we directly control the
target pressure response. We appeal to the “tuning-by-
pruning” framework [12–15] , in which flow networks are
tuned to perform highly complex multifunctional tasks;
by selectively tuning the conductances of a small frac-
tion of edges, the pressure differences at many of pre-
specified target edges can be simultaneously controlled
in response to a pressure source applied elsewhere in the
system. Such edge-based allosteric functions are quite
general since any pressure response can be decomposed
into a collection of dipoles.

In analogy to biological vascular systems, different net-
works in this framework can easily be tuned to develop
the same function (i.e., the same number of target edges
and desired target pressure differences), yielding ensem-
bles of networks with the same collective functions. In-
stead of being restricted to limited data collected from
experiments, we generate statistically large numbers of
realizations, allowing us to discern even weak signatures
of allosteric function and to draw conclusions with high
confidence. Here we use this approach to develop an anal-
ysis of tuned network ensembles that reveals the local
structure governing allosteric function in flow networks.

To identify the underlying basis of allosteric function
in flow networks, we apply persistent homology to tuned
network ensembles. We find that the structure-function
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(a) ∆ = 0.05 (b) ∆ = 0.05

(c) ∆ = 1.00 (d) ∆ = 0.50

Figure 1. (a), (b) Two different two-dimensional flow net-
works that perform the same allosteric functions: six tar-
get node pairs (green), respond with a pressure difference of
∆pT ≥ 0.05 to a unit pressure difference between two source
nodes (red). The sign of the node pressure is in black with
size denoting magnitude. Edge conductance is indicated by
thickness, with dashed blue lines for edges removed (zero con-
ductance) by tuning. (c) A network with a single function
tuned to a maximum pressure difference of ∆ = 1.0. (d) The
network in (b) tuned to ∆pT ≥ 0.5.

relationship is topologically encoded in the response: as
a network is tuned to achieve a desired target pressure
difference at a number of different sites, it separates into
sectors of relatively uniform node pressure. It is the con-
nectivity, or topology, of these sectors that determines
the function, rather than the connectivity of the actual
nodes. Our finding provides a simple, unifying topolog-
ical description of all networks tuned for the same func-
tion, regardless of the underlying network architecture,
along with the quantitative means to compare networks
tuned for different functions. This description is robust
even when the magnitude of the tuned response is small
and the sectors cannot be identified by eye. Moreover,
our analysis is general so it can potentially be applied to
experimental data on real systems.

To create ensembles of flow networks that each per-
form the same allosteric functions, we first generate a
collection of networks and then tune each one by adjust-
ing edge conductances [15]. Specifically, we consider flow
networks (or equivalently, resistor networks) in which
edges between nodes represent pipes (linear resistors).
The network’s response to external stimuli, described
by the node pressures (voltages), is governed by a dis-
crete Laplace’s equation equivalent to Kirchoff’s laws.
We use contact networks of randomly-generated two and

three-dimensional packings of soft spheres with periodic
boundary conditions, created using standard jamming al-
gorithms. To convert to a flow network, we assign a con-
ductance to each edge, chosen randomly between 0.1 to
1.0 in discrete increments of 0.1.

We next tune each flow network to perform a specific
function, so that the pressure differences of specified tar-
get edges must exceed ∆ > 0 when a unit pressure differ-
ence is applied across a specified source edge. For each
network, the source and target edges are chosen randomly
with the constraint that they do not share any nodes.
To achieve a target pressure difference ∆pT ≥ ∆ across
each target, we use a greedy algorithm: in each step we
increase or decrease the conductance of a single edge by
0.1 (staying within [0, 1], inclusively), modifying the edge
conductance that best optimizes the total response at
that step (for further details see Refs. [15, 16], as well
as Ref. [13] for mechanical networks). Tuning algorithm
details do not affect the generality of our results [15].

Figs. 1(a) and (b) illustrate the discrepancy between
network structure and function. Two different networks
perform the same task: six target edges each have pres-
sure differences ∆pT ≥ ∆ where ∆ = 0.05 relative to the
source (we also chose similar relative positions of source
and targets for visual clarity). Clearly, the spatial distri-
butions of edge conductances (indicated by edge thick-
ness) and node pressures (indicated by the size of the
symbols showing the sign) are different; it is unclear from
Figs. 1(a) and (b) whether the underlying structures of
the two tuned networks share anything in common.

We gain insight by tuning targets to extreme pressure
differences. Fig. 1(c) displays a network with a single
target tuned to the extreme limit ∆ = 1, the max-
imum achievable pressure difference at a target edge.
The network clearly separates into two distinct sectors
of perfectly uniform node pressure, connected only by a
single edge between the source nodes. These two sec-
tors are separated by a crack-like structure with pressure
differences of precisely 1.0 across edges removed during
the tuning (denoted by dashed blue lines). Similarly,
Fig. 1(d) displays the network from Fig. 1(b), but with
each target edge tuned to ∆pT ≥ 0.50. Here the net-
work separates into three distinct sectors, each of almost
perfectly uniform pressure. The exact details of the lo-
cal structure (which specific edges are modified) do not
matter as long as the network partitions into separated
connected components with almost all edges connecting
the different sectors removed.

In these extreme cases, the relationship between struc-
ture and function is clear: the increase in the number
of connected components is directly tied to the function.
The emergence of sectors represents a topological change
in the overall network connectivity beyond that of the
local edge structure. Clearly, this description extends to
all networks tuned to this extreme limit.

For smaller ∆, as in Figs. 1(a) and (b), the entire net-
work remains highly interconnected; there is only one
connected component even after the desired function is
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(a1) Untuned (b1) ∆ = 0.05 (c1) ∆ = 0.20 (d1) ∆ = 1.00

(e1) Untuned (f1) ∆ = 0.05 (g1) ∆ = 0.20 (h1) ∆ = 0.33
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Figure 2. Topological structure of the response for the network of Fig 1(c) with a single target (a) before tuning and tuned for
target pressure differences of (b) ∆pT ≥ ∆ where ∆ = 0.05, (c) ∆pT ≥ 0.2, and (d) ∆pT ≥ 1.0. Similarly, a multifunctional
network with six separate targets (e) before tuning and tuned for (f) ∆pT ≥ 0.05 (g) ∆pT ≥ 0.2, and (h) ∆pT ≥ 0.33. (First
and Third Rows) Sectors characterizing the response are highlighted by color. Symbols/edges are defined as in Fig. 1. (Second
and Fourth Rows) Histograms of node pressures colored to indicate contributions from nodes in the corresponding sectors in
the networks above. The median node pressure p of each sector is shown as a vertical dashed line and differences in median
pressures ∆p corresponding to neighboring peaks in the histograms are indicated. Inset in each histogram is a schematic
depicting the connectivity between sectors, represented as nodes, with source nodes in red. Edges indicate existence of edges
between sectors in tuned network. Symbols (and approximate horizontal position) denote sign and magnitude of p.

achieved. The challenge is therefore to apply the insight
gained from the extreme case to smaller minimum target
pressure differences ∆. In the extreme case, the signature
of tuning is not only encoded in the number of connected
components but also in the sectors. We therefore turn to
topological data analysis to determine whether analogous
sectors exist for networks tuned to smaller ∆.

Persistent homology analysis [17, 18] discerns topolog-
ical features in topologically and/or geometrically struc-
tured data. This technique provides a systematic means
of identifying features at all scales encoded in a function
(the pressure response) defined in some space (the net-
work). Each feature we identify corresponds to a region
of relatively small pressure differences (relatively uniform
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Figure 3. Correlation of pressure difference between sectors
∆p and tuned pressure difference of target edges, ∆pT , for
3D networks (a) as a function of the number of nodes N for
a single target NT = 1 and (b) at N = 512 for various NT .
Both ∆pT and ∆p for each point are averaged over all targets
for up to 256 independent networks tuned to the same ∆.
Error bars represent standard deviations. The diagonal black
dashed lines indicate perfect correlation, ∆p = ∆pT .

node pressures) on the edges in the network. However,
many of these regions owe their existence to small spatial
fluctuations in the pressure response, and their impor-
tance to the function is unclear. This is where persistent
homology provides a second benefit: each identified fea-
ture is assigned a measure of significance, called persis-
tence. We use these persistence values to perform topo-
logical coarse-graining (a form of hierarchical clustering),
combining as many of the lowest persistence regions with
their neighbors as possible to achieve the smallest number
of sectors. Since the functions we tune into the networks
require creating pressure differences between each pair
of target nodes, we avoid combining regions that would
place both nodes comprising a single target edge into the
same sector (details in Ref. [16]). This analysis results in
sectors that are minimal and as significant as possible.

Figs. 2(a-d) show how the resulting sectors evolve with
∆ for the case of a single target, while Figs. 2(e-h) show
the same for a multifunctional network. The networks
segregate into multiple sectors (two and four, respec-
tively), each composed of nodes with relatively uniform
pressures. Fig. 2 also depicts histograms of the node
pressures for each network, colored according to their
corresponding sectors. Depicted above each histogram is
schematic of the connectivity between sectors, represent-
ing the coarse-grained topology of each network.

The identified sectors characterize the tuned function

quantitatively. To show this, we measure the median
node pressure p of each sector, shown as vertical dashed
lines in the histograms in Fig. 2. For any pair of sec-
tors, we can measure the difference in these median node
pressures, which we call the sector pressure difference
∆p. We observe that the value of ∆p measured between
a pair of sectors corresponding to neighboring peaks in
a histogram often corresponds closely to the desired tar-
get pressure difference ∆. Therefore, for each pair of
target nodes, we measure ∆p between their correspond-
ing sectors and compare this value to the actual pressure
difference between the target nodes, ∆pT , tuned to sat-
isfy ∆pT ≥ ∆. Fig. 3 shows the correlation between ∆p
and ∆pT for each target for networks with various num-
bers of nodes N and targets NT , for three-dimensional
networks (results for two-dimensional networks are pre-
sented in Ref. [16]). On average, ∆p is almost perfectly
correlated with ∆pT for every system size and number of
targets. For larger networks and/or smaller numbers of
targets the spread of the distributions around each point
(standard deviation indicated by error bars) is extremely
small. In the Supporting Information, we also provide
examples of networks designed with alternative tuning
strategies (e.g., tuning current rather than pressure dif-
ference) [19]. Each of these exhibits the same character-
istic sectors, demonstrating that the sector description
applies independent of the precise details of tuning.

In summary, we have established the physical origin of
function in allosteric flow networks using persistent ho-
mology. When a network is tuned to have a desired min-
imum pressure difference at a collection of targets, it at-
tempts to create flow bottlenecks, individually partition-
ing each pair of target nodes into separate sectors. The
difference in median pressure between two adjacent sec-
tors correlates strongly with the response of target edges
spanning them. Therefore, sectors are not only the most
topologically significant network features (with large per-
sistence), but also dominate the functional properties.
Less topologically-significant features, such as fluctua-
tions of node pressures about the mean of each sector,
have weaker effects on function.

This sector-based picture provides a unifying descrip-
tion for all flow networks tuned to perform allosteric func-
tions. Although the local node connectivity and geomet-
rical structure can differ between networks tuned for the
same function, their commonality in structure encapsu-
lated by the sector connectivity becomes apparent when
viewed through a topological lens. This leads us to pro-
pose a refinement of the structure-function paradigm in
the context of functional flow networks: it is the rela-
tionship between the topological structure of the response
and function that is important. The sector picture also
gives insight into the limit of multifunctionality in al-
losteric networks, corresponding to a transition [15] from
a regime in which the response of each target can always
be satisfied to one in which not all responses can be sat-
isfied, and is related to the upper bound on the number
of sectors (see Supporting Information [19]).
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Finally, our analysis suggests a new way to charac-
terize vascular networks. Obtaining an accurate, com-
plete map of every vessel of an entire organ or organism
poses a difficult experimental challenge as vascular net-
works frequently consist of millions of nodes, spanning a
range of length scales. Our work shows that this com-
plete map may not always be necessary; sampling local
node pressures on coarser scales may be more useful for
characterizing function and be less susceptible to error.
An approximate reconstruction of the network (e.g., by
assigning edges between nodes below some cutoff length)
would likely suffice to perform topological coarse-graining
and confirm our results. However, thanks to recent ex-
perimental advances, high-quality vasculature data from
whole mouse brains across all length scales is becoming
increasingly available [20, 21], suggesting an edge-based

approach may be feasible. In principle, one could mea-
sure both the rate of blood flow (current) and the diam-
eter (conductance) of each vessel from such images and
infer pressure differences via Ohm’s Law on an edge-by-
edge basis. It would then be possible to test whether the
correlations and patterns of the pressure differences are
consistent with our sector description.
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