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Modern cosmological analyses of galaxy–galaxy lensing face a theoretical systematic effect arising
from the non-locality of the observed galaxy–galaxy lensing signal. Because the predicted tangential
shear signal at a given separation depends on the physical modeling on all scales internal to that
separation, systematic uncertainties in the modeling of non-linear small scales are propagated out-
wards to larger scales. Even in the absence of other limiting factors, this systematic effect alone can
necessitate conservative small-scale cuts, resulting in significant losses of information in the tangen-
tial shear data vector. We construct a simple linear transformation of the standard galaxy–galaxy
observable that removes this non-locality, which ensures that the cosmological signal contained
within the transformed observable is exclusively drawn from well-understood physical scales. This
new observable, through its robustness against non-locality, also enables a significant extension in
the range of usable scales in galaxy–galaxy lensing compared to the standard approach in current
cosmological analyses.

I. INTRODUCTION

Modern wide-field galaxy imaging surveys [e.g. 1–5]
have achieved remarkable success in constraining cosmo-
logical parameters from measurements of the late-time
matter distribution of our Universe. A promising av-
enue of recent interest reduces the measured positions
and shapes of galaxies to two-point statistics in configu-
ration space and compares those statistics against theo-
retical predictions for inference. There are three differ-
ent types of two-point statistics that can be included in
such analyses, namely position–position, position–shape,
and shape–shape, respectively referred to as galaxy clus-
tering, galaxy–galaxy lensing, and cosmic shear. When
making use of these statistics, analysts must determine
the range of scales that are modeled accurately enough
for cosmological inferences, often in the form of scale cuts.
On the small-scale side, the assumed model for the galaxy
bias, which relates the spatial distribution of galaxies to
that of matter [see e.g. 6, for a review], limits the mini-
mum possible scale that can be used in the analysis. For
instance, a perturbative bias model will fail below some
minimum physical scale, so comparisons between predic-
tions and observations can only be made outside of that
scale, even in the absence of other observational or theo-
retical systematic effects.

For the case of galaxy–galaxy lensing, the minimum us-
able scale for analysis can be much larger than the limit
discussed above. This is due to the non-local nature of
the galaxy–galaxy lensing signal, where the predicted sig-
nal at a given separation depends on the modeling of all
scales within that separation, including the non-linear

small scales. In galaxy–galaxy lensing, the matter asso-
ciated with a foreground lens galaxy tangentially distorts
the images of background source galaxies. The raw ob-
servable is the azimuthally averaged ellipticity of back-
ground galaxies tangential to the lens-source separation
vector, known as the tangential shear or γt. For a lens
at redshift zl and a source at redshift zs, the tangen-
tial shear signal at an observed angular separation θ, or
equivalently at a projected comoving spatial separation
R = θχl with χl = χ(zl) being the comoving distance to
zl, is predicted to be

γt(θ|zl, zs) =
∆Σ(R = θχl)

Σcrit(zl, zs)
, (1)

where Σcrit(zl, zs) is a geometric factor given by

Σcrit(zl, zs) =
c2

4πG

(1 + z)χs

χl(χs − χl)
(2)

with χs = χ(zs), and ∆Σ being the excess surface density
defined as

∆Σ(R) = Σ(< R)− Σ(R). (3)

Here, Σ is the projected surface density, i.e.

Σ(R) = ρm

∫ ∞
−∞

dRzξgm

(√
R2 +R2

z

)
, (4)

of matter around the lens galaxy, with ξgm being the 3D
galaxy-matter correlation function and ρm the comoving
mean matter density of the Universe. Note that we ex-
clude the constant background density of matter in our
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notation, as it does not induce lensing due to symmetry.
Σ(< R) is the mean surface density internal to R, i.e.

Σ(< R) =
1

πR2

∫ R

0

dR′ 2πR′ Σ(R′). (5)

Note that while Σ and ∆Σ implicitly depend on zl, we
choose to suppress this in our notation for simplicity.
Equations 3-5 demonstrate that the lensing signal at a ra-
dius R, i.e. ∆Σ(R), depends on the surface mass density
at all radii interior to R, i.e. Σ(R′) for 0 ≤ R′ ≤ R. Con-
sequently, our inability to adequately model the small-
scale density field necessarily impacts the lensing signal
at all scales. This non-locality can then force the small-
scale cuts applied in real data to be significantly larger
than the scale at which theoretical uncertainties in the
density field become problematic. This was, for instance,
what [7] found from their studies of theoretical system-
atics for the DES Y1 cosmology analysis.

II. A LOCAL GALAXY–GALAXY LENSING
OBSERVABLE

In order to mitigate the non-locality in galaxy–galaxy
lensing, one must remove the contribution to the galaxy–
galaxy lensing observable from ξgm(r) on small scales.
Several such methods have been discussed, e.g. via sub-
tracting out the estimated contribution from the mass
enclosed within some cutoff scale [8, 9] or analytically
marginalizing over the said contribution [10]. In this
work, we propose a novel approach that is motivated by
the local quantity underlying the non-local signal, i.e. the
projected surface density Σ(R).

The basic idea for our work is that since the surface
density contrast ∆Σ is a linear transformation of the lo-
cal surface density field Σ, inverting this relation would
enable us to define an estimator of the surface density
field, which would in turn be local. To do so, we begin
with the relation between the two:

∆Σ(R) =
1

πR2

∫ R

0

dR′ 2πR′ Σ(R′)− Σ(R). (6)

Differentiating each side with respect to R yields

2πR∆Σ(R) + πR2∆Σ′(R) = −πR2Σ′(R), (7)

and integrating again from R to Rmax yields

Σ(R) = Σ(Rmax)

+

∫ Rmax

R

dR′
[

2∆Σ(R′)

R′
+ ∆Σ′(R′)

]
. (8)

This is a well-known result [11, 12] which demonstrates
that one can reconstruct Σ(R) from ∆Σ(R) up to an
unknown constant Σ(Rmax), typically referred to as the
mass sheet degeneracy.

However, we need not concern ourselves with recon-
structing the exact Σ(R) profile. Our goal here is simply

to construct a local galaxy–galaxy lensing observable. To
that end, we define a new quantity Y via

Y (R) ≡ Σ(R)− Σ(Rmax)

=

∫ Rmax

R

d lnR′
[
2∆Σ(R′) +

d∆Σ(R′)

d lnR′

]
. (9)

From the first line, it is clear that Y (R) is free of con-
tributions from ξgm on small (r < R) scales. From the
second line we can see that Y (R) can readily be calcu-
lated from ∆Σ(R′) for R ≤ R′ ≤ Rmax. Thus, Y (R) is
our desired observable.

In a real-life cosmology analysis, observables and pre-
dictions come in the form of discrete vectors rather than
smooth functions. We thus proceed to discretize Equa-
tion 9 as

Y = 2S∆Σ + SD∆Σ

= T∆Σ, (10)

Here, D is the matrix of finite difference coefficients for
discretized differentiation with respect to lnR. To con-
struct D, we use finite difference schemes that vary ac-
cording to the location of interest. For a data vector
∆Σ = {∆Σi} with 1 ≤ i ≤ N , we use forward/backward
schemes of width 4 respectively for i = 1 and N , and cen-
tral schemes of width min(i,N − i, 4) for the rest. S rep-
resents the trapezoidal summation matrix for discretized
integration in lnR. In light of the previous discussions, it
is clear that T = 2S + SD has the property of removing
small-scale contributions from ∆Σ. Just as importantly,
since Y is a linear transformation of the original data
vector, is is straightforward to compute the covariance
matrix of the observable Y,

CY = T C∆ΣT T, (11)

where C∆Σ is the covariance matrix for ∆Σ. We note
that T has a null mode proportional to 1/R2, implying
that T projects out any non-local contribution to ∆Σ
from within the minimum projected radius considered
by a given analysis. This can also be seen from adding a
1/R2 term to the ∆Σ sector in Eq. 9.

These formulae for constructing Y and CY can be used
to transform any cosmology analysis utilizing ∆Σ as its
galaxy–galaxy lensing observable into an analysis that
utilizes Y as its observable. In particular, given a predic-
tion vector ∆Σpred and observation vector ∆Σobs with
covariance matrix C∆Σ, we can use T to obtain Ypred,
Yobs, and CY. These transformed quantities can then be
used for subsequent likelihood analyses in lieu of the orig-
inal quantities of interest. Moreover, since γt is directly
proportional to ∆Σ and T is a linear transformation, a
similar procedure can be applied directly to γt, i.e.

Yγ = T γt, CYγ = T CγtT T. (12)

Now, it is clear that if one used the entire observable
data vector γt or ∆Σ, a linear transformation will not re-
sult in improved cosmological constraints. However, the
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FIG. 1. Comparison of fiducial/contaminated data vectors for quantities κ (left), γt (middle), and Yγ (right). Here, κ is
the weak lensing convergence, given by κ(θ|zl, zs) ≡ Σ(R = θχl)/Σcrit(zl, zs). On each panel, we show the fiducial data vector
constructed with linear bias and ξmm from halofit (blue) along with a contaminated data vector with an additional contribution
from a disk-like mass profile on small scales (orange). Note that the sharp radial boundary of the disk is smoothed over a range
of angular scales due to the breadth of the lens redshift bins for the lenses. The dotted and solid lines respectively represent
2 and 12 h−1Mpc, i.e. Rdisk and the DES Y1 Rmin, at the representative redshift of the fiducial lens sample. Starting from a
localized underlying contamination in κ (left), we observe the non-local propagation of the contamination in γt (middle), which
is then successfully localized back by the linear transformation T of Equation 10 (right).

key point here is that all cosmological analyses impose a
small scale cut, i.e. we only use a fraction of the observ-
able data vector. By applying the linear transformation
derived above, we are able to apply a more aggressive
small scale cut, and thereby preserve more of the informa-
tion relative to a cut in γt or ∆Σ. In this context, it is also
important to emphasize that the transformation matrix
T must be “extended” for combined data vectors con-
sisting of blocks other than galaxy–galaxy lensing. More
specifically, we want T to transform the galaxy–galaxy
lensing block while leaving the rest intact in such cases;
this can be achieved by extending T block-diagonally
with identity matrices that correspond to the data vec-
tor blocks outside of galaxy–galaxy lensing. Defining the
transformation matrix across the full combined data vec-
tor is important since, in the presence of non-zero covari-
ance between the galaxy–galaxy lensing block and other
data blocks in the data vector, Equations 11 and 12 will
modify the off-diagonal components of the covariance ma-
trix associated with the galaxy–galaxy lensing block.

III. TESTING THE LOCALITY OF Y

We now test to what extent the new observable Y is
local, and whether the improved small scale cuts result in
cosmological gains. The methodology for the simulated
analyses, closely following [7], is as follows.

1. A simulated data vector is generated from theory
with fiducial parameter values. The assumed theo-
retical model uses the halofit [13] nonlinear mat-
ter power spectrum and linear galaxy bias.

2. The simulated data vector is “contaminated” with
an unmodeled small-scale contribution from a disk-
like mass distribution with a constant surface den-
sity. The mass of the disk is M and its radius is
Rdisk. In terms of ∆Σ, the contamination is given
by

∆Σdisk(R) =
M

πR2
Θ(R−Rdisk). (13)

We propagate this contamination to the γt observ-
able, taking into account the lens and source red-
shift distributions used in [7]. We set Rdisk =
2Mpc/h, and adopt masses 4 times larger than
those used in [7]. While a disk contamination is
not realistic, its sharp boundary best enables us to
test whether the observable Y displays non-locality.

3. The simulated contaminated data vector is ana-
lyzed without any modeling for the contamination,
i.e. assuming the original theoretical model, in or-
der to determine how cosmological inferences are
impacted by this contamination.

For all of the considered setups described below, we as-
sume a “2×2pt” cosmological analysis where the observ-
ables of interest are γt(θ) (galaxy–galaxy lensing) and
w(θ) (galaxy clustering). This combination consists of
the minimal set of observables including galaxy–galaxy
lensing that breaks the parameter degeneracy between
galaxy bias and power spectrum amplitude. Note in par-
ticular that this analysis does not incorporate informa-
tion from cosmic shear, as including cosmic shear will
reduce the impact of contaminants in the galaxy–galaxy
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FIG. 2. The 68% confidence regions of the posterior in the Ωm–S8 plane, for analyses employing the contaminated (left) and
fiducial (right) data vectors, are shown as shaded regions. For each panel, the blue contour corresponds to the baseline analysis
described in [1], using γt with a 12 h−1Mpc small scale cut. The green and red contours correspond to analyses using γt
with 4 h−1Mpc cuts and using Y with 4 h−1Mpc cuts, respectively. Dotted lines denote the fiducial parameter values used to
generate the simulated data vectors. Note that the red contours, i.e. the posteriors derived from the Y observable proposed
here, is nearly identical in both panels.

lensing data vector due to the increased “clean” cosmo-
logical information drawn from the cosmic shear signal.

We make use of the public DES Y1 analysis pipeline
[14] to generate simulated data vectors as well as the-
ory predictions for these observables, and use the pub-
lic DES Y1 covariances for likelihood calculation. The
pipeline is also used to generate Markov Chain Monte
Carlo (MCMC) samples for the likelihood analyses, from
which we derive parameter constraints over the full DES
Y1 parameter space. For more details, we refer the reader
to [7]. Here, we will be interested in the bias of the result-
ing cosmological constraints as the small scale cut used in
the analysis of the galaxy–galaxy lensing signal becomes
more aggressive.

In Figure 1, we first show the localizing performance
of the observable Yγ by plotting the fiducial and con-
taminated observables for a single lens-source bin. The
left panel shows the local quantity κ, i.e. convergence,
underlying the actual observable γt. Note that the disk
contamination is smoothed beyondRdisk due to the width
of the lens redshift distribution. The middle panel gives
a clear illustration of the non-local behavior of γt, where
a mass distribution strictly limited to within Rdisk con-
taminates the data vector well past the radius Rdisk.
The right panel demonstrates the localizing power of Yγ ,
where we observe that Yγ can 1) correctly “move back”
the contamination to small scales and 2) recover the fidu-
cial input to great accuracy on large scales.

Figure 2 shows the 2D constraints in the Ωm – S8 plane
from the simulated analyses, where S8 = σ8(Ωm/0.3)0.5.
The left panel clearly shows both the dangers of the non-
locality in galaxy–galaxy lensing, as well as the power of
using the localized observable Yγ . Due to the very large

contamination employed in this test, even the baseline
analysis of the galaxy–galaxy lensing signal γt with a
conservative small scale cut of 12 h−1Mpc shows highly
biased results. The incurred bias is, unsurprisingly, much
stronger for the γt analysis with 4 h−1Mpc cuts. By
contrast, we see that the use of the observable Yγ results
in unbiased cosmological posteriors down to the same
small scale cut of 4 h−1Mpc. We stress that our method
is agnostic to the type of contamination introduced. It
is solely the localizing nature of Yγ that is driving the
debiasing exhibited in Fig. 2.

The right panel shows the bias-variance tradeoff in-
curred by our approach. In particular, we now analyze
an uncontaminated data vector for γt with 4 h−1Mpc
and 12 h−1Mpc cuts, and compare it to a Yγ data vector
with a 4 h−1Mpc scale cut. Note that the cosmological
posteriors for the γt data vector with a 12 h−1Mpc cut
are tighter than the posteriors for the Yγ data vector
with a 4 h−1Mpc cut. Evidently, for a given scale cut,
the Yγ data vector contains significantly less information
than the γt data vector. Importantly, however, by con-
struction, the Yγ data vector should contain all of the
information we can adequately model, and no informa-
tion from scales that we are unable to properly model, a
property that the γt data vector does not share.

Finally, we test our method for robustness against
noise. To do so, we analyze multiple independent noise
realizations of the Yγ data vector. We first generate
100 noisy realizations of the full fiducial data vector (i.e.
γt and w) from the full fiducial covariance matrix, add
the disk contamination to the γt section of each realiza-
tion, and transform γt to Yγ . We then perform a grid-
based likelihood analysis for each realization, fixing all
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FIG. 3. Constraints on the Ωm–σ8 plane from simulated
“2×2pt” analyses utilizing Yγ , performed on 100 independent
noisy realizations of the contaminated data vector. Each gray
ellipse represents the resulting posterior for the 2D parameter
space from a given noise realization. The filled cyan ellipse
represents the combined constraints from all 100 noise real-
izations, and is consistent with the fiducial parameter values
marked by dotted lines.

cosmological and systematics parameters except for Ωm

and σ8. The analysis relies on the observable Yγ with a
4 h−1Mpc small scale cut.The results from the noise re-
alization tests are shown in Fig. 3. We find that the pa-
rameter constraints from independent noise realizations
scatter around the fiducial parameter values, and in ad-

dition that the combined constraints from all 100 noise
realizations are also consistent with the fiducial values.
This shows that the transformations of the data vectors
and covariances we introduce in our method are robust
against random noise.

IV. SUMMARY AND DISCUSSION

We have introduced a novel observable to mitigate
the non-locality in the galaxy–shear correlation function.
Our approach is inspired by the local quantity Σ underly-
ing the direct observables γt and ∆Σ, and takes the form
of a linear transformation on the observable vectors. By
utilizing our localized observable Y, we have obtained
unbiased cosmological posteriors even under aggressive
small-scale cuts in galaxy–galaxy lensing. Our approach
is trivial to implement: starting from an existing analy-
sis pipeline, one only needs to add a few matrix multi-
plications to the observables and the covariance matrices
prior to computing the likelihood. Most importantly, our
approach ensures that the entirety of the signal used to
place cosmological constraints is free of non-local con-
tributions from the small-scale regime, and consequently
that the resulting cosmological constraints depend exclu-
sively on accurately modeled physics.
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