

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Elasticity of a Pseudoproper Ferroelastic Transition from Stishovite to Post-Stishovite at High Pressure

Yanyao Zhang, Suyu Fu, Baoyun Wang, and Jung-Fu Lin Phys. Rev. Lett. **126**, 025701 — Published 12 January 2021 DOI: 10.1103/PhysRevLett.126.025701

1	Elasticity of Pseudo-proper Ferroelastic Transition from Stishovite to Post-Stishovite at
2	High Pressure
3	Yanyao Zhang, ¹ Suyu Fu, ¹ Baoyun Wang, ² and Jung-Fu Lin ^{1,*}
4 5	¹ Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
6 7	² State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
8	*To whom correspondence should be addressed: afu@jsg.utexas.edu
9	
10	Abstract
11	Elastic moduli (C_{ij} 's) of single-crystal stishovite and post-stishovite are determined using
12	Brillouin light scattering, impulsive stimulated light scattering, and X-ray diffraction up to 70
13	GPa. The C_{12} of stishovite converges with the C_{11} at ~55 GPa, where the transverse wave V_{SI}
14	propagating along [110] also vanishes. Landau modelling of the C_{ij} 's, B_{1g} optic mode, and lattice
15	parameters reveals a pseudo-proper type ferroelastic post-stishovite transition. The transition
16	would cause peculiar anomalies in V_S and Poisson's ratio in silica-bearing subducting slabs in the
17	mid-lower mantle.
18	
19	Introduction-Ferroelastic transitions are physical phenomena in which crystals undergo a
20	change in point group ("a change of forms") with a symmetry-breaking shear strain [1,2].
21	Ferroelastic crystals are thus regarded as mechanical analogues of ferromagnetics and
22	ferroelectrics, which are at the heart of novel multiferroic materials for condensed matter physics
23	research and industrial applications [3,4]. Hydrostatic pressure generated in a diamond anvil cell

24 (DAC) can serve as a more effective thermodynamic means than temperature to induce a very

25 large spontaneous strain so the mechanism of the ferroelastic transition could be deciphered [5]. To better understand its underlying driving force, it is of paramount importance to investigate the 26 full sets of elastic moduli (C_{ii} 's) across the transition [6,7]. Insofar, high-pressure experimental 27 28 studies on ferroelastic transitions are often limited to optic modes by Raman and infrared spectroscopy as well as lattice parameters and equation of states (EoS) by X-ray diffraction 29 (XRD) [8,9]. Reliable measurements on the full C_{ii} 's, however, remain limited due to technical 30 challenges in measuring single-crystal sound velocities of both paraelastic and ferroelastic 31 phases across the transition. 32

33 Ferroelastic transitions occur naturally in oxides and silicates in Earth's deep crust and mantle, and have been reported to cause seismic velocity anomalies [10,11]. The ferroelastic 34 transition in stishovite (SiO₂) is of particular interest in geophysics due to its abundance of ~ 25 35 36 vol% in basaltic subducting slabs [12]. Stishovite is a prototype of six-fold coordinated oxides and silicates, and is known to display a number of unusual physical properties: a high density of 37 4.28 g/cm³, high adiabatic bulk modulus (K_S) of 308 GPa, and high shear modulus (μ) of 228 38 GPa at ambient conditions [13,14]. Stishovite has also attracted significant interest in materials 39 science as an analog for finding novel superhard and incompressible materials [15]. Previous 40 41 studies have shown that rutile-type stishovite (space group: $P4_2/mnm$; point group: 422) transforms into CaCl₂-type post-stishovite (space group: *Pnnm*; point group: 222) at ~50-55 GPa 42 and room temperature [16]. The tetragonal-to-orthorhombic transition is manifested by a 43 softening of the B_{1g} optic mode in stishovite [17]. In a pseudo-proper type Landau model, the 44 order parameter for the transition is bilinearly coupled with a symmetry-breaking shear strain in 45 post-stishovite [18] and the modelled elastic moduli show a significant shear softening across the 46 transition [19-21]. Furthermore, first-principle calculations showed that the transition is driven 47

48	by a strong coupling between elastic moduli and softening of the B_{1g} mode [22,23]. Direct
49	experimental measurements on single-crystal V_P and V_S velocities to derive full C_{ij} 's of stishovite
50	and post-stishovite at high pressure would provide key information about the nature of the
51	ferroelastic transition. However, reliable determinations of the full C_{ij} 's of stishovite are
52	currently limited to ~12 GPa using the Brillouin light scattering (BLS) technique [14,24-26].
53	This limitation is mainly due to the relatively high V_P of stishovite at ~12-13 km/s that would
54	have overlapped with the V_S of diamond anvils in DACs. Advent on high-pressure velocity
55	measurements of stishovite is also needed to enhance our knowledge of the ferroelastic
56	transition.
57	In this letter, we have used both Impulsive Stimulated Light Spectroscopy (ISLS) and BLS
58	techniques to measure V_P and V_S of single-crystal stishovite and CaCl ₂ -type post-stishovite up to
59	70 GPa at room temperature. Together with complementary XRD results, we have solved their
60	full C_{ij} 's and analyzed acoustic wave dispersions along critical points of the first Brillouin zone
61	across the post-stishovite transition. Based on the pseudo-proper type Landau modelling, our
62	results reveal that the transition is driven by the soft B_{1g} mode. The coupling between the order
63	parameter and the symmetry-breaking spontaneous strain is manifested by $(C_{11}-C_{12})$ approaching
64	zero and a disappearance of $V_{SI[110]}$ propagating along [110] and polarized along [110]. These
65	results of the post-stishovite transition are also used to provide new insights into other
66	ferroelastic transitions as well as abnormal seismic wave signatures in subducting slabs in the
67	lower mantle.
60	

and are used to derive V_P and V_S of single-crystal stishovite and post-stishovite at high pressure

70 (Figs. 1 and S1-S5; Tables SI and SII; Text S1 and S2 in [27]) [28-34]. Two transverse acoustic

71 velocities with mutually orthogonal polarizations, V_{S1} and V_{S2} , are observed in BLS spectra of both phases, where V_{S2} is larger than V_{S1} by definition. Together with the EoS from XRD results 72 (Figs. S6 and S7; Tables SIII and SIV) [27,35-37], the V_{S1}, V_{S2}, and V_P values as a function of 73 azimuthal angles are used to solve for full C_{ij} 's of stishovite and post-stishovite at each 74 experimental pressure using Christoffel's equations [38]. Uncertainties of all elastic constants 75 except C_{11} of the post-stishovite phase are sufficiently small for examinations of their pressure-76 dependent trends across the transition [39] (Text S3 in [27]). Our derived C_{ii} 's of stishovite at 77 pressures below 12 GPa are consistent with a previous BLS study (Fig. 2) [14]. 78

FIG. 1. Representative BLS and ISLS spectra of single-crystal stishovite and post-stishovite at high pressure. Pressures and crystallographic orientations of each platelet are labeled in BLS panels. Open circles in (a), (d), and (g) are collected raw BLS data while red lines are best fits to derive V_{S1} and V_{S2} of the crystal. ISLS spectra in (b), (e), and (h) display signals of the sample, interface, and diamond extracted from the raw data. (c), (f), and (i) are modelled power spectra for the derived V_P of the sample. Inserts show representative optical images of the sample chambers.

FIG. 2. Elastic moduli of single-crystal stishovite and post-stishovite at high pressure. Solid circles are derived C_{ij} 's values in this study and solid black lines represent best fits using Landau theory modelling [20,40]. Error bars are smaller than symbols when not shown. The grey vertical band represents the ferroelastic transition region at ~55 GPa. Literature data are also plotted for comparison [14,19,23,24,41,42].

The derived C_{ij} 's of stishovite show that all but C_{11} and C_{12} moduli increase almost linearly 94 with increasing pressure up to 55 GPa (Fig. 2). The three moduli sets of stishovite, principle 95 longitudinal moduli (C_{11} and C_{33}), shear moduli (C_{44} and C_{66}), and off-diagonal moduli (C_{12} and 96 C_{13}), gradually diverge from each other at high pressure. These indicate that the stishovite lattice 97 is experiencing enhanced anisotropic compressional and shear strains with increasing pressure. 98 Most importantly, the C_{12} modulus, which relates a compressional stress (σ) to a perpendicular 99 compressional strain (ϵ), increases significantly with pressure, while the C_{11} modulus flattens 100 above ~40 GPa. These lead to the convergence of C_{11} and C_{12} at ~55 GPa. That is, the (C_{11} – 101 C_{12} /2 constant, which reflects the response of a crystal to deformation caused by shear stress 102

along the [110] direction [43], vanishes at the transition [Fig. 3(a)]. This, in turn, is responsible
for the second-order lattice distortion transition where the tetragonal *a* axes of the stishovite
phase split into the orthorhombic *a* and *b* axes in the post-stishovite phase [Figs. 3(b) and S7(a)].
Such shear-induced lattice distortion also results in rotation of SiO₆ octahedra within the *a* axes
plane, causing softening of the B_{1g} optic mode [Figs. 4(a) and S8; Table SV].

Crossing into the orthorhombic post-stishovite, three new elastic moduli C_{22} , C_{55} , and C_{23} 108 emerge and deviate from C_{11} , C_{44} , and C_{13} , respectively, with increasing pressure (Fig. 2). The 109 three principle longitudinal moduli follow the trend $C_{33} > C_{22} > C_{11}$ which indicates anisotropic 110 lattice distortion: the two polar Si-O bonds in the *a-b* plane are more compressible than the four 111 equatorial Si-O bonds in the planes parallel to the c axis in SiO₆ octahedra, consistent with XRD 112 refinement results [16]. On the other hand, off-diagonal C_{12} and C_{13} moduli, which relate to shear 113 distortion in the [110] and [101] directions, respectively, soften with increasing pressure [Fig. 114 3(b)]. This leads to an enhanced transverse wave velocity in these directions, and thus, stabilizes 115 116 the orthorhombic post-stishovite phase [Fig 3(d)].

- 117 The elastic moduli results are further used to analyze V_P and V_S dispersions along the principal
- 118 crystallographic axes ([100], [010], and [001]) and diagonal directions of the principle lattice
- 119 planes ([101], [011], and [110]) across the post-stishovite transition [Figs. 3(c), (d), and 4(b)].
- 120 Results show that $V_{SI[110]}$ propagating along [110] and polarizing along [110] vanishes at ~55
- 121 GPa, while all other acoustic waves vary minimally across the transition.

122

FIG. 3. Lattice distortions and acoustic wave velocity dispersions across the post-stishovite 123 transition at high pressure. (a) and (b) depict the lattice shear distortion across the ferroelastic 124 transition. Blue and red spheres denote Si and O atoms, respectively. The tetragonal (a) and 125 orthorhombic (b) unit cells under strains are schematically shown in red areas with dashed lines. 126 The strains, labelled as ε_2 and ε_3 , depict that the off-diagonal moduli, C_{12} and C_{13} , become 127 anomalous (see Fig. 2). (c) and (d) show velocity dispersions of V_P (black lines), V_{S2} (blue lines), 128 129 and V_{SI} (red lines) across the transition. The V_{SI} disappears at the transition that propagates along [110] [dashed gray lines with arrows in (a) and (b)] and has polarization along $[1\overline{1}0]$ (thin black 130 131 lines with arrows). 132 Discussion and Implications- In order to better understand the transformation mechanism, our 133 experimental C_{ii} 's results as well as Raman and X-ray diffraction data are modelled using the 134 Landau theory with a pseudo-proper type energy expansion where the soft B_{1g} mode would lead 135 to the phase transition (Figs. 2, 4, S9, and S10; Table SVI; Text S4 and S5 in [27]). This Landau 136 model assumes that the order parameter (Q) is coupled bilinearly with the symmetry-breaking 137 spontaneous strain, $(e_1-e_2)/\sqrt{2}$ (Eqs. S13 to S15) and the coupling would lead to a nonlinear 138 decrease of the $(C_{11}-C_{12})$ approaching zero at the transition. The Landau modelling results are 139 very consistent with our experimental elastic moduli across the transition (Fig. 2). 140

- stability criteria [Fig. 4(c)] [44]. Born criteria reflecting the shear stability and the bulk modulus
- 143 of stishovite are $B_1^{St} = C_{11} C_{12} > 0$ and $B_2^{St} = C_{33}(C_{11} + C_{12}) 2C_{13}^2 > 0$, respectively. The
- 144 $(C_{11}-C_{12})$ value in the B_1^{St} criterion is an eigenvalue to a strain eigenvector with the B_{1g}
- symmetry and the $(e_1-e_2)/\sqrt{2}$ spontaneous strain based on the group theory [21]. Based on the
- 146 Landau theory, the consequence of the coupling between the order parameter and the
- spontaneous strain is that the $(C_{11}-C_{12})$ value becomes zero at the transition. The B_2^{St} , relating to
- 148 bulk modulus, remains positive and monotonously increases with pressure. That is, the unit cell
- 149 volume is subjected to a continuous bulk compression without exhibiting a discontinuous volume
- 150 collapse in the second-order lattice distortion transition. Furthermore, two Born criteria for the
- shear stability of the orthorhombic post-stishovite are $B_1^{Pst} = C_{11}C_{22} C_{12}^2 > 0$ and $B_2^{Pst} =$

152 $C_{11}C_{22}C_{33} + 2C_{12}C_{13}C_{23} - C_{11}C_{23}^2 - C_{22}C_{13}^2 - C_{33}C_{12}^2 > 0$. These values also become zero at

- the transition. Finally, the transverse acoustic wave $V_{SI[110]}$ and the two Born stability criteria,
- B_1^{Pst} and B_2^{Pst} , reemerge at pressures above the transition. The A_g mode in post-stishovite, which has similar vibrational rotations to those of the B_{1g} mode, is also stiffened with increasing pressure.
- Putting all the pieces together, our results provide a comprehensive picture for the stishovite to post-stishovite ferroelastic transition. Stishovite undergoes an anisotropic compression under high pressure, which leads to a shear-driven lattice distortion and the softening of the B_{1g} optic mode. The reduction of symmetry, a change of forms from the tetragonal point group to the orthorhombic point group, across the transition induces the symmetry-breaking spontaneous strain in the low-symmetry post-stishovite phase. The soft mode would become imaginary at the critical pressure ($P_C = \sim 110.2$ GPa). However, the transition actually occurs at $P_C^* = \sim 55$ GPa,

- much lower than the P_C , due to a bilinear coupling between the order parameter and the 164
- symmetry-breaking $(e_1-e_2)/\sqrt{2}$ spontaneous strain [Fig. 4(a) and (d)]. This coupling further 165
- results in the eigenvalue B_1^{St} (C_{11} - C_{12}) and acoustic wave $V_{SI[110]}$ nonlinearly decreasing to zero 166
- with increasing pressure up to P_C^* . Therefore, the post-stishovite transition is clearly driven by 167
- the soft B_{1g} mode and belongs to the pseudo-proper Landau-type phase transformation [21]. 168

FIG. 4. Optical, elastic, and mechanical behaviors across the post-stishovite transition. (a) 170

- Pressure dependence of squared Raman shifts (ω^2) of B_{1g} and A_g mode, where the transition 171
- pressure $(P_{\rm C}^{*})$ and critical pressure $(P_{\rm C})$ are labelled. (b) $V_{SI[110]}$ vanishes and aggregate V_S 172
- 173
- softens at the transition. (c) Born stability criteria B_1^{St} (in GPa), B_1^{Pst} (in 5×10^2 GPa²), and B_2^{Pst} (in 10^6 GPa³) vanish at the transition whereas B_2^{St} (in 10^3 GPa²) does not. (d) Squared symmetry-174 breaking spontaneous strain $(e_1 - e_2)^2$ emerges in the post-stishovite phase. Experimental data from
- 175 this study are plotted as solid circles. Black solid lines are results from the Landau model. Early
- 176
- studies are also shown for comparison [14,17-19,23,24,41,42]. The grey vertical band shows the 177
- transition pressure. 178

The nature of the post-stishovite transition could be used to understand other ferroelastic systems such as the tetragonal-monoclinic transition in BiVO₄ at 1.5 GPa [45]. The optic B_g mode in tetragonal BiVO₄ softens close to the transition while the A_g mode in the monoclinic structure stiffens after the transition [46]. The transverse wave V_{SI} in the (001) plane vanishes at the transition in both phases [47]. Our results can thus help elucidate the nature of the ferroelastic transition in other systems.

Our results also have implications on deep-mantle geophysics, where the post-stishovite 185 transition likely occurs at ~1800 km (or 77 GPa and 1706 K) in cold subducting slabs [48]. 186 Using our elasticity data and theoretical predictions to evaluate the high pressure-temperature 187 effect on elasticity [23], the post-stishovite transition would have a minimum aggregate V_S of 188 5.52 km/s and a Poisson's ratio of 0.363 at ~1800 km depth [49]. Considering a subducting slab 189 containing mid-ocean ridge basalt with ~25 vol% of stishovite [12], the post-stishovite transition 190 would result in approximately 5.4% reduction in V_s and 5.5% enhancement in Poisson's ratio 191 (Text S6 in [27]) [50,51]. The effects of the ferroelastic transition on the aforementioned seismic 192 parameters are expected to be distinct from structural transitions and temperature-compositional 193 perturbations more commonly found in the mantle. Seismic observations on the mantle with 194 reduced V_S and enhanced Poisson's ratio near subducting slabs can thus be used as telltale signs 195 [10] to relate to the naturally occurring ferroelastic transition. 196

197 *Conclusion*-The experimentally-derived full C_{ij} 's, Raman, and X-ray diffraction data of single-198 crystal stishovite and post-stishovite reveal the nature of the ferroelastic transition at ~55 GPa. 199 Under quasi-hydrostatic pressure, enhancement of the anisotropic compression leads to the 200 tetragonal-orthorhombic lattice distortion, which is manifested in softening of the B_{1g} optic 201 mode. Due to the coupling of the order parameter with the spontaneous strains, the ferroelastic

202	transition occurs at 55 GPa where the C_{11} modulus converges with the C_{12} modulus and $V_{SI[110]}$
203	vanishes. As the distortion continues into the orthorhombic post-stishovite phase, large
204	spontaneous strains occur while $V_{SI[110]}$ recovers in the ferroelastic phase. The post-stishovite
205	transition can be well explained by the pseudo-proper type energy expansion within the
206	framework of Landau theory. The transition is expected to occur in subducting slabs containing
207	basalt at ~1800 km depth with seismic signatures of ~5.4% V_S reduction and ~5.5% Poisson's
208	ratio enhancement in the lower mantle.
209	
210	Acknowledgment
211	We thank Fang Xu for her assistance in the synthesis and characterization of single-crystal
212	stishovite crystals. The authors also thank V. Prakapenka and E. Greenberg for their assistance
213	with synchrotron X-ray diffraction experiments at 13ID-D, GSECARS. GSECARS was
214	supported by the National Science Foundation (EAR-0622171) and U.S. Department of Energy
215	(DE-FG0294ER14466) under contract DE-AC0206CH11357. J.F. Lin acknowledges support
216	from Geophysics Program of the U.S. National Science Foundation (EAR-1916941) and the
247	

219 **References**

220 [1] M. V. Klassen-Neklyudova, Mechanical twinning of crystals (Springer Science & Business Media, 221 2012). 222 [2] V. K. Wadhawan, Phase Transitions: A Multinational Journal **3**, 3 (1982). 223 [3] E. K. Salje, Annual Review of Materials Research 42, 265 (2012). G. Zhang, F. Liu, T. Gu, Y. Zhao, N. Li, W. Yang, and S. Feng, Advanced Electronic Materials 3, 224 [4] 225 1600498 (2017).

229 [7] T. Ishidate and S. Sasaki, Physical review letters 62, 67 (1989). 230 [8] M. A. Carpenter, E. K. Salje, and A. Graeme-Barber, European Journal of Mineralogy, 621 (1998). 231 [9] R. L. Moreira, R. P. Lobo, S. L. Ramos, M. T. Sebastian, F. M. Matinaga, A. Righi, and A. Dias, 232 Physical Review Materials 2, 054406 (2018). S. Kaneshima, Physics of the Earth and Planetary Interiors 257, 105 (2016). 233 [10] 234 [11] E. K. Salje, Physics reports 215, 49 (1992). 235 T. Ishii, H. Kojitani, and M. Akaogi, Journal of Geophysical Research: Solid Earth (2019). [12] 236 [13] W. Sinclair and A. Ringwood, Nature 272, 714 (1978). 237 F. Jiang, G. D. Gwanmesia, T. I. Dyuzheva, and T. S. Duffy, Physics of the Earth and Planetary [14] 238 Interiors 172, 235 (2009). J. Haines, J. Leger, and G. Bocquillon, Annual Review of Materials Research **31**, 1 (2001). 239 [15] 240 D. Andrault, G. Fiquet, F. Guyot, and M. Hanfland, Science 282, 720 (1998). [16] 241 K. J. Kingma, R. E. Cohen, R. J. Hemley, and H.-k. Mao, Nature 374, 243 (1995). [17] 242 [18] D. Andrault, R. J. Angel, J. L. Mosenfelder, and T. L. Bihan, American Mineralogist 88, 301 (2003). 243 [19] R. Hemley, J. Shu, M. Carpenter, J. Hu, H. Mao, and K. Kingma, Solid State Communications 114, 244 527 (2000). [20] 245 M. A. Carpenter, R. J. Hemley, and H. k. Mao, Journal of Geophysical Research: Solid Earth 105, 246 10807 (2000). 247 [21] M. A. Carpenter and E. K. Salje, European Journal of Mineralogy, 693 (1998). 248 [22] B. Karki, M. Warren, L. Stixrude, G. Ackland, and J. Crain, Physical Review B 55, 3465 (1997). 249 R. Yang and Z. Wu, Earth and Planetary Science Letters 404, 14 (2014). [23] 250 [24] D. J. Weidner, J. D. Bass, A. Ringwood, and W. Sinclair, Journal of Geophysical Research: Solid 251 Earth 87, 4740 (1982). 252 [25] A. Yoneda, T. Cooray, and A. Shatskiy, Physics of the Earth and Planetary Interiors 190, 80 253 (2012). 254 [26] V. Brazhkin, L. McNeil, M. Grimsditch, N. Bendeliani, T. Dyuzheva, and L. Lityagina, Journal of 255 Physics: Condensed Matter 17, 1869 (2005). 256 See Supplemental Material at http://XXX for experimental and modelling details as well as [27] 257 complimentary figures and tables. References include [2,14,16,18-26,28-42,48-51]. 258 X. Tong, The University of Texas at Austin, 2014. [28] 259 [29] J. Yang, X. Tong, J.-F. Lin, T. Okuchi, and N. Tomioka, Scientific reports 5 (2015). 260 [30] F. Xu, D. Yamazaki, N. Sakamoto, W. Sun, H. Fei, and H. Yurimoto, Earth and Planetary Science 261 Letters 459, 332 (2017). 262 [31] S. Fu, J. Yang, N. Tsujino, T. Okuchi, N. Purevjav, and J.-F. Lin, Earth and Planetary Science Letters 263 **518**, 116 (2019). 264 S. Fu, J. Yang, Y. Zhang, T. Okuchi, C. McCammon, H. I. Kim, S. K. Lee, and J. F. Lin, Geophysical [32] 265 Research Letters (2018). 266 [33] A. Dewaele, P. Loubeyre, and M. Mezouar, Physical Review B 70, 094112 (2004). 267 [34] Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, and V. Prakapenka, Proceedings of the National 268 Academy of Sciences 104, 9182 (2007). C. Nisr, K. Leinenweber, V. Prakapenka, C. Prescher, S. Tkachev, and S. H. Dan Shim, Journal of 269 [35] 270 Geophysical Research: Solid Earth (2017). 271 [36] F. Birch, Physical review 71, 809 (1947). 272 [37] B. Grocholski, S. H. Shim, and V. Prakapenka, Journal of Geophysical Research: Solid Earth 118, 273 4745 (2013). 12

M. Guennou, P. Bouvier, G. Garbarino, J. Kreisel, and E. K. Salje, Journal of Physics: Condensed

E. Gregoryanz, R. J. Hemley, H.-k. Mao, and P. Gillet, Physical Review Letters 84, 3117 (2000).

226

227

228

[5]

[6]

Matter 23, 485901 (2011).

- 274 [38] A. Every, Physical Review B 22, 1746 (1980).
- 275 [39] J.-F. Lin, Z. Mao, J. Yang, and S. Fu, Nature **564**, E18 (2018).
- 276 [40] L. Stixrude and C. Lithgow-Bertelloni, Geophysical Journal International 162, 610 (2005).
- 277 [41] M. A. Carpenter, American mineralogist **91**, 229 (2006).
- 278 [42] J. Buchen, H. Marquardt, K. Schulze, S. Speziale, T. Boffa Ballaran, N. Nishiyama, and M.
- 279 Hanfland, Journal of Geophysical Research: Solid Earth **123**, 7347 (2018).
- 280 [43] R. Bell and G. Rupprecht, Physical Review **129**, 90 (1963).
- 281 [44] M. Born, in *Mathematical Proceedings of the Cambridge Philosophical Society* (Cambridge
- 282 University Press, 1940), pp. 160.
- 283 [45] R. Hazen and J. Mariathasan, Science **216**, 991 (1982).
- 284 [46] D. Errandonea and A. B. Garg, Progress in Materials Science **97**, 123 (2018).
- 285 [47] G. Benyuan, M. Copic, and H. Cummins, Physical Review B 24, 4098 (1981).
- 286 [48] R. A. Fischer, A. J. Campbell, B. A. Chidester, D. M. Reaman, E. C. Thompson, J. S. Pigott, V. B.
- 287 Prakapenka, and J. S. Smith, American Mineralogist **103**, 792 (2018).
- 288 [49] R. Hill, Proceedings of the Physical Society. Section A **65**, 349 (1952).
- [50] J. A. Akins and T. J. Ahrens, Geophysical research letters 29, 31 (2002).
- 290 [51] A. M. Dziewonski and D. L. Anderson, Physics of the earth and planetary interiors 25, 297 (1981).