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We show that in excitonic insulators with s-wave electron-hole pairing, an applied electric field (either
pulsed or static) can induce a p-wave component to the order parameter, and further drive it to rotate in
the s + i p plane, realizing a Thouless charge pump. In one dimension, each cycle of rotation pumps exactly
two electrons across the sample. Higher dimensional systems can be viewed as a stack of one dimensional
chains in momentum space in which each chain crossing the fermi surface contributes a channel of charge
pumping. Physics beyond the adiabatic limit, including in particular dissipative effects is discussed.

Controlling many-body systems, and in particular using
appropriately applied external fields to ‘steer’ order param-
eters of symmetry broken phases, has emerged as a central
theme in current physics [1–8]. The excitonic insulator (EI)
is state of matter first proposed in the 1960s [9–12] with an
order parameter defined as a condensate of bound electron
hole pairs that activates a hybridization between two oth-
erwise (in the simplest case) decoupled bands and opens a
gap in the electronic spectrum. Several candidate materi-
als including electron-hole bilayers [13–15], Ta2NiSe5 [16–21],
1T -TiSe2 [22–25] and monolayer WTe2 [26] are objects of
current intensive study; recent work [15, 27–31] has pointed
out their possible topological aspects. While the early the-
ories of EI considered a one component order parameter,
typically of inversion symmetric s-wave type, realistic inter-
actions also allow for electron-hole pairing in sub-dominant
channels including p-wave (inversion-odd) ones. In equilib-
rium, the s-wave ground state is favored, with the potential
for p-wave order revealed by its fluctuations accompanied
by dipole moment oscillations: the ‘Bardasis-Schrieffer’ col-
lective mode [32].

In this paper we show that applied electric fields can steer
the order parameter to rotate in the space of s and p symme-
try components, as shown in Fig. 1(a), leading to a realization
of the ‘Thouless charge pump’ [33–36], providing quantized
charge transport across an insulating sample.

The minimal model of an EI involves two electron bands
shown in Fig. 1(b): a valence band with energy ξv,k that
disperses downwards from a high symmetry point (taken to
have zero momentum) and a conduction band (ξc,k ) that
disperses upwards. For simplicity we assume that their en-
ergies are equal and opposite (ξc = −ξv = ξ). Relaxing this
assumption does not change our results in an essential way.
Defining the overlap G = 2ξv,0, we distinguish the ‘BCS’ case
G > 0 where the two bands cross at a fermi wavevector kF

with fermi velocity vF as shown by the dashed lines, leading
to electron and hole pockets, and the ‘BEC’ case where G < 0
and the bands do not cross. Excitonic order corresponds to
the spontaneous formation of a hybridization between the
two bands due to the electron-electron interaction V , lead-
ing to an order parameter ∆(k) =∑

k ′ Vk−k ′ 〈ψ†
c,k ′ψv,k ′〉+c.c.

where ψc/v,k is the electron annihilation operator at momen-

FIG. 1. (a) The s + i p plane for the excitonic order parameter,
with electric field-driven evolution shown as dashed line. (b) The
quasiparticle dispersion in a one dimensional EI (solid lines) along
with bands in metallic phase (dashed lines). (c) The band dispersion
of a two dimensional EI with an s + i p order parameter and ∆s ¿
∆p .

tum k of the conduction/valence band and Vq is the Fourier
transform of the density-density interaction potential V (r ).
The s-wave order parameter ∆s (k) is invariant under crys-
tal symmetry operations while p-wave order parameters are
odd under inversion: ∆p (k) =−∆p (−k), and often transform
as a multi-dimensional representation of the crystal symme-
try group. For simplicity we neglect the k-dependence of ∆s ,
and define ∆p (k) =∆p fk where the pairing function fk car-
ries the momentum dependence and satisfies max(| fkF |) = 1.
We focus on the px pairing channel which is induced by
the x-direction electric fields we consider here. While the
qualitative conclusions hold generically for all spatial di-
mensions, we will indicate the dimensionality if a specific
d-dimensional system is discussed where the momentum k
means a d-dimensional vector.

Writing the partition function Z as a path integral
over fermion fields ψ = (ψc ,ψv ), performing a Hubbard-
Stratonovich transformation of the interaction term in the
excitonic pairing channel and subsuming the intraband in-
teraction into ξ one obtains the action (see [37] Sec. I)

S =
∫

dτdr

{
ψ† (∂τ+Hm)ψ+ 1

gs
|∆s |2 + 1

gp
|∆p |2

}
(1)

as an integral over space-time (r,τ) and the partition func-
tion is Z = ∫

D[ψ̄,ψ]D[∆̄,∆]e−S . For physically reasonable
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interactions such as the screened Coulomb interaction, the
s-wave pairing interaction gs is typically the strongest while
gp is the leading subdominant one. We may write the mean
field Hamiltonian as

∫
drψ†Hmψ=∑

k ψ
†
k H k

mψk with

H k
m[∆s ,∆p ] = ξkσ3 +∆sσ1 +∆p fkσ2 (2)

where σi are the Pauli matrices acting in the c/v band space.
The vector potential A enters Eq. (2) through the minimal
coupling k → k − A required by local gauge invariance (elec-
tric field is E =−∂t A) and we set electron charge e, speed of
light and the Planck constant ħ to be one. Interband dipo-
lar couplings could also occur [6, 38] but do not affect our
results. Since the global phase is not important, we choose
the s-wave order parameter to be real. As we will show,
the system develops an electrical polarization as a p-wave
component π/2 out of phase with the equilibrium ∆s is in-
troduced. Due to an emergent ‘particle hole’ symmetry in
the BCS weak coupling case defined as |∆s |, |∆p |¿G which
we focus on, applied electric fields create ∆p primarily in
this channel (see Sec. VI A of [37] for a rigorous proof), so
we write p-wave pairing in the σ2 channel [32]. The quasi-

particle spectrum is Ek = ±
√
ξ2

k +∆2
s +∆2

p f 2
k . As shown by

Fig. 1(c), the spectrum will have gapless points (nodes) at
(kx ,ky ) = (0,±kF ) in the pure p-wave state (∆s = 0) in two
dimension (2D).
Charge pump—Spatially uniform changes in ∆s,p produce

uniform currents J = 〈∑k ∂k H k
m〉 (see [37] Sec. II), whose time

integral from the initial (∆s ,∆p ) = (∆,0) to the final point
then gives the pumped charge P (difference of polarization
between the final state and the initial state). In a one dimen-
sional (1D) system, P has a geometrical meaning [35, 39] in
the limit of slow order parameter dynamics. It is the flux
of the Berry curvature 2-form B through the 2D surface S
spanned by the occupied 1D crystal momentum k and the
time varying trajectory of ∆s,p , or alternatively by the line
integral of the Berry connection Aµ = i 〈ψ|∂µ|ψ〉 around its
boundary:

P = 1

2π

∫
S

dS ·B = 1

2π

∮
dl ·A (3)

where µ= (k,∆s ,∆p ) (see Fig. 2).
The Berry curvature B from the valence band of Eq. (2)

is sourced by monopoles at the points ξk = ∆s = ∆p = 0,
i.e., the points (k,∆s ,∆p ) = (±kF ,0,0) each of which has
monopole charge 1. If the order parameter evolution com-
pletes a full cycle on the s+i p plane, S becomes the surface
of the 2-torus shown in Fig. 2(a) and the net charge pumped
is the total flux from the enclosed monopoles which is an
integer N = 2, the Chern number of the process. This quan-
tized change in the polarization is known as the Thouless
pump [33], a topological phenomenon immune to disorder.
Note that the monopoles exist only for the ‘BCS’ (G > 0,
band inversion) case where the excitons strongly overlap
such that charge can jump between them. In the ‘BEC’ case

FIG. 2. (a) The surface S in the (k,∆s ,∆p ) space used to calculate
the flux of the Berry curvature for a 1D EI for which the order
parameter evolution completes a full cycle in the s+ i p plane. The
left and right ends of the cylinder are identified so that S is a 2-
torus. Blue dots are Berry curvature monopoles and red dashed
lines are ‘Dirac strings’ with direction shown by black arrows. (b)
The surface of the torus shown in (a) parametrized by k and θ

with k = ±π and θ = 0, 2π identified. The blue contours yield the
charge pumped during a full cycle. The red rectangles are used to
compute the flux for a partial cycle in the BCS limit.

ξk 6= 0 for all k and there are no monopoles enclosed in S
(see [37] Sec. II C).

To compute the polarization for the case the order pa-
rameter does not complete a full cycle, we use the line
integral approach. For notational simplicity, we suppress
the subscripts ‘k’ without causing ambiguities. An explicit
expression for the valence band wave function from (2) at
(k,∆s ,∆p ) is

|ψ〉 = (−v∗, u∗) = 1√
2E(E −ξ)

(
ξ−E ,∆∗)

(4)

where ∆=∆s+i∆p fk ≡ |∆|e iφ and |u|2(|v2|) = 1
2

(
1± ξ

E

)
. The

Berry connection Aµ = |u|2∂µφ has singularities associated
with the Dirac strings, the intersections of which with S
(marked by crosses in Fig. 2(b)) must be correctly treated
in the evaluation of the line integral. Noting that |u|2 → 0
when ξ¿ −|∆| and |u|2 → 1 when ξÀ |∆|, we see that in
the weak coupling BCS limit the contour can be collapsed
to the red rectangles in Fig. 2(b). Parameterizing S using k
and the angle θ defined by ∆s + i∆p = Re iθ in Fig. 1(a), one
observes that the polarization of an state on the s+i p plane
depends only on the angle θ. Specifically, we found

P = θ/π (5)

for a 1D EI (see [37] Sec. II). This may be understood by
noting that the low energy physics around ±kF is of two
massive Dirac models, each of which realizes a Goldstone-
Wilczek [40] mechanism of charge pumping.

Higher dimensional systems can be viewed as 1D chains
along x direction stacked in momentum space. For a 2D
circular fermi surface one finds

P (θ) =


kF
2π tan θ

2 (0 < θ <π/2)
kF
2π

(
2−cot θ2

)
(π/2 < θ <π)

kF
π +P (θ−π) (π< θ < 2π)

. (6)
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FIG. 3. Left is the evolution of the edge state energies as a function
of θ. Right is the spatial profile of one of the two edge states (la-
beled by red line on the left) neglecting its quick oscillating detail.
Being filled means the state is occupied. The blue edge state is not
shown but is the mirror image of the red one.

A full cycle pumps exactly two electrons along each 1D mo-
mentum chain that crosses the fermi surface, giving

P1D = 2, P2D = 2kF

π
, P3D = k2

F

2π
(7)

for 1D, 2D and three dimensional (3D) isotropic systems re-
spectively.

Although the charge pump is a bulk property carried by
all valence band electrons, it is also revealed by the evolution
of edge states as ∆s and ∆p are varied, as shown in Fig. 3
for a 1D wire connected with reservoirs. In the BCS limit,
with open boundary conditions ψ(0) = ψ(L) = 0, there are
two edge states

ψ± = 1

C±
(1,±1)sin(kF x)e∓x∆p /vF , E =±∆s (8)

where C± is a normalization constant. We suppose ∆s +
i∆p = Re iθ and follow the evolution of ψ+ as θ is varied
(see Fig.3). At θ = 0 the state is delocalized and unoccupied
with energy R . As θ is increased the state becomes local-
ized near x = 0 and decreases in energy. When θ passes
through π/2, the state becomes maximally localized and be-
comes occupied by an electron from the left reservoir since
its energy crosses the chemical potential. As θ further in-
creases the state becomes delocalized and then localized at
the right edge, delivering its electron to the right reservoir
when θ crosses 3π/2. Considering the ψ− state during the
same cycle, two electrons in total are pumped. In higher
dimensions, each 1D kx chain crossing the fermi surface has
a similar edge state evolution (see [37] Sec. III).
Dynamics—The coupled dynamics of electrons and the or-

der parameters in the presence of an applied electric field is
described by the action Eq. (1). To understand the qualitative
dynamics, we use a low energy effective Ginzburg-Landau
Lagrangian

L(∆s ,∆p ;E) = F −K +Ldrive (9)

for fields ∆s ,∆p obtained by integrating out the Fermions
(see [37] Sec. IV). The dynamics is given by the standard

FIG. 4. Electric field pulse induced dynamics of a 2D isotropic
EI. (a) The polarization as a function of time during the dynamics
with Pdis being small. Inset is the free energy landscape F (∆s ,∆p )
plotted on the s + i p plane. Lower energy appears bluer. The
black dashed order parameter trajectory is caused by a pulse E(t ) =
Emax tanh′ ((t − t0)/w) with maximum electric field Emax = 0.39E0.
(b) The pumped charge by a single pulse as a function of Emax. The
units are P2D = 2kF /π and E0 = ∆2/vF . Top inset is a schematic
of a train of well separated pulses which can induce a ‘steady’
current. Bottom inset is a schematic of the device with EI shown
in blue and the contacts in gold. The parameters are gsν = 0.3,
gpν= 0.58, ∆= 2Λe−1/(gsν), γ= 0.07∆ and w = 2π/(2∆).

Euler-Lagrange equation d
d t

δL
δ∆̇i

= δL
δ∆i

and is that of a point
particle moving in the landscape defined by F , with kinetic
energy K and driven by an electric field through Ldrive. We
find

Ldrive =−P (θ)E − s(∆s ,∆p )E 2 +O(E 3) (10)

where P is the adiabatic polarization in Eqs. (5) or (6),
s = limω→0σ(ω)/(2iω) and σ(ω) is the optical conductiv-
ity from virtual interband excitations (see [37] Sec. IV). It is
natural that electric field couples linearly to the polarization
and therefore provides a ‘force’ E∂θP to rotate the order
parameter in the ∆s ,∆p plane.

F (∆s ,∆p ) gives the potential landscape in which the dy-
namics takes place; it has the anisotropic ‘Mexican hat’ form
shown in Fig. 4(a). For (quasi) 1D systems in the weak cou-
pling BCS limit [41, 42]:

F =−ν
(
∆2

s +∆2
p

)
ln

2Λ√
∆2

s +∆2
p

+ 1

gs
∆2

s +
1

gp
∆2

p (11)

where ν is density of states in the metallic phase and
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ΛÀ
√
∆2

s +∆2
p is a high energy cutoff [10]. The first term be-

comes −ν∫ dθk
2π

(
∆2

s +∆2
p cos2θk

)
ln

(
2Λ/

√
∆2

s +∆2
p cos2θk

)
for a 2D isotropic Fermi surface and dθk

2π → sinθk dθk dφk
4π for

3D where θk and φk are angular variables on the Fermi
surface. The landscape has a local maximum at R = 0 sur-
rounded by a trough at R(θ) of lower values of F . The
ground state minima are at (±∆,0) and the pure p-wave
phases at (0,±∆p0) are saddle points with energy higher by
Fb = ν(∆2 −c∆2

p0)/2 where c is a constant depending on the
space dimension.

We may estimate the minimal electric field required to
drive the system from the minimum through the p-wave sad-
dle point by equating the potential energy barrier Fb to the
work EP (θ =π/2)+O (E 2) done by the electric field, obtain-
ing

Ec ≈ κE0, E0 =∆/ξ0 =∆2/vF (12)

where ξ0 = vF /∆ is the coherence length (exciton size), κ =
1
π (1−∆2

p0/∆2) in 1D and κ= 1
2 − 1

4

∆2
p0

∆2 in 2D, and E0 is at the

order of the dielectric breakdown field. For vF = 106 m/s,
∆= 10meV and ∆p0 ¿∆, such as the case of electron hole
bilayers, the threshold field is Ec ∼ 103 V/cm which can be
easily achieved by modern optical technique. For a 100meV
gap such as that in Ta2NiSe5 [16, 17] (assuming it is in the
BCS regime), the threshold field is about 105 V/cm. At such
large field, O(E 2) terms in the Lagrangian will be important,
which pushes the order parameter closer to zero but does
not destroy the qualitative dynamics in the transient regime
(See [37] Sec. IV D).

The dynamical term K has a relatively simple form if the
gap never closes on the Fermi surface and the order param-
eter variation timescale is long compared to the inverse of
the gap. For example for (quasi) 1D

K ≈ ν(
Ṙ2/R2 +3θ̇2)/12 (13)

to lowest order in time derivatives. For higher dimensions
with closed Fermi surfaces, there are O(1) changes to the
coefficients and, crucially, dissipation and time non-locality
arises from quasiparticle excitations near the nodes of the p-
wave gap when ∆s passes zero. This dissipation also brings
a correction to the pumped charge: P → P2D +Pdis. To es-
timate Pdis, we observe that as the order parameter passes
this gapless regime with a velocity ∆̇s , the probability for ex-
citing a particle-hole pair at k is given by the Landau-Zener

formula [43]: Pk = e−2πδ2
k /|∂t 2∆s | where δk =

√
ξ2

k +∆2
p f 2

k is
half of its minimal excitation energy during the dynamics.
In 2D, summing over momenta, one obtains the number of

excited quasi particles N = kF
2π2vF

| ∆̇s
∆p

| and the non-adiabatic
correction to the pumped charge

Pdis =−P2D
1

8π2

|∆̇s |
∆2

p
(14)

valid if
√

|∆̇s | ¿ |∆p | (see [37] Sec. VI C). Therefore, if the
sub-dominant p-wave coupling constant is too small such

that ∆p0 ∼Λe
− 1

gpν <
√

|∆̇s |/(8π2), this dissipative correction
will dominate over the adiabatic charge.
Numerics and Experiment—We numerically solved the

mean field dynamics implied by Eq. (1) for a BCS weak cou-
pling EI in 2D, driven by a train of widely separated electric
field pulses (Fig. 4(b)). Mean field dynamics [44] means that
each momentum state evolves in the time dependent mean
field (∆s ,∆p fk−A , ξk−A) with ∆s,p determined self consis-
tently by the gap equation, neglecting any spatial fluctua-
tions. We include a weak phenomenological damping γ to
represent energy loss caused by, e.g., a phonon bath (see
[37] Sec. VI). Each pulse drives the order parameter along
the trajectory shown as the black dashed line in Fig. 4(a),
advancing it by θ = π to stabilize the system in the other s-
wave ground state. The total duration of the evolution from
one minimum to the next is Ts ≈ 20π/∆ and the amount
of charge pumped is W P2D /2 where W is the width of the
sample, as shown by Fig. 4(a). In a train of pulses with inter
pulse separation T0 À Ts , each pulse advances the order pa-
rameter from one minimum to the next and allows it to sta-
bilize before next pulse arrives, leading to a time-averaged
current I0 = eW kF /(πT0). For a 10µm wide sample with
normal state carrier density of 1012 cm−2 and inter pulse
time T0 = 1ns, the current is I0 = 255nA considering spin
degeneracy.

A minimum field strength ∼ Ec (12) is required: as the
maximum electric field Emax of the pulse is increased be-
yond the threshold, the charge pumping (DC current) will
onset sharply, as shown in Fig. 4(b). As Emax further in-
creases, each pulse induces a rotation of more cycles which
pumps more charge, giving rise to the step structure. De-
viations from perfect quantization arise from fast order pa-
rameter dynamics caused by the short duration pulse. A
precisely engineered long duration pulse can substantially
reduce these deviations; see [37] Sec. V.

A static electric field in the DC transport regime could
also drive such an order parameter rotation and charge
pumping. However, unlike the case of well separated pulses,
there is no time break to dump the generated heat into the
environment which might destroy the system.
Discussion—We have shown theoretically that a Thouless

charge pump may be realized as a collective many-body ef-
fect arising from order parameter steering in BCS type ex-
citonic insulators. Similar dynamics and charge pumping
can occur in general when the ground state order parame-
ter and the sub dominant one have different parities under
inversion. Its observation would provide both a verification
of order parameter steering and a probe of the excitonic
insulating state, in particular, distinguishing BCS and BEC
states. It is interesting to study the dynamics in the vicinity
of the BCS-BEC crossover and effects beyond mean field.
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