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Over the last several years, a new generation of quantum simulations has greatly expanded our
understanding of charge density wave phase transitions in Hamiltonians with coupling between local
phonon modes and the on-site charge density. A quite different, and interesting, case is one in which
the phonons live on the bonds, and hence modulate the electron hopping. This situation, described
by the Su-Schrieffer-Heeger (SSH) Hamiltonian, has so far only been studied with quantum Monte
Carlo in one dimension. Here we present results for the 2D SSH model, and show that a bond
ordered wave (BOW) insulator is present in the ground state at half-filling, and argue that a critical
value of the electron-phonon coupling is required for its onset, in contradistinction with the 1D case
where BOW exists for any nonzero coupling. We determine the precise nature of the bond ordering
pattern, which has hitherto been controversial, and the critical transition temperature, which is
associated with a spontaneous breaking of Z4 symmetry.

Introduction: The Su-Schrieffer-Heeger (SSH) model
[1], where lattice vibrations (phonons) modulate the
ability of electrons to tunnel between neighboring sites
(i.e. the hopping parameter), was proposed more than
four decades ago to describe the Peierls-wave, bond
ordered wave (BOW), phase transition from a metal to
an insulator, driven by the lowering of the electronic
kinetic energy. The SSH model considered this transition
in the context of polyacetylene, but the instability has
long been known to occur experimentally in other quasi-
1D systems, including conjugated polymers [2], organic
charge transfer salts [3], MX salts [4], and CuGeO3 [5].

Furthermore, the SSH paper [1] already recognized
the possibility of topological excitations with fractional
charge. Over the last decade, tunable cold atom systems
have achieved real space superlattices [6, 7], enabling the
emulation of the SSH Hamiltonian [8–10] as a simple
realization of 1D “BDI” class topological insulators
[11, 12] (i.e. possessing spin rotation, time reversal, and
particle hole symmetries). Understanding the underlying
ordered phases and phase transitions in two dimensions
(thermal and quantum), as presented here, lays the
foundation towards studying the competition between
electron-phonon and electron-electron interactions and
the possible existence of topological phases.

Early numerical work on the 1D SSH model
addressed whether the bond (Peierls) distortion survives
fluctuations in the phonon field, and indicated [13]
differences between the spinless and spinful SSH models,
where the latter was argued to be always ordered
(albeit with a reduced order parameter as the phonon
frequency increases), and the former to have order-
disorder transitions [14–16]. Subsequent numerical and

renormalization group studies [17–21] confirmed that
lattice fluctuations do not induce metallic behavior
for spinful fermions. Analogous questions have been
addressed in the Holstein model [13, 19, 22–25]. Polaron
and bipolaron formation, along with condensation into
superfluid states, have also been areas of considerable
activity [21, 26, 27].

These interesting and challenging 1D numerical
studies of the SSH model have been extended to the
2D Lieb lattice [28], but not to the single orbital
square lattice. One measure of the difficulty of
analogous higher dimensional studies is the unresolved
controversy concerning the optimal bond patterns even
with the simplification of completely freezing the lattice
distortion. Tang and Hirsch [29] argued that a q =
(π, π) phonon, polarized along the x-axis (or y-axis),
provides the largest energy gain when a displacement δ
is introduced to the frozen lattice. Using mean field,
they also argued that this (π, π) pattern survives up to
a crticial Hubbard coupling, Uc, beyond which the bond
order changes to (π, 0). These results were challenged by
subsequent work [30, 31] where the phonons are allowed
to fluctuate, but were taken to be purely classical. The
claim here was that the optimal energy was achieved by
a superposition of a broad spectrum of lattice momenta,
rather than individual values at the borders of the
Brillouin zone. Our goal is to clarify this unsettled
situation.

Here we present our exact quantum Monte Carlo
(QMC) results for the 2D SSH model, with full quantum
dynamics of the phonons. We performed the simulations
for lattice sizes 8× 8, 10× 10 and 12× 12 with periodic
boundary conditions. Larger sizes are not practical
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with current algorithms. Our key conclusions are the
demonstration, at half filling, of a finite temperature
phase transition to an insulating BOW phase, and a
quantitative determination of Tc and the associated
compressibility gap. Most importantly, we determine
the nature of the BOW pattern, thus resolving this
long-standing question [29–31]. Furthermore, we present
numerical evidence that, in the ground state, the
electron-phonon coupling must exceed a finite critical
value for BOW to be established, unlike in the Holstein
model where the Peierls charge density wave (CDW)
phase is present for any finite coupling on a square lattice.

Model and method: We study the two-dimensional
“optical” SSH model governed by the Hamiltonian,

H = −t
∑
〈i,j〉,σ

(1− λX̂ij)(ĉ
†
iσ ĉjσ + ĉ†jσ ĉiσ)− µ

∑
i,σ

n̂iσ

+
∑
〈i,j〉

[
1

2M
P̂ 2
ij +

M

2
ω2
0X̂

2
ij

]
, (1)

where ĉiσ (ĉ†iσ) destroys (creates) an electron of spin
σ =↑,↓ on site i and µ is the electron chemical
potential. The bond operators X̂ij and P̂ij , connecting
near neighbor sites 〈ij〉, are the phonon displacement and
momentum, M is an effective mass, ω0 is an oscillation
frequency, and λ = (g/t)

√
2Mω0/~ is the electron-

phonon coupling constant. In the following, we work
in units for which ~ = t = M = 1 and fix ω0 = 1. It
was shown in 1D that this model gives the same results
as the “acoustic” SSH model [32] where different phonon
degrees of freedom are coupled.

For any g > 0 at half filling, the 1D model is
in the BOW phase [18, 32–35] where the expectation
value of the kinetic energy alternates with period π
down the chain. To determine the nature of the
ground state phase diagram and the finite temperature
transition in 2D, we use the exact determinant quantum
Monte Carlo (DQMC) method [36–38]. Our main
interest is the half filled case (µ = 0); we calculate
several quantities needed to characterize the phase
diagram: 〈Kx(y)〉 ≡ 〈ĉ†iσ ĉi+x̂(ŷ)σ〉, (the average kinetic
energies (KE) in the x and y directions) and 〈Xx(y)〉
(the average phonon displacements in the x and y
directions) which indicate when x-y symmetry is broken.
In addition, the KE bond-bond correlation function,
GKx(y)

(r) ≡ 〈Kx(y)(i)Kx(y)(i + r)〉, is calculated; its
Fourier transform (the structure factor, SKx(y)

(kx, ky))
indicates the ordering vector of possible long range
BOW. Equilibration of DQMC simulations of electron-
phonon Hamiltonians is known to be challenging [38, 39].
Data shown were typically obtained by averaging over
ten independent simulations, each using O(105) sweeps
of the lattice before making measurements, to ensure
thermalization had occurred. DQMC simulations scale
as N3β, where N is the spatial lattice size and β is
the inverse temperature. At large β, N ∼ 102-103
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FIG. 1. (Color online) The density, n, versus the chemical
potential, µ. The gap is symmetric with respect to µ = 0 due
to particle-hole symmetry. The inset shows that long range
order, and therefore the gap, achieve their ground state values
for these lattice sizes for β & 16.

are accessible [40, 41]. Because of long equilibration
and autocorrelation times in el-ph models, studies are
typically limited to the lower end of this range.
Results: Figure 1 shows, for g = 1, the electron

density n versus µ, clearly exhibiting a gapped phase for
which the compressibility κ ∝ ∂n/∂µ = 0 in the region
−0.7 . µ . +0.7. The inset shows SKx

(π, π) for several
L and β, establishing finite β effects are negligible for
β ≥ 16. The structure factor S provides a more exacting
criterion for convergence than a local observable like the
density n since it involves long range correlations.

The nature of the gapped phase is exposed by
studying GKx(y)

(r) (or GXx(y)
(r)) and the structure

factor, SKx(y)
(kx, ky). In Fig. 2 we plot SKx(y)

(π, π)
versus g. At g ≈ 0.75± 0.05 a quantum phase transition
to BOW occurs where SKx

(π, π) or SKy
(π, π) acquires

nonzero value indicating symmetry breaking. In all cases
studied in this paper we measured SKx(y)

(kx, ky) for
all momenta and observe ordering peaks only at (π, π).
Starting simulations from several random or ordered
phonon initial configurations, Fig. 3, the system only
develops checkerboard BOW (for g > gc) either for the
x or y bonds but not both simultaneously. This excludes
all bond order patterns except the one shown in the
inset of Fig. 2 and the three equivalent ones; the broken
symmetry is Z4. To keep figures uncluttered, we show
BOW only for x bonds.

When a BOW forms, the x-y symmetry breaking
also manifests itself in the x(y) average kinetic energy,
〈Kx(y)〉, and the average phonon displacements 〈Xx(y)〉.
Figure 4 shows 〈Kx(y)〉 versus g for systems with L =
8, 10, 12 and three values of the imaginary time step,
dτ ≡ β/Lτ where Lτ is the number of imaginary
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FIG. 2. (Color online) x and y kinetic energy bond-bond
structure factors, SKx(π, π)/L2 and SKy (π, π)/L2, versus g.
Long range checkerboard BOW develops for g & 0.75± 0.05.
SKy (π, π)/L2 remains very small for all g indicating the order
is only in the x bonds.
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FIG. 3. (Color online) Possible BOW configurations. Top
left: (π, π) order of x bonds, top right: (π, π) order of x and
y bonds simultaneously, bottom left: (π, π) plaquette order,
bottom right: columnar (π, 0) of x bonds.

time slices in the DQMC. All dτ values give similar
results indicating that dτ Trotter errors are smaller
than the statistical error bars. Figure 4 also shows
that for g & 0.75, the x-y symmetry breaks with the
formation of (π, π) BOW in the x direction indicated by
larger absolute values for 〈Kx〉. These conclusions are
supported by Fig. 5 which shows the average x and y
phonon displacements for the same systems as in Fig. 4.
Again, the x and y values bifurcate for g & 0.75 signalling
the x-y symmetry breaking and the formation of BOW.
Extrapolating to the thermodynamic limit the values of
gc(L) from Figs. 4 and 5, we find gc = 0.67 ± 0.02
(inset Fig.5). This relatively large finite value argues
that, unlike the one-dimensional SSH model which always
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FIG. 4. (Color online) The average kinetic energies in the x
and y directions, 〈Kx(y)〉, as functions of g for three system
sizes. The bifurcations in the average values indicate the
phase transtion breaking the Z4 symmetry. The inverse
temperature β = 16 ensures that the system is in its ground
state for these spatial lattice sizes (see inset to Fig. 1).

displays BOW for any finite g, in two dimensions a finite
critical value of g is needed to establish BOW.

Next we study the transition from a disordered phase
at high temperature, T = 1/β, to a BOW as T is lowered.
Figure 6 shows SKx(π, π)/L2 versus β for system sizes
L = 8, 10, 12. We see rapid increase in the structure
factor as β increases, indicating the establishment of a
BOW. The transition shifts to smaller β (higher T ) as L
increases; the inset shows the bifurcation of 〈Kx(y)〉, and
thus the symmetry breaking due to the phase transition.
We note the large error bars in SKx(π, π)/L2 in the
transition region which are caused by outliers which
occur in about 10% of the simulations. We also study
the finite T transition by examining the specific heat,
C = ∂E/∂T , where E is the total energy in the ground
state. We show in Fig. 7(a) E/N as a function of T
for three sizes, where N is the number of lattice sites.
The lines through the symbols are obtained with a third
order rational function (Padé) fit. In Fig. 7(b) we show C
obtained from the derivative of the Padé fit, the positions
of the peaks agree very well with Tc(L) obtained from
the inset of Fig. 6. Extrapolating to the thermodynamic
limit Tc(L) obtained from Fig. 6 and from the peaks of
C yields Tc = 0.51 (βc = 1.96) and Tc = 0.52 (βc = 1.92)
respectively, as shown in Fig. 7(c).

Conclusions: In the past several years, building on
earlier work [37, 38, 42–45], a second generation of QMC
has been applied to Hamiltonians coupling phonon modes
to the local electron charge density [37, 38, 42–49]. In
this paper, we report instead QMC simulations of the
single orbital square lattice bond phonon (SSH) model,
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FIG. 5. (Color online) Same as Fig. 4 but for the phonon
displacements. The phonon displacement 〈Xij〉 becomes
larger for j = i + x̂, than for j = i + ŷ at g > gc,
indicating a symmetry breaking quantum phase transition.
Inset: Circles: extrapolation of the critical coupling from
phonon displacement (this figure), gc = 0.65. Triangles:
Extrapolation of critical coupling from the order parameter,
Fig. 4, gc = 0.68.
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including full quantum dynamics, the paradigmatic
Hamiltonian describing phonons coupled to electron
hopping. Previously, these had been undertaken only
in one dimension where they showed the system to be
always in the BOW phase for any finite value of the
coupling. The “obvious” strong-weak bond alternation
pattern in 1D has a multitude of possible generalizations
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FIG. 7. (Color online) (a) The total energy per site as a
function of the temperature, T , at half-filling. The lines are
third order rational function (Padé) fits to the data in the
corresponding T intervals. (b) The specific heat, C obtained
for the derivatives of the Padé fits. (c) Extrapolation to the
thremodynamic limit of TC(L) obtained from the peaks of C
and from the order parameter (inset Fig. 6). The specific heat
yields TC = 0.52 and the order parameter gives Tc = 0.51.

in 2D, including staircase, columnar, staggered, and
plaquette arrangements [50], Fig. 3. We have shown that
in the ground state, a q = (π, π) order is established
for x or y bonds (but not both simultaneously), thus
resolving a longstanding controversy. We also showed
that this bond ordering is accompanied by the opening
of a compressibility gap, given by a plateau in ρ(µ).
Furthermore, we have exposed an important qualitative
difference between the two- and one-dimensional SSH
models: In 2D, a critical value of the coupling, gc, is
necessary to trigger the quantum phase transition from a
disordered phase to the BOW, in contradistinction with
1D where the BOW is present for any finite g no matter
how small [18, 19, 32–34].

The results presented here focused on the phonon
frequency ω0 = 1. We have confirmed that decreasing ω0

allows the system to establish BOW at lower but nonzero
values of g. For example, for ω0 = 1/2, BOW sets in
at g ≈ 0.5 for an 8 × 8 system as opposed to g ≈ 0.7
for the ω0 = 1 case on the same 8 × 8 lattice. This
behavior is analogous to the one-dimensional case where
the BOW gets stronger at lower values of ω0 [19, 33]
but with the important difference that in one dimension
BOW is present for any nonzero value of g [18, 32–35].

The 2D SSH model can be used to understand
CDW transition materials such as the transition metal
dichalcogenides [51–53], although the accuracy of this
modeling is affected by their multi-band character and
their complex lattice structures. A more promising
experimental connection of the present work is to
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bismuthates such as BaPb1−xBixO3 [54–60]. Indeed a
study of oxygen breathing modes of a three band SSH
model in two dimensions in the context of these materials,
has very recently appeared [28]. The bismuthates
are, however, not layered. Thus a 3D and 3-band
generalization of the present SSH Hamiltonian could
provide a fairly close connection to aspects of the
bismuthate materials.

In the last year a variant of the 2D SSH model has been
realized in acoustic networks [61] and RF circuits [62],
allowing the observation of edge states and associated
topological invariants [63] within the context of the
“plaquette” bond ordering pattern (bottom left, Fig. 3).
While this configuration can be engineered artificially,
our work shows that the low energy ordering pattern
which spontaneously arises from the simplest 2D SSH
Hamiltonian, Eq. 1, consists instead of a staggered array
of dimers. An interesting area of investigation will
be modifications to Eq. 1, for example to the hopping
parameters, which might lead to the alternate ordering
patterns of Fig. 3, including plaquette arrangements.
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