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We theoretically investigate high-pressure effects on the atomic dynamics of metallic glasses. The
theory predicts compression-induced rejuvenation and the resulting strain hardening that have been
recently observed in metallic glasses. Structural relaxation under pressure is mainly governed by
local cage dynamics. The external pressure restricts the dynamical constraints and slows down
the atomic mobility. In addition, the compression induces a rejuvenated metastable state (local
minimum) at a higher energy in the free energy landscape. Thus, compressed metallic glasses can
rejuvenate and the corresponding relaxation is reversible. This behavior leads to strain hardening
in mechanical deformation experiments. Theoretical predictions agree well with experiments.

Metallic glasses have become promising materials for
high-performance engineering due to their fascinating
mechanical properties [1–4]. Metallic glasses are pro-
duced by very rapid solidification of metal alloys to
avoid the crystalline state, and therefore they are elec-
trically conducting materials with internal atomic struc-
ture which is fully disordered like in a glass. To under-
stand the properties of amorphous materials for several
applications, it is essential to understand the underlying
relaxation dynamics in connection with the free energy
landscape.

The structural (α) relaxation time, τα, depends on
temperature, external pressure, and confinement effects
[1, 5–7]. At high temperatures, the atomic mobility is
high and materials are in a liquid-like state. On the
other hand, a significant slowing down of dynamics upon
cooling, reflected in a steep increase of τα, leads to solid
materials with extraordinary mechanical properties in
terms of both hardness and ductility. In particular, ther-
modynamic and physical properties including viscosity
and diffusivity [5, 7, 8] change abruptly by orders of
magnitude around the glass transition temperature Tg.
The glass state obtained in this way occupies a deep
metastable minimum in the energy landscape (EL), of-
ten called ’inherent state’. Upon mechanical deforma-
tion, the yielding of metallic glass is often ductile with a
shear-softening stress-strain curve which goes through a
yielding maximum before reaching a Newtonian-like vis-
cous plateau [9–11], qualitatively similar to the response
of hard-sphere colloids [12]. This behavior can be under-
stood in terms of the strain driving the system out of the
inherent state through an energy barrier (thus reversing

the α process towards a more fluid state) followed by a
downhill trajectory in the EL [13, 14].

Recent experiments from different groups have shown
that applying an external pressure to metallic glasses
leads to some spectacular and unexpected physics, for
which a mechanistic understanding is missing. Shock
compression of metallic glass leads to significant glass re-
juvenation, which is signalled by substantial increase in
the excess relaxation enthalpy and in the decrease of the
boson peak in the specific heat (where the boson peak
represents an excess of low-energy vibrational states over
the Debye law in the vibrational density of states) [15].
Even more recently, Greer and co-workers [16] have
demonstrated experimentally that compression-induced
rejuvenation goes along with strain-hardening in the me-
chanical deformation. This implies that, upon increas-
ing the deformation, the material does not fully yield to
plastic flow and the stress (instead of dropping with the
increase of strain and levelling off in the viscous plateau)
keeps increasing indefinitely with the increase of strain.

In this letter, we present a self-contained theoret-
ical description of the EL of metallic glasses under
compression. The theory is able to predict the emer-
gence of a higher energy metastable state in the EL as
a consequence of the applied pressure, which explains
the rejuvenation phenomenon. Furthermore, the pre-
dicted pressure-induced EL is able to explain the strain-
hardening effect observed experimentally, and for which
no theoretical explanation was at hand.

We theoretically investigate the activated processes
and structural rearrangements in metallic glasses under
compression using the Elastically Collective Nonlinear
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Langevin Equation (ECNLE) theory [17–27]. All sub-
stances are described as a dense hard-sphere fluid with
particle diameter, d, and number of particles per volume,
ρ. At ambient pressure, mobility of a tagged particle
is mainly affected by the nearest-neighbors interactions.
This dynamics at a fixed temperature T is quantified via
the dynamic free energy, which is given by [28]

Fdyn(r)

kBT
=

∫ ∞
0

dq
q2d3 [S(q)− 1]

2

12πΦ [1 + S(q)]
exp

[
−q

2r2(S(q) + 1)

6S(q)

]
− 3 ln

r

d
, (1)

where Φ = ρπd3/6 is the volume fraction, kB is Boltz-
mann constant, r is the displacement of the tagged par-
ticle from its initial position, q is the wavevector, S(q)
is the static structure factor calculated using the Percus-
Yevick theory [29].

The first term on the r.h.s. of Eq. (1) describes how
the tagged particle interacts with neighbors in the first
shell (caged dynamics) and favors localized states. Thus,
this is strongly dependent on the structural input. While
the second term corresponds to a dilution entropy which
tends to delocalize the particles.

When the density of the material is low, Fdyn(r) de-
creases with increasing r and the particles are not dynam-
ically arrested [30, 31]. At higher density, the configura-
tional freedom is lowered due to reduction of free-volume.
A free-energy barrier for the hard-sphere fluid emerges at
Φ ≥ 0.432 and the onset of the slow dynamics is observed
[30]. The tagged particle is dynamically swept within a
cage formed by its neighbors, which probes the EL of the
system. The dynamic free energy profile provides key
physical quantities: the localization/caging length, rL,
corresponding to the first minimum of Fdyn(r), and the
barrier position, rB , located at the maximum of Fdyn(r).
From these, one can calculate a jump distance and a pri-
mary barrier height by ∆r = rB − rL and
FB = Fdyn(rB)− Fdyn(rL), respectively.
A further contribution to the caging may come from

long-ranged elastic correlations [21, 23, 25, 27], however
in the present analysis of experimental data we found
this additional contribution to be unnecessary. Detailed
discussions can be found in the Supplemental Material
[32]. Based on Kramers’ theory [36], the structural (α)
relaxation time is

τα
τs

= 1 +
2π√
K0KB

kBT

d2
exp

(
FB
kBT

)
, (2)

where KB=
∣∣∂2Fdyn(r)/∂r2

∣∣
r=rB

is absolute curvature at
rB and τs is a short atomic-vibration time scale. The ex-
plicit expression of τs for various thermal liquids, poly-
mers, and amorphous drugs is given elsewhere [18, 19, 23–
25, 27]. In this work, we continue to use this value for
calculations of metallic glasses.

To determine the temperature dependence of our EC-
NLE structural relaxation time, we also employ thermal-

expansion analysis to map from a hard-sphere density to
temperature. The thermal mapping is [23–25, 27]

T ≈ T0 −
Φ− Φ0

βΦ0
. (3)

where β ≈ 12 × 10−4 K−1 is a common volume ther-
mal expansion coefficient for many organic materials and
Φ0 ≈ 0.5 is a characteristic packing fraction. Although
the β value is higher than the thermal expansion coeffi-
cient of metallic glasses, there are two main reasons for
us to keep using this for the thermal mapping: (i) Our
ultimate goal is to propose a universal mapping having
a fixed set of parameters to investigate various types of
amorphous materials; (ii) precise agreement with real ex-
perimental values should not be expected because hard-
sphere ECNLE calculations do not take into account in-
teratomic interactions. Thus, all information of these
interactions and their consequences is encoded in the β
and T0 parameter.

Figure 1 shows the theoretical and experimental tem-
perature dependence of τα for several metallic glasses
at atmospheric conditions. The ECNLE theory predicts
the glass transition temperature (defined by τα(Tg) =
100s) Tg = 588.5, 582.37, 570.31, 569.3, and 398.176
K for Pd30Ni50P20, Pd40Ni40P20, Pd40Ni10Cu30P20,
Pd42.5Ni7.5Cu30P20, and Zn38Mg12Ca32Yb18, respec-
tively, while their experimental counterparts are 586, 582,
570, 569, and 395 K [33, 37]. We find τ(Φg ≈ 0.6585) =
100s and T0 ≈ Tg + (Φg − Φ0)/βΦ0 can be directly de-
termined using the experimental Tg. Thus, our numer-
ical results agree quantitatively with experiments with-
out any adjustable parameter. This finding suggests that
the activated events are mainly governed by the nearest-
neighbor shell interactions.
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FIG. 1. (Color online) Logarithm of structural relaxation time
of several metallic glasses as a function of 1000/T at ambient
pressure. Open points are experimental data in Ref. [33, 37]
and solid curves correspond to ECNLE calculations.
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To capture pressure effects on the glass transition of
metallic glasses, we suppose that an external pressure,
P , acts on a tagged particle and generates mechanical
work when undergoing a small displacement in the com-
pression field. The localized free volume of the particle
is ∆V (r) ≈ rd2. By assuming that the pressure remains
uniform throughout the material, this mechanical work
is approximated by P∆V (r) ≈ Prd2 and modifies the
effective non-equilibrium free energy as [23, 27]

Fdyn(r)

kBT
=
Fdyn(r, P = 0)

kBT
+

P

kBT/d3
r

d
. (4)

Figure 2 shows the dynamic free energy for a hard-
sphere fluid of Φ = 0.60 at several pressures. At am-
bient pressure (very small pressure), one can approx-
imate P ≈ 0 and observe a single energy minimum
in Fig. 2. This implies the local hopping is an irre-
versible process. When external compression is applied,
the localization length/barrier position barely changes.
Effects of the nearest-neighbor constraints on the en-
ergy landscape are significantly weakened as the parti-
cle diffuses away from its cage, while the role of ap-
plied pressure becomes greater. Pressure-induced hin-
drance of the diffusion causes another localized state.
Consequently, a second local minimum position, rmin,
appears. By ignoring the dynamic caging constraint in

Fdyn(r), one analytically finds rmin = 3kBT/d
2

P . The
analysis is quantitatively consistent with full numerical
results. Clearly, rmin is density-independent and is short-
ened with increasing compression, while an increase of
external pressure reduces the secondary barrier height,
Fmin = Fdyn(rB)− Fdyn(rmin). At extremely high com-
pression, the second localized state disappears and the
tagged particle is dynamically arrested for a very long
(practically infinite) time. An increase of Φ raises FB
but leaves the qualitative behaviour of the free energy
unaltered [32].

This dynamic energy landscape behaves as a two-level
system and it is possible for the escaped particle to return
to its initial configuration. The double well leads to well-
tempered metadynamics and reversibility of structural
relaxation. The emergence of a higher-energy secondary
minimum qualitatively explains compression-induced re-
juvenation [15, 38] and reversible structural relaxation
[38–40] in metallic glasses. An increase of pressure pro-
motes the glass rejuvenation by generating the higher-
energy secondary minimum towards which the glass can
rejuvenate. This analysis can qualitatively explain recent
experimental results in Ref. [15]. Authors in Ref. [15]
also found that the atomic structures undergoing rejuve-
nation are disordered in a complicated manner associated
with a nanometers length scale. This idea seems plausi-
ble since the ECNLE theory predicts that rmin is several
times greater than the particle diameter d. Based on
previous studies [17, 20, 21, 23, 27], d ≈ 0.4− 1.2 nm for
various amorphous materials.
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FIG. 2. (Color online) The dynamic free energy as a func-
tion of reduced particle displacement for a hard sphere fluid
of packing fraction Φ = 0.60 at several pressures in unit of
kBT/d

3. Key length scales barriers for the local dynamics
are indicated.

The ECNLE theory agrees with the fact that many-
body atomic rearrangements cause the irreversible struc-
tural relaxation [3, 4, 41–43]. By using the hard-sphere
model, we neglect all chemical and conformational com-
plexities, but still achieve the two-level system as shown
in Fig. 2. Thus, influence of chemical ordering on the
reversible relaxation phenomenon due to pressure is rel-
atively minor. These conclusions are consistent with the
findings of Refs. [42, 43].

Figure 3 shows the response of structural relaxation
process in Pd30Ni50P20 and Pd40Ni10Cu30P20 to the ex-
ternal pressure at isothermal condition. Here, we still
use Eq. (3) to convert from a packing fraction of an
effective hard-sphere fluid in ECNLE calculations into
temperature, and suppose that parameters of this ther-
mal mapping are independent of pressure [23, 27]. These
assumptions have been used in previous works [23, 27]
and successfully described τα(T, P ) of amorphous drugs
[27], polymers [23], and a simulated organic glass-forming
liquid [44]. The external compression induces more re-
striction on motions of a single particle within its cage
and slows down the structural mobility, leading to α-
relaxation time increasing with pressure consistent with
prior observations [45]. From these ECNLE results, one
can also find pressure-induced strong-to-fragile transi-
tions in glass-forming liquids [23, 44], which was experi-
mentally reported in Ref. [46, 47].

In a different interpretation, compression induces both
a free volume reduction and the collective long-range
structural rearrangement of atoms [15, 48]. At lower
pressures, atoms become more localized and the effects
of the free volume annihilation dominate [48]. This as-
sumption is consistent with ECNLE predictions since rL
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FIG. 3. (Color online) The theoretical pressure dependence
of structural relaxation time of Pd30Ni50P20 (solid curves)
and Pd40Ni10Cu30P20 (dashed-dotted curves). Red, orange,
yellow-green, and green curves corresponds to calculations at
T = 635.33, 618.67, 602, and 595.33 K respectively.

decreases with compressing and the secondary minimum
of Fdyn barely occurs. Thus, the relaxation enthalpy of
the system is decreased [48, 49]. However, at higher pres-
sures, external compression densifies the atomic struc-
ture by reorganizing atoms into new configurations [48],
and the dynamics is slowed down. A further increase of
atomic packing density forces the interatomic distance
to be shorter, thus enhancing the interaction energy and
the relaxation enthalpy. Now, metallic glasses can rejuve-
nate to higher energy states, consistent with experimen-
tal observations in Refs. [15, 48]. This result provides
a theoretical explanation to the spectacular increase of
relaxation enthalpy upon compression measured experi-
mentally upon shock-compression of metallic glasses [15].

This ECNLE approach can also be used to un-
derstand stress-strain relations in the mechanical re-
sponse of glasses. Figure 4a shows the emergence of a
precompression-induced secondary minimum in the free
energy landscape of the strained glass, calculated using
Eq.(4). Crucially, the vanishing of the secondary min-
imum as σ ≥ σy ≈ 26kBT/d

3 leads to a more stable
localized state. This finding clearly explains why rejuve-
nated metallic glasses due to pre-compression exhibit the
strain-hardening behavior during mechanical tests such
as those in Ref. [16].

In contrast, when metallic glasses are stretched with-
out an applied pressure or pre-compression (hence with-
out the compression-induced rejuventation), Eq.(4) can
be modified as Fdyn(r, σ) = Fdyn(r, σ = 0) − σd2r. Fig-
ure 4b shows how the dynamic free energy evolves by in-
creasing applied stress. In this case, the standard strain-
softening behavior of atomic and molecular glasses is re-
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FIG. 4. (Color online) The dynamic free energy as a function
of reduced particle displacement for a hard sphere fluid of
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to suppress the secondary and primary localization in Fdyn(r),
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trieved [13, 14]. For σ ≥ σy ≈ 4kBT/d
3, at the yielding

point, the primary localization minimum vanishes and
τα = τs is constant and independent of the tension. This
coincides with the onset of plastic flow or steady state
with increasing strain in the post-yield regime.

Tensile deformation of rejuvenated metallic glasses in
Ref.[16] reveals the same strain hardening as observed in
compressive testing. This behavior can be explained via
the energy profile Fdyn(r, σ) = Fdyn(r, σ = 0) + P ∗d2r −
σd2r, here P ∗ is a pre-compression pressure. Since the
pre-compression of the metallic glasses in Ref. [16], be-
fore machining, is greater than spatial elongation during
tension, it seems that P ∗ ≥ σ and the rejuvenated state
is maintained during the subsequent tensile test. Over-
all, we have shown that the strain-hardening behavior
originates from the pressure-induced rejuvenation that
modifies the underlying dynamic free energy landscape.

In conclusion, we have presented a dynamical theory
for pressured-induced rejuvenation and strain-hardening
in metallic glasses. At ambient pressure, the irreversible
α activated event is caused by local microstructural re-
arrangements. The presence of compression raises the
local barrier height and slows down the glassy dynamics
of metallic glasses. When the applied pressure is large
enough, the emergence of a higher-energy metastable
state is predicted, thus leading to rejuvenation. The
theory can also predict key features of stress-strain re-
lations in the mechanical deformation of metallic glasses
at high pressure. In the absence of compression, the
predicted free-energy landscape is consistent with strain-
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softening and yielding, as typically observed with metal-
lic glasses [9]. Strikingly, in the presence of compression-
induced rejuvenation, the theory predicts a free energy
landscape for deformation which is consistent with strain-
hardening, whereby a transitory softening is followed by
hardening upon deforming the material further. This
prediction provides a theoretical explanation to the re-
cently discovered strain-hardening in metallic glasses due
to compression-induced rejuvenation in Ref. [16]. All in
all, the presented framework may lead to a new mech-
anistic understanding of amorphous materials at high
pressure by establishing a powerful connection between
the underlying energy landscape and the resulting macro-
scopic properties.
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