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In flat bands, superconductivity can lead to surprising transport effects. The superfluid “mobil-
ity”, in the form of the superfluid weight Ds, does not draw from the curvature of the band but
has a purely band-geometric origin. In a mean-field description, a non-zero Chern number or frag-
ile topology sets a lower bound for Ds, which, via the Berezinskii-Kosterlitz-Thouless mechanism,
might explain the relatively high superconducting transition temperature measured in magic-angle
twisted bilayer graphene (MATBG). For fragile topology, relevant for the bilayer system, the fate
of this bound for finite temperature and beyond the mean-field approximation remained, however,
unclear. Here, we use numerically exact Monte Carlo simulations to study an attractive Hubbard
model in flat bands with topological properties akin to those of MATBG. We find a superconducting
phase transition with a critical temperature that scales linearly with the interaction strength. We
then investigate the robustness of the superconducting state to the addition of trivial bands that
may or may not trivialize the fragile topology. Our results substantiate the validity of the topolog-
ical bound beyond the mean-field regime and further stress the importance of fragile topology for
flat-band superconductivity.

Whenever the single particle’s kinetic energy does not
depend on momentum, non-interacting electrons, if not
in a topological state, are strictly localized. Nevertheless,
these seemingly inert systems exhibit intriguing trans-
port phenomena in the presence of many-body effects.
A paradigmatic example is the onset of unconventional
superconductivity, where mobile coherent electron pairs
emerge from an insulating high-temperature state [1–12]
under the influence of strong electron-electron interac-
tions. The interest in this flat-band superconductivity
surged after its observation in magic-angle twisted bilayer
graphene (MATBG) [13]. Since then, signatures of zero-
resistance states have been reported in other flat-band
van der Waals systems such as twisted double-bilayer
graphene [14–16], twisted trilayer graphene [17], ABC–
trilayer graphene [18], and bilayer WSe2 [19].

Superconductivity arises from the interplay of two dif-
ferent energy scales: the effective electron-electron at-
tractive interaction |U | and the bandwidth W . A van-
ishing bandwidth maximizes the density of states n0(εF )
at the Fermi energy and the Bardeen-Cooper-Schrieffer
(BCS) theory predicts Tc,BCS ∝ |U |n0(εF ) in the flat-
band limit |U | �W [1–3]. While the BCS theory might
seem unsuitable to treat systems lacking a well-defined
Fermi surface, the BCS wave function turns out to be
an exact zero-temperature ground state for certain flat
bands with local attractive interactions [5, 20]. Neverthe-
less, the validity of the BCS theory at finite temperature
is questionable and one needs to be careful in exploring
the strong-coupling regime [21, 22]. Moreover, while the
BCS theory captures the formation of electronic pairs,
their phase fluctuations are know to be crucial in two-
dimensional (2D) superconductors [23].

Phase coherence emerges via the Berezinskii-
Kosterlitz-Thouless (BKT) mechanism [24–26]. Within

the BKT theory, the fraction of electrons condensed
into coherent bound pairs is captured by the superfluid
weight Ds(T ). The universal jump in this quantity
determines the transition temperature Tc: Tc = πD−s /2,
where D−s is the superfluid weight at the critical
temperature approached from below [27].

The Ginzburg-Landau theory for conventional super-
conductors predicts Ds(T = 0) ≈ e2ns/m

∗, where ns is
the amplitude of the superconducting order parameter,
and m∗ is the effective band mass [28]. Exactly flat bands
have an infinite effective mass, m∗ = ∞. Hence, a van-
ishing bandwidth seems detrimental to phase coherence.
Therefore, one would expect phase fluctuations to com-
pletely disrupt superconductivity in dispersionless bands.
However, this conclusion neglects other band properties
that are not captured by a simple effective mass approx-
imation.

The presence of a further contribution to the super-
fluid weight is now well-established in the mean-field ap-
proximation [5, 20, 29, 30]. This additional term has a
band-geometric origin and is proportional to the Fubini-
Study metric of the occupied bands [20]. Lower bounds
for Ds(T = 0) have been formulated both for bands with
a non-zero Chern number [20] as well as for two bands
characterized by fragile topology [31].

While the bound in terms of the Chern number and its
influence on the T 6= 0 physics has been recently investi-
gated numerically in the strong-coupling regime [21], no
such analysis has been performed for the case of frag-
ile topology. The latter is particularly relevant since the
single-particle nearly flat bands of MATBG have zero
Chern number but non-trivial fragile topology [32–37].
In the current manuscript, we fill this gap by studying a
concrete flat-band model with fragile topology via exact
numerical methods.
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We first review the concept of fragile topological bands
and introduce the concrete model used in this study. We
then compare the superfluid weight obtained from quan-
tum Monte Carlo simulations to the zero-temperature
mean-field topological bound. To further establish the
importance of fragile topology, we investigate the fate of
the superconducting state under the addition of trivial
bands. Finally, we analyze the properties of the normal
state above the superconducting phase transition.

Fragile Bloch bands represent a flavor of symme-
try protected topological insulators (TIs) as these
bands cannot be represented by translationally and lat-
tice temporal-spatial symmetric, exponentially localized
Wannier functions. However, the addition of a trivial
Bloch band can resolve this obstruction, contrary to the
stable TIs [36, 38–41]. In the case of MATBG, the pro-
tecting symmetry is C2zT , where C2z is a 180° rotation
around the out-of-plane axis ẑ, and T is the bosonic time-
reversal symmetry that acts as complex conjugation. For
two occupied bands with C2zT symmetry, it is possible
to introduce a Z-classification based on the Euler class,
e2, of real orientable bundles [31, 35, 36, 39, 42]. In
particular, Ref. [31] showed that, in the mean-field ap-
proximation, a non-trivial Euler class provides a lower
bound on Ds(T = 0). The geometric contribution to the
superfluid weight of MATBG has since then been further
discussed in [31, 43, 44].

To investigate the robustness of the bound for fragile
bands in the strong-coupling regime, we follow Ref. [21]
and consider an attractive Hubbard model which lends
itself to numerically exact auxiliary-field quantum Monte
Carlo simulations [45–47].

We focus on a particular 2D lattice model, known as
kagome-3 [48–50], which represents a minimal instance of
a flat-band system characterized by fragile topology. The
lattice, its basis vectors a1 = (1, 0) and a2 = (1/2,

√
3/2),

and the three inequivalent sublattices in the unit cell are
shown in Fig. 1(a). We study the Hamiltonian:

H = Hkin +Hint, (1)

Hkin =
∑
i,j,σ

tijc
†
iσcjσ − µ

∑
i

(ni↓ + ni↑) , (2)

Hint = −|U |
∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
, (3)

where ciσ is the fermionic annihilation operator, and

niσ = c†iσciσ counts the number of electrons on site i with
spin σ = {↑, ↓}. |U | is the electron-electron interaction
strength, µ the chemical potential, and tij the hopping
parameter between site i and j. In the remainder, we set
all hopping terms to unity.

The single-particle physics encoded in Eq. (2)
is particularly appealing. The spectrum of the
model has two degenerate flat bands at ε(k) =
−2 and a third dispersive band ε(k) = 4 +
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FIG. 1. (a) Kagome-3 lattice model with the unit-cell area
shaded in gray. The inset shows the details of one plaque-
tte. The red circle highlights the 1a Wyckoff position of the
lattice, while the yellow circle the 1b Wyckoff position. Note
that, although the full point group of the model is p6mm,
we refer to the real space high-symmetry-points of its sub-
group p2 [51]. The basis vectors a1 and a2 are represented
by the green arrows. The three inequivalent sublattices A,
B and C are also highlighted. (b) Single-particle spectrum
of the model along high-symmetry lines of p6mm. The high-
symmetry lines and the first Brillouin zone (BZ) are shown in
the inset. The flat bands at ε = −2 is doubly degenerate. (c)
Wilson loop spectrum of the two flat bands of the kagome-3
model. (d) Wilson loop spectrum of the three lowest bands of
the model with an additional s orbital at 1a Wyckoff position.
(e) Same as (d) but with an s orbital at 1b Wyckoff position.

2 [cosk · a1 + cosk · a2 + cosk · (a1 − a2)], cf. Fig. 1(b).
The smallest gap δ = 3 between the dispersive and
flat bands is attained at the momentum point K =
(2π/3, 2π/

√
3) [51]. Note that the model possesses both

spinful time-reversal symmetry and spin Sz conservation.
These features allow us to study the topological proper-
ties by computing the Wilson loop operators of each spin
sector independently [20, 31, 51]. As shown in Fig. 1(c),
the winding in the Wilson loop spectra of the two flat
bands establishes their topological nature with a non-
trivial Euler class |e2| = 1 protected by C2zT [36, 39, 51].
The winding of the spectrum is removed by the addition
of a trivial band, as shown in Fig. 1(d), confirming the
presence of fragile topology. The topological properties
of the kagome-3 flat bands are thus akin to those of the
single-particle bands of MATBG [32–37].

To compute Ds(T ), we introduce an external elec-
tromagnetic field via its electromagnetic potential A
and Peierls substitution: tij → tij exp[iA · (ri − rj)] =
tij(r), where ri is the position of the site i and r = ri−rj .
We can then expand H(A) up to second order in A:

H(A) = H + jpµAµ +
1

2
TµνAµAν , (4)
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FIG. 2. Superfluid weight Ds(T ) for the attractive Hubbard model with interaction strength |U |. The crossing of Ds with
the dashed line 2T/π indicates the BKT transition, where the superconducting transition occurs. (a) Different systems sizes
L× L, with L = 4, 6, 8 and |U | = 2. The arrow on the y axis represents the mean-field topological lower bound for Ds(T = 0)
[51]. (b) Different interaction strengths |U | = 1, 1.5, 2 in a 6× 6 system. In both (a) and (b) the kagome-3 model is considered.
(c) Results for the four-band models for |U | = 2 and L = 6. The trivial model has an additional s orbital at Wyckoff position
1a, cf. Fig. 1(a). The model with fragile topology has instead an additional s orbital at Wyckoff position 1b, cf. Fig. 1(a).

where jpµ is the paramagnetic current operator and TµνAν
is the diamagnetic one. These operators are defined as

jpµ =
∑
ij,σ

∂tij(r)

∂rµ
c†iσcjσ, (5)

and

Tµν =
∑
ij,σ

∂2tij(r)

∂rµ∂rν
c†iσcjσ. (6)

The superfluid weight characterizes the zero-frequency,
long-wavelength response to the external field, jµ =
Ds,µνAν . It is given by

Ds,µν =
1

4

[
〈Tµν〉 − Λµν(k‖ = 0, k⊥ → 0, iωm = 0)

]
,

(7)
where k‖(⊥) is the momentum component parallel (per-
pendicular) to A, and 〈·〉 represents the expectation value
over the many-body ground state of Eq. (1) at tempera-
ture T . Here, Λµν(k, ω) is the current-current correlator:

Λµν(k, iωm) =

∫ β

0

dτeiωmτ
〈[
jpµ(k, τ), jpν (−k, 0)

]〉
, (8)

with ωm = 2πmT , m ∈ Z, and β = 1/kBT the inverse
temperature. In the reminder, we consider Ds = Ds,xx

and a gauge potential A = Ax̂.
The quantum Monte Carlo simulations grant access

to the superfluid weight Ds(T ) in the strong-coupling
regime at finite temperature [51]. We perform simula-
tions in the grand canonical ensemble, where the chem-
ical potential µ controls the filling ν of the system. We
carefully tune µ(T ) to ensure ν = 1/3, i.e., two electrons
per unit cell and half-filling of the flat bands. We focus
on a range of Hubbard interactions |U | < δ, where δ is
the energy gap between the flat bands and the dispersive
one.

First, we consider |U | = 2 and lattices of different sizes
L×L, with L = 4, 6, 8. Since each unit cell contains three
inequivalent sublattices and we consider spinful electrons,
the number of orbitals in these systems is 96, 216, 384, re-
spectively. In Fig. 2(a) we present the results of this anal-
ysis. The transition temperature Tc/|U | ≈ 0.02 is given
by the universal jump in the superfluid weight Ds(T ) [27]
and shows little dependence on the system’s size.

Next, we investigate the relation between Tc and |U |.
Since the Hubbard interaction is the only energy scale
of the problem, we expect a linear relation between Tc
and |U |: Tc ∝ |U | [20]. This observation is confirmed
by the plot of Ds(T/|U |)/|U | with |U | = 1, 1.5, 2 for a
6 × 6 system. The three curves lie on top of each other
and confirm Tc/|U | ≈ 0.02, cf. Fig. 2(b). These findings
parallel those for flat Chern bands in the strong-coupling
regime [21] and substantiate the onset of superconduc-
tivity in the exactly flat bands of the kagome-3 lattice.

The addition of trivial bands to a fragile topological
insulator can remove the obstruction to an atomic limit
and might impact the strength of the superconducting
order. Therefore, we carefully assess the fate of super-
conductivity when further bands are considered.

To investigate the Wannierizability under the addition
of trivial bands, we resort to an analysis of the symmetry
eigenvalues of inversion C2z [51]. This approach allows
us to consider two different scenarios. First, we couple
an extra s-orbital at the 1a Wyckoff position [red circle
in Fig. 1(a)] to all adjacent sites. This additional or-
bital gives rise to an A1a band that trivializes the flat
bands of the original model, see [51] for a detailed anal-
ysis. A fine-tuning of the onsite energy of the added
site results in a four-band model with three exactly flat
bands for arbitrary hopping strength to the additional
site. Second, we add a s-orbital at 1b Wyckoff position
[yellow circle in Fig. 1(a)]. Note that we always consider
only the subgroup p2 of the full point group p6mm of
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the original kagome-3 model [51]. This additional orbital
gives rise to an A1b band that does not remove the ob-
struction to an atomic limit. The non-trivial topology
is now protected by C2z rather than C2zT [51]. In this
second case, it is not possible to achieve three exactly
flat bands with finite range hopping. However, the ad-
dition of longer range hopping allows us to obtain three
bands with W/δ ≈ 0.03 and a coupling strength to the
addition site comparable to the first case. The differ-
ent topological properties of these models can be read off
the respective Wilson loop spectra [52] of Figs. 1(d)–(e):
winding spectrum for the topological case, gapped for the
trivial one.

In the Monte Carlo simulations of these four-band
models, we tune µ to achieve a filling ν = 3/8. This
value corresponds to the half-filling of the lower three
bands, where we intend to study the influence of fragile
topology on the superconducting behavior. The evolu-
tion of the superfluid weight as a function of tempera-
ture confirms the important role played by fragile topol-
ogy, as can be seen in Fig. 2(c). In the topologically
trivial model, Ds(T ) remains zero down to temperatures
below the critical temperature of the original three-band
model. On the other hand, the model with fragile topol-
ogy protected by C2z symmetry behaves similarly to the
kagome-3 model.

For completeness, we now turn our attention to the
physics above the superconducting transition in the
kagome-3 lattice. We first study the spin susceptibility

χS =
1

L2

∫ β

0

dτ〈Sz(τ)Sz(0)〉, (9)

with Sz =
∑
i

(
c†i↑ci↑ − c

†
i↓ci↓

)
[51]. As shown in

Fig. 3(a), it reaches a maximum at TS/|U | ≈ 0.17. This
result points to the onset of singlet formation already
above Tc [53].

Next, we investigate the single-particle density of
states [51, 54]

N(εF ) =
β

πL2

∑
α

∫
BZ

dk 〈cαk(β/2)c†αk(0)〉, (10)

where α is the sublattice index. N(εF ) peaks at temper-
ature TN/|U | ≈ 0.09 and drops towards zero at lower
temperatures, cf. Fig. 3(b). The temperature range
Tc < T < TN , where the opening of a gap reduces
the density of states before the system turns supercon-
ducting, is associated with a pseudogap regime charac-
terized by strong phase fluctuations [55]. Note that for
T < TN , also the spin susceptibility χS gets significantly
suppressed.

Our results establish the importance of non-trivial
fragile topology for the onset of superconductivity in flat
bands. In summary, the signatures of a single-particle
gap above the critical temperature are typical for attrac-
tive Hubbard models in the strong-coupling regime [54].
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FIG. 3. (a) Spin susceptibility χS as a function of tem-
perature T for the Hubbard model on the kagome-3 lattice
with |U | = 2 and L = 6. (b) Single-particle density of states
N(εF ) as a function of temperature T for the same model.
The shaded areas correspond to the superconducting state in
dark orange, the range below χS peaks in yellow and that
below the peak of N(εF ) in blue. (c) Scaling of the critical
temperatures Tc, TS , and TN as a function of the interaction
strength |U |. All these quantities show a linear scaling.

Moreover, the linear scaling with |U | of the character-
istic temperatures Tc, TS , and TN shown in Fig. 3(c)
is a generic feature of flat band physics for |U | < δ
[3, 21]. In particular, the pseudogap temperature scales
linearly with |U | regardless of whether it is identified
with TS [53] or TN . Beyond these results, it was re-
cently shown that band-topology can play a crucial role
in the strength of superconductivity [21, 22]. While the
authors of Ref. [21] considered the case of a Chern num-
ber, in our work the topological invariant ensuring a high
critical temperature is a fragile one relevant for a broad
class of time reversal invariant system. In particular, we
prove how this new protecting mechanism is robust be-
yond the mean-field approximation of Ref. [31] but has
important consequences for the fate of the superconduct-
ing state under the addition of trivial bands. Especially
in two-dimensional systems, such additional bands nat-
urally arise in tunnel-coupled heterostructures. This di-
rect link between fragility and an observable quantity is
an important step forward in our understanding of frag-
ile topological insulators which have only a handful of
known experimental signatures [32, 33, 56–59]. Despite
the infancy of this field, there is evidence that a myr-
iad of materials and engineered structures possess this
peculiar topology [60–63], calling for further studies of
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interactions in fragile bands [41, 58, 64].
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