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Compact U
κ(1) Chern-Simons theory

as local bosonic lattice model with exact discrete 1-symmetries

Michael DeMarco1 and Xiao-Gang Wen1

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA∗

We propose a bosonic U
κ(1) rotor model on a three dimensional spacetime lattice. With the

inclusion of a Maxwell term, we show that the low-energy properties of our model can be obtained
reliably via a semi-classical approach. Those properties are the same as that of the Chern-Simons
field theory, S =

∫
d3

x
KIJ
4π

AIdAJ . We require the lattice variables on each link to be compact
(i.e. take values on circles), which enforces the quantization of the K-matrix as a symmetric integer
matrix with even diagonals. Our lattice model also has exact 1-symmetries, which gives raise to the
1-form symmetry in the Chern-Simons field theory. In particular, some of those 1-symmetries are
anomalous (i.e. non-on-site) in the expected way. The anomaly can be probed via the breaking of
those lattice 1-symmetries by the boundaries.

Introduction: Chern-Simons (CS) field theory is a very
important field theory with myriad applications from
condensed matter to quantum gravity. Though well stud-
ied in the continuum as field theory, defining CS field the-
ory on the lattice presents an opportunity to better tame
the field integration measure as well as allowing us to con-
sider non-smooth gauge fields with singularities. Further-
more, it is well known that it is quite non-trivial to define
the action of CS field theory if the fiber bundle described
by the gauge field is non-trivial on the spacetime,[1]
which leads to an obstruction to have a globally defined
gauge fields (the connection 1-forms). One way to ad-
dress this problem is to define CS theory on a space-
time lattice where the lattice gauge fields for “distinct
fiber bundles” are continuously connected. Then the lat-
tice gauge field with monopoles/flux-lines is continuously
connected to gauge field without monopoles/flux-lines.
So once we have a spacetime lattice description of CS
theory, the theory is automatically well defined for gauge
fields of topologically non-trivial fiber bundle, as well as
for gauge fields of monopoles and flux-lines. Certainly,
the lattice description of CS field theory also remove the
infinity problem of the field theory.

People have tried to put CS theory on lattice for a
long time. In one approach, people try to construct local
lattice models whose many-body Hilbert space admits
tensor product decomposition V =

⊗

i Vi, where Vi is
the local Hilbert space on site-i. The key is to find a
proper local Hamiltonian H acting on V such that the
low energy properties of H are fully described by a CS
field theory.[2–10] However, those lattice models are usu-
ally not soluble. Given a lattice model, we usually do
not know if it is in a quantum-Hall topologically ordered
phase. We usually do not know if the lattice model pro-
duce a CS theory at low energy or not, and we do not
know which CS theory it produces. So here we are look-
ing for a better result, where we can derive, under a con-
trolled approximation, the low energy effective CS field
theory from the lattice model.

In another approach, people try to construct lat-

tice gauge models that produce CS field theory at low
energies.[11–14] The many-body Hilbert space Vgauge for
the lattice gauge theory is formed by gauge invariant
states, which is non-local, i.e. Vgauge does not admit the
tensor product decomposition Vgauge 6=

⊗

i Vi. Ref. 11
and 12 proposed lattice gauge models with compact U(1)
gauge group, however the gauge field in each link is not
compact. The compactness is inforce at global level. In
contrast, the link variables in this paper are already in
compact U(1) groups. Ref. 13 and 14 proposed lattice
gauge models with non-compact U(1) gauge group (i.e. R

gauge group), which is quite different form the compact
U(1) gauge theory studied in this paper.

In this paper, we try to realize the most general bosonic
compact U(1) CS theory via local bosonic lattice model
with compact degrees of freedom on each link. In contrast
to previous emergent CS field theory from local lattice
model, we want our local lattice model to be “soluble”,
in the sense that we can determine its low energy effec-
tive theory reliably. We find such local bosonic model
on spacetime lattice, which is given in eqn. (5). Under
a controlled semi-classical approximation for small g in
eqn. (5), we show that our spacetime lattice model can
produce any even-K-matrix CS field theory[7] of compact
U(1)’s in continuum limit (see eqn. (10)).

We will rely on the cochain theory familiar from al-
gebraic topology [15] to construct our lattice model (see
Supplemental Material). A striking character of our lat-
tice model (5) is that the Lagrangian density is not a
continuous function of the field values. Also the lat-
tice model is defined for R/Z-valued fields and is not
quadratic (i.e. corresponds to an interacting theory).
But the weak fluctuations in small g limit are described
by a quadratic action. This is why we can reliably obtain
the low energy effective CS field theory in small g limit.

However, being able to reliably obtain the low energy
effective theory is not the most important character of
our constructed model (5). What really special of our
lattice model is that it has many exact 1-symmetries. It
was known that 2+1D Zn gauge theory described by mu-
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tual CS theory has many 1-symmetries on lattice.[16–22]
A generic U(1) CS theory also has many 1-form sym-
metries in continuum.[23, 24] Our lattice realization of
a generic U(1) CS theory is a very special one, that
those 1-form symmetries in continuum become the ex-
act 1-symmetries[22] in our lattice model. In contrast,
the realizations of CS theory by local lattice models in
Ref. 2–10 do not have those 1-symmetries. Therefore, we
can state our new result more precisely as the following:

We construct a local bosonic rotor model on spacetime
lattice that, at low energies, realizes most general com-
pact U(1) CS field theory characterized by K-matrix,
where the 1-form symmetries in the CS field theory are
realized as the exact Zk1

× Zk2
× · · · 1-symmetries in

our lattice model.[25] Here ki are diagonal entries of
the Smith normal form of the K-matrix. Some of the
1-symmetries are anomalous.[22, 26–28] Different lat-
tice realizations of the same U(1) CS field theory may
lead to different anomalous 1-symmetries.

We like to stress that our model is a local bosonic lat-
tice model, rather than a lattice gauge theory, since it
is defined via a path integral that is a product of inte-
grals of local variables. We build our model to be peri-
odic in the lattice variables, and take the field integral
over one period of each lattice variable. This periodic re-
dundancy provides level quantization, without relying on
the underlying topology of the manifold as “large gauge
transformations” do. Since our lattice model is not a
lattice gauge theory, its action does not has to be gauge
invariant. Indeed, the action eqn. (5), on spacetime with
boundary, is not invariant under the usual gauge redun-
dancy A → A+ dθ, with θ a 0-cochain.

We also like to remark that our lattice model eqn. (5) is
actually a tensor network path integral in spacetime.[29]
Thus, we have found a tensor network path integral that
realize a topologically ordered phase described by CS
field theory. We note that the tensor in the tensor net-
work is indexed by a R/Z-value. In other words, the
dimension of the tensor is infinity.

Throughout, we will use the convention that the peri-
ods of lattice variables are quantized to unity. Thus the
familiar “level one” CS action is π

∫

ada, rather than the
more common 1

4π

∫

AdA. This will simplify our calcu-
lations; one may always return to the usual formulation
by replacing a → A/2π. In order to avoid introducing
a spin structure, we confine our model to only bosonic
theories. Thus, with the lattice variables of period 1 in
their values, bosonic K-matrix theory in the continuum
takes the form:

S = π
∑

IJ

KIJ

∫

aI daJ (1)

where K is a symmetric integer matrix with even diago-
nals.

Chern Simons Theory on Lattice: To construct
our local bosonic spacetime lattice model, we will use
a cochain formalism on a spacetime complex. A space-
time complex (lattice) is a triangulation of the three-
dimensional spacetime with a branching structure,[30–
32] which is denoted as M3. The spacetime complex
is formed by simplices – the vertices, links, triangles, etc.
We will use i, j, · · · to label vertices of the spacetime com-
plex. The links of the complex (the 1-simplices) will be
labeled by 〈ij〉, · · · . Similarly, the triangles of the com-
plex (the 2-simplices) will be labeled by 〈ijk〉, · · · . The
degrees of freedom of lattice model live on the links of the

spacetime complex: (a
R/Z
I )ij on link 〈ij〉, I = 1, 2, · · · , κ.

(a
R/Z
I )ij is R/Z-valued, i.e. (a

R/Z
I )ij and (ã

R/Z
I )ij are

equivalent if (ã
R/Z
I )ij − (a

R/Z
I )ij = 0 mod 1. Such R/Z-

valued fields on the links are simply the so called 1-

cohains a
R/Z
I on the spacetime complex M3. Here we

have κ different 1-cochains a
R/Z
I labeled by I. The lat-

tice action of our bosonic model will be constructed from
those 1-cochains using cup product and cochain deriva-
tive. For a more detailed introduction to the cochain for-
malism for defining local bosonic spacetime lattice mod-
els, see Ref. 33 and Supplemental Material.

We want to construct our lattice bosonic model in such
a way that it is very similar to a CS theory. Hopefully,
the resulting lattice bosonic model realizes a topologically
ordered state described the CS topological quantum field
theory. Due to the similarity between 1-cochain and dif-
ferential 1-form, between the cup product for cochains
and wedge product for differential forms, as well as the
derivative d acting on them, näıvely, we would write the
partition function for a bosonic lattice as:

Z =

∫

[
∏

da
R/Z
I ]e i 2π

∑
I≤J kIJ

∫
M3 a

R/Z

I da
R/Z

J , (2)

which formally looks like the continuum CS field theory
written in terms of differential 1-forms. Here kIJ are
integers, and

∫

M3 means the sum over all 3-simplices in

M3. Also
∫

[
∏

da
R/Z
I ] ≡

∏

〈ij〉

∏

I

∫
1

2

− 1

2

d(a
R/Z
I )ij gives

rise to the path integral, where
∏

〈ij〉 is a product over

all the links. Here we have lifted the R/Z-valued (a
R/Z
I )ij

to a R-valued (a
R/Z
I )ij ∈ (− 1

2 ,
1
2 ] before we do the path

integral.

Since a
R/Z
I is R/Z-valued, we require the action am-

plitude in eqn. (2) to be invariant under the following
“gauge” transformation

a
R/Z
I → a

R/Z
I + nI , (3)

where nI are arbitrary Z-valued 1-cochains. But, the

action amplitude e i 2π
∑

I≤J kIJ

∫
M3 a

R/Z

I da
R/Z

J is not gauge
invariant and we need to fix it.

One way to fix this problem is modify the partition
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function as
∫

[
∏

da
R/Z
I ]e i 2π

∑
I≤J kIJ

∫
M3 (a

R/Z

I −⌊a
R/Z

I ⌉)d(a
R/Z

J −⌊a
R/Z

I ⌉),

=

∫

[
∏

da
R/Z
I ]e i 2π

∑
I≤J kIJ

∫
M3 a

R/Z

I da
R/Z

J (4)

e− i 2π
∑

I≤J kIJ

∫
M3 a

R/Z

I d⌊a
R/Z

I ⌉+⌊a
R/Z

I ⌉da
R/Z

I = Z,

where ⌊x⌉ denotes the nearest integer to x. The

combination a
R/Z
I − ⌊a

R/Z
I ⌉ is invariant under the

gauge transformation eqn. (3). However, in the
weak-field-strength limit (i.e. in the continuum limit):

|da
R/Z
J | ≪ 1, a

R/Z
J can be large and the term

e− i 2π
∑

I≤J kIJ

∫
M3 a

R/Z

I d⌊a
R/Z

I ⌉+⌊a
R/Z

I ⌉da
R/Z

I is not equal to
1. Thus, eqn. (4) does not reproduce the Chern-Simons
path integral in the weak-field-strength limit.

This motivates us to consider the following modified
partition function (which is the main result of this paper):

Z =

∫

[
∏

da
R/Z
I ] e i 2π

∑
I≤J kIJ

∫
M3 d

(

a
R/Z

I (a
R/Z

J −⌊a
R/Z

J ⌉)
)

e i 2π
∑

I≤J kIJ

∫
M3 a

R/Z

I (da
R/Z

J −⌊da
R/Z

J ⌉)−⌊da
R/Z

I ⌉a
R/Z

J (5)

e
− i 2π

∑
I≤J kIJ

∫
M3 a

R/Z

J ⌣
1
d⌊da

R/Z

I ⌉
e−

∫
M3

|da
R/Z

I
−⌊da

R/Z

I
⌉|2

g ,

where ⌊da
R/Z
I ⌉ is the 2-cochain whose value on the tri-

angle 〈ijk〉 is given by ⌊(da
R/Z
I )ijk⌉. The 1-cup product

⌣
1

is defined in Supplemental Material.[34]

To see that the path integral (5) is invariant under
gauge transformation (3) for M3 with boundary, we first

note that e
− i 2π

∑
I≤J kIJ

∫
M3 a

R/Z

J ⌣
1
d⌊da

R/Z

I ⌉
and da

R/Z
I −

⌊da
R/Z
I ⌉ are invariant under eqn. (3). Under eqn. (3), the

term e i 2π
∑

I≤J kIJ

∫
M3 a

R/Z

I (da
R/Z

J −⌊da
R/Z

J ⌉)−⌊da
R/Z

I ⌉a
R/Z

J

changes by a factor

e i 2π
∑

I≤J kIJ

∫
M3 nI da

R/Z

J −dnIa
R/Z

J

= e− i 2π
∑

I≤J kIJ

∫
∂M3 nIa

R/Z

J (6)

Such a factor is cancelled by the change of the term

e i 2π
∑

I≤J kIJ

∫
M3 d

(

a
R/Z

I (a
R/Z

J −⌊a
R/Z

J ⌉)
)

= e i 2π
∑

I≤J kIJ

∫
∂M3

(

a
R/Z

I (a
R/Z

J −⌊a
R/Z

J ⌉)
)

. (7)

So the action amplitude of the above path integral is
indeed invariant under (3) even when M3 has boundary.

Now, we like to argue that the bosonic lattice model
(5) realizes a topological order described by Uκ(1) CS
topological quantum field theory, in the small g limit. In

such a limit, da
R/Z
I is close to an Z-valued cocycle. On a

local patch of spacetime, we use the gauge transformation

eqn. (3) to make da
R/Z
I to be near zero on the patch.

In this case, the action amplitude in the path integral
eqn. (5) becomes quadratic (i.e. non-interacting)

e i 2π
∑

I≤J kIJ

∫
M3 a

R/Z

I da
R/Z

J . (8)

Since da
R/Z
I is close to zero, we can use a 1-form AI to

describe the 1-cochain a
R/Z
I :

∫ j

i

AI = 2π(a
R/Z
I )ij (9)

Then the above action amplitude can be rewritten as

e i 2π
∑

I≤J kIJ

∫
M3 a

R/Z

I da
R/Z

J ≈ e i
∑

IJ
KIJ
4π

∫
M3 AI dAJ

KIJ = KJI ≡

{

2kIJ , if I = J,

kIJ , if I < J,
(10)

in the small da
R/Z
I limit when AI is nearly constant on

the lattice scale. Hence the low energy dynamics of our
lattice bosonic model are described by a Uκ(1) CS field
theory (10) at low energies.

We like to remark that, when da
R/Z
I is near inte-

gers, ⌊da
R/Z
I ⌉ is a Z-valued 2-cocycle. This is because

if da
R/Z
I = ǫ+ ⌊da

R/Z
I ⌉ where ǫ is small, then

d⌊da
R/Z
I ⌉ = −dǫ+ dda

R/Z
I = −dǫ. (11)

Since d⌊da
R/Z
I ⌉ is quantized as integer, we have

d⌊da
R/Z
I ⌉ = 0. (12)

Such a Z-valued 2-cocycle ⌊da
R/Z
I ⌉ characterize the

Uκ(1) principle bundle on the spacetime, since
∫

M2

(da
R/Z
I − ⌊da

R/Z
I ⌉) = −

∫

M2

⌊da
R/Z
I ⌉ (13)

for any closed M2. Note that
∫

M2(da
R/Z
I − ⌊da

R/Z
I ⌉) is

the magnetic flux through M2 which is always quantized

to be an integer. In other words, −
∫

M2⌊da
R/Z
I ⌉ is the

Chern number.
The above discussion of dynamics only apply when

da
R/Z
I is near integers, i.e. when g is small. When g

is large, the large quantum fluctuations of a
R/Z
I in the

lattice bosonic model can go between configurations rep-
resenting different Uκ(1) principle bundles. The large g
ground state of our model (5) may have a different topo-
logical order from the one described by the K-matrix CS
theory.
What is really special about our constructed action is

that it has many 1-symmetries. First, consider the model
on a closed manifold, so that we may ignore the surface
term. Then under the shift

a
R/Z
I → a

R/Z
I + β

R/Z
I ,

∑

I

β
R/Z
I KIJ ∈ Z (14)
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where β
R/Z
I are R/Z-valued 1-cocycles, the exponenti-

ated action is invariant so long as
∑

I β
R/Z
I KIJ are Z-

valued 1-cochain. Such the transformations (14) are the
1-symmetries of lattice model (5).
To see the above result, we first note that, under the

transformation (14), the action amplitude in eqn. (5) on
a closed manifold changes by a factor

e i 2π
∑

I≤J kIJ

∫
M3 β

R/Z

I (da
R/Z

J −⌊da
R/Z

J ⌉)−⌊da
R/Z

I ⌉β
R/Z

J ×

e
− i 2π

∑
I≤J kIJ

∫
M3 β

R/Z

J ⌣
1
d⌊da

R/Z

I ⌉
(15)

Because we may integrate by parts on a closed manifold

and dβ
R/Z
I = 0, the change is of the form (see eqn. (10)

in Supplemental Material):

e
− i 2π

∑
I≤J kIJ

∫
M3 β

R/Z

I ⌊da
R/Z

J ⌉+⌊da
R/Z

I ⌉β
R/Z

J +β
R/Z

J ⌣
1
d⌊da

R/Z

I ⌉

= e− i 2π
∑

IJ KIJ

∫
M3 β

R/Z

I ⌊da
R/Z

J ⌉ (16)

which remains unity for all ⌊da
R/Z
J ⌉ iff

∑

I β
R/Z
I KIJ are

Z-valued cochains. We see that, on a fixed link ij, the al-

lowed values (β
R/Z
I )ij form the rational lattice K−1. The

1-symmetries are given by the rational lattice K−1 mod
out the integer lattice, which is same as integer lattice
mod out lattice K. In other words, the 1-symmetries are
Zk1

×Zk2
× · · · 1-symmetries with ki being the diagonal

entries of the Smith normal form of K.

For example, for U(1) Chern Simons theory with κ = 1
and K11 = 2k11 = k, we have a Zk 1-symmetry. For
mutual CS theory (that describes a Zn gauge theory),

with (KIJ) =

(

0 n
n 0

)

we have a Zn × Zn 1-symmetry.

Some of the above 1-symmetries are anomalous. To see
which 1-symmetries are anomalous, we need check which
of the transformations in eqn. (14) changes the action
amplitude when the spacetime has a boundary. Under
the transformation (14), the action amplitude in eqn. (5)
only changes by a factor defined on the boundary ∂M3:

e i 2π
∑

I≤J kIJ

∫
∂M3 a

R/Z

I (β
R/Z

J −⌊β
R/Z

J ⌉)+β
R/Z

I (a
R/Z

J −⌊a
R/Z

J ⌉)+β
R/Z

I (β
R/Z

J −⌊β
R/Z

J ⌉) e
i 2π

∑
I≤J kIJ

∫
∂M3 β

R/Z

J ⌣
1
⌊da

R/Z

I ⌉−β
R/Z

I a
R/Z

J

= e
i 2π

∑
I≤J kIJ

∫
∂M3 a

R/Z

I (β
R/Z

J −⌊β
R/Z

J ⌉)+β
R/Z

I (β
R/Z

J −⌊β
R/Z

J ⌉)+β
R/Z

J ⌣
1
⌊da

R/Z

I ⌉
e− i 2π

∑
I≤J kIJ

∫
∂M3 β

R/Z

I ⌊a
R/Z

J ⌉ (17)

We see that the transformations leave the action
amplitude invariant if

∑

I≤J kIJβ
R/Z
J = 0 and

∑

I≤J kIJβ
R/Z
I = integer. We note that β

R/Z
I satisfy the

condition
∑

IJ KIJβ
R/Z
I = integer. Thus the first equa-

tion implies the second one. We find that the 1-symmetry
transformations in eqn. (14) are anomaly-free if

∑

I≤J

kIJβ
R/Z
J = 0 (18)

For the level k = K11 CS theory with a single U(1)
gauge field, this is simply the fact that the only Zk 1-
symmetry must break at the boundary and is anomalous.
For the case of mutual CS theory (ie the Zn gauge the-
ory) with Zn × Zn 1-symmetry, this implies that one of
the Zn 1-symmetry must break at the boundary and is
anomalous. The other Zn 1-symmetry is anomaly-free.
Note that the choice of lattice model automatically se-
lects which of the Zn 1-symmetry is anomalous; one can
select the opposite by replacing all

∑

I≤J with
∑

I≥J .

Framing anomaly: It is well known that the CS the-
ory has a framing anomaly.[35, 36] In other words, after

integrating out the physical degrees of freedom a
R/Z
I in

eqn. (5) in small g limit, we should get a partition func-

tion given by the 2+1D gravitational CS term:

Z(M3, gµν) ∝ e i
2πc
24

∫
M3 ω3 (19)

where the 3-form ω3 satisfies dω3 = p1 and p1 is the first
Pontryagin class for the tangent bundle. Here c is the
chiral central charge – the difference between the num-
bers of positive and negative eigenvalues of the K-matrix.
There is a framing anomaly when c 6= 0 mod 24.

One may wonder, if the framing anomaly prevents us
to have a local lattice realization of chiral CS theory with
a non-zero central charge c 6= 0. Our construction shows
that chiral U(1) CS theory can always be realized on any
2+1D spacetime lattice. We think that this is possible
because our spacetime lattice has an extra structure –
the branching structure.[30–32] It is possible that for the
same spacetime lattice, if we choose different branching
structures, the resulting partition function Z may be dif-
ferent. This branching structure dependence of partition
function may represent the framing anomaly.

This research is partially supported by NSF Grant No.
DMS-1664412. This work was also partially supported
by the Simons Collaboration on Ultra-Quantum Matter,
which is a grant from the Simons Foundation (651440).
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