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Direct measurement of a bulk topological observable in topological phase of matter has been a
long-standing issue. Recently, detection of bulk topology through quench dynamics has attracted
growing interests. Here we propose that topological characters of a quantum quadrupole insulator
can be read out by quench dynamics. Specifically, we introduce a quantity, a quadrupole moment
weighted by the eigenvalues of the chiral operator, which takes zero for the trivial phase and finite for
the quadrupolar topological phase. By utilizing an efficient numerical method to track the unitary
time evolution, we elucidate that the quantity we propose indeed serves as an indicator of topological
character for both non-interacting and interacting cases. The robustness against disorders is also
demonstrated.

Introduction.— Understanding topological aspects of
quantum matters has been one of the central issues in
modern condensed matter physics [1, 2]. Discovery of
topological insulators (TIs) [3–7] is highlighted as one of
the most prominent steps that makes the roles of topol-
ogy manifest. Specifically, it was found that topological
natures of Bloch electrons characterized by topological
invariants result in boundary modes robust against per-
turbations [8]. This relation between bulk topology and
boundary modes is called bulk-boundary correspondence
(BBC), and it has served as a central notion in studies
on topological materials [9, 10].

BBC also ties topologically-protected boundary modes
with quantized responses to external fields, which is an-
other characteristics of TIs. A representative example is
the quantum Hall effect where the number of edge modes
corresponds to the Hall conductance [8–10]. Another ex-
ample is the quantization of an electric dipole moment
attributed to the quantized Berry’s phase of Bloch elec-
trons in one dimension [11–20]. From the viewpoint of
BBC, this is attributed to the boundary states localized
at the ends of one-dimensional systems. Recently, this
topological viewpoint of an electric dipole is further ex-
tended [21, 22] to higher-rank multipole moments [23–28]
(e.g., quadrupole and octapole) in two or higher dimen-
sions, that are attributed to the boundary states local-
ized at the corners. Such a topological phase of matter
hosting boundary modes with co-dimension greater than
one is nowadays established as a higher-order topologi-
cal phase, and large amount of theoretical [29–47] and
experimental [48–61] efforts have been devoted to under-
standing and realizing this phase.

It had been a common belief that topological invari-
ants themselves are not observed from featureless gapped
ground states, but characteristic boundary modes enable
us to observe them. However, recently, an approach to
directly access bulk topological natures was proposed,
that is, dynamical aspects of topological phases [62–81].
Such attempts are essential because they are beyond the
aforementioned common belief on topological phases. In
the literature, the semi-classical approach of wave-packet
dynamics has successfully illustrated the role of Berry

curvature in transport phenomena [62, 63]. Another di-
rection, which we focus on this Letter, is considering
quench dynamics from completely localized initial states.
At single-particle level, i.e., without the Fermi sea of the
filled bands, the information of Bloch bands in an entire
Brillouin zone can be embedded by setting a spatially
localized initial state; this is attributed to the fact that
the localized states can be expressed as a linear combi-
nation of all the states in the Fourier space. As such,
topological invariants can be extracted from the time-
dependent quantities. For instance, for chiral-symmetric
one-dimensional systems, the quantity called the mean
chiral displacement (MCD), which is the polarization
weighted by the eigenvalue of the chiral operator, suc-
cessfully extracts the topological winding number of the
system, and thus distinguishes the topological states from
the trivial states [68–70, 80]. Moreover, measurements
of such quantities are experimentally feasible in various
setups, e.g., discrete quantum walk in a photonic sys-
tem based on the orbital angular momentum of a light
beam [68].
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FIG. 1. Schematics of the BBH model. The unit cell is in-
dicated by a yellow shade, and green circles schematically
represent the initial positions of the two particles. Note that
π-flux threads each square plaquette.
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Considering the findings listed above, one is naturally
tempted to ask the following questions: (i) Can we ap-
ply the measurement of topological invariants through
dynamics to higher-order topological (or quadrupolar)
phases? (ii) If so, can it be also applicable to interact-
ing systems and/or disordered ones? In this Letter, to
address these issues, we investigate two-particle dynam-
ics of the interacting Benalcazar-Bernevig-Hughes (BBH)
model [23, 24]. We heuristically find a quantity whose
long-time average can characterize the topology. This
quantity is a modified bulk quadrupole moment, which
is reminiscent of the MCD in one-dimensional systems.
Therefore, this quantity is also experimentally measur-
able. By using a numerically efficient algorithm of trac-
ing the unitary time evolution of the two-particle wave
function (one may increase the number of particle in prin-
ciple), we elucidate that the quantity introduced here
characterizes the topological nature of the BBH model,
for both non-interacting and interacting cases. Further-
more, the characteristic behavior of this quantity is ro-
bust against moderate strength of disorders, indicating
the feasibility of experimental measurements in realistic
setups that are not completely clean.

Hereafter, we set ~ = 1.

Model and method.— We consider the model proposed
in Refs. [23, 24], incorporating an interaction and a dis-
order. The Hamiltonian reads H = H0 + Hint + Hrand,
where H0 =

∑
〈i,j〉 ti,ja

†
iaj+(H.c.), Hint = V

∑
〈i,j〉 ninj ,

and Hrand =
∑
i wini. Here a and a† denote, respec-

tively, the annihilation and creation operators of spin-
less fermions, and i denotes the sites on a square lattice
specified by a pair of indices r and α = 1, 2, 3, 4, where
r = (rx, ry) is the position of the unit cell, and α labels

the sublattice (Fig. 1). ni := a†iai is the density opera-
tor. The symbol 〈, 〉 represents the nearest-neighbor pairs
of sites. The transfer integral ti,j is indicated in Fig. 1;
there are two parameters, ta and tb. We note that H0

preserves the chiral symmetry, such that Γ̂H0Γ̂ = −H0

with Γ̂ = eiπ
∑

r(nr,2+nr,4). In addition toH0, we consider
two terms Hint and Hrand. Here, V denotes the strength
of the intersite interaction and wi is the strength of the
disorder potential, chosen randomly in

[
−W2 ,

W
2

]
.

The topological properties of the hopping term H0 has
been well-investigated in the literatures. For |ta| 6= |tb|,
the system is gapped at the half-filling. The half-filled
ground state is topologically trivial (nontrivial) when
|ta| > |tb| (|ta| < |tb|). The topological nature can be
captured by topological invariants such as the nested
Wilson loop [23, 24], the quadrupole moment [25–27],
the entanglement-related quantities [36, 47, 82], and the
Berry phase [45]. Furthermore, nontrivial topology re-
sults in the emergence of the corner states, which is char-
acteristics of the higher-order topological phases. The
aim of this study is to extract the topological nature
without relying on the corner states.
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FIG. 2. Schematic figures of two decoupled limits. The panel
(a) corresponds to tb = 0, i.e., the topologically trivial case,
and (b) corresponds to ta = 0, i.e., the topologically nontrivial
case.

The quench dynamics of the system can be dictated by
the unitary time evolution of the many-body wave func-
tion, |Ψ(t)〉 = e−iHt |Ψ(0)〉. To obtain |Ψ(t)〉 numerically,
we approximate e−iHt as follows. First, we discretize the
time as tl = l∆τ , with ∆τ being small time step (com-
pared with the hopping parameters); we set ∆τ = 0.01

in the present work. Then, we have e−iHtl ∼
(
e−iH∆τ

)l
.

The remaining task is to approximate e−iH∆τ . To this
end, we employ the fourth-order Suzuki-Trotter decom-
position [83, 84], namely, e−i∆τH = S(−ip∆τ)S(−i(1 −
2p)∆τ)S(−ip∆τ), where p :=

(
2− 21/3

)−1
and S(x) =

ex
H1
2 · · · ex

Hq−1
2 exHqex

Hq−1
2 · · · ex

H1
2 . Note that, in defin-

ing S(x), we divide the Hamiltonian H into q pieces,
H = H1 + · · · + Hq, which do not necessarily commute
each other. Here we set q = 5, and we show the ex-
plicit forms of H1-H5 in Supplemental Material [85]. The
Suzuki-Trotter decomposition of e−iHt largely reduces
computational costs. Hence, we can access long-time dy-
namics with relatively large system size in short com-
putational time, compared with other methods such as
exact diagonalization.
Mean chiral quadrupole moment.— The main proposal

of this Letter is the introduction of a quantity character-
izing the topological nature of the quadrupolar phase,
which may be termed the mean chiral quadrupole mo-
ment (MCQM):

Cq(t) = 〈Ψ(t)| Q |Ψ(t)〉 , (1)

where

Q =
∑
r,α

rxryΓαnr,α. (2)

Here Γα is the eigenvalue of the chiral operator; it takes
1 for α = 1, 3 and −1 for 2, 4. Note that, to make
the MCQM well-defined, we have to fix the labeling of
the unit cells and sublattices in the beginning, since
this quantity depends on the choice of the frame. Ex-
cept for Γα, Q follows the conventional definition of the
quadrupole operator under the open boundary condi-
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FIG. 3. The MCQM for the clean system (i.e., W = 0) with (a) ta = −0.3, tb = −1.0 and (b) ta = −1.0, tb = −0.3. (c) The
time-averaged MCQM, C̄q, as a function of |ta|/|tb|. The average is taken over t ∈ [0, 50], and the parameters in the actual
simulations are set such that max{|ta|, |tb|} = 1.

tion [23–28]. This quantity can be regarded as an exten-
sion of the MCD which dictates the winding number of
one-dimensional TIs in classes AIII and BDI, having even
number of bands [68–70, 80]. Note that, in actual exper-
iments, all we need to measure is the site-resolved parti-
cle density. This guarantees accessibility of this quantity
if spatial resolution of experimental setup is sufficiently
fine. It is also noteworthy that this quantity is sensitive
to the choice of the initial state. In the present study, we
choose the initial state such that two particles are local-
ized at two diagonal sites on the inter-unit-cell plaque-
tte located at the middle of the system, as schematically
depicted as green circles in Fig. 1. In Supplemental Ma-
terial, we show the numerical data for a different choice
of initial state, namely, two particles are localized at two
diagonal sites on the intra-unit-cell plaquette, where we
see that the failure of the distinction between topological
and trivial cases.

How does the MCQM extract the topological nature
of the quadrupole insulators? To see this, we present an
intuitive understanding of the implication of the MCQM,
namely, the argument of the decoupled four-site cluster
limit. In the prior works [21, 43, 45, 86–88], it was found
that this argument is essential for understanding the
ground-state properties of the insulating state, since the
ground state is adiabatically connected to this limit and
topological properties of gapped ground states are un-
changed under the change of model parameters unless the
excitation gap is closed. Regarding the dynamical prop-
erties, for which the information of all the eigenstates
matters, the notion of adiabatic connection does not hold
straightforwardly, but it still gives a useful insight. In
fact, such an argument works in one-dimensional systems
as well [85].

For the decoupled limits, the particles are confined in
the plaquette on which the particle is initially located,
thus unitary time evolution can exactly be tracked by
solving the four-site problem. Thus, in these limits, the
exact form of Cq(t) is accessible. For the details of the
calculations, see Supplemental Material [85]. For the
present choice of the initial state, we find that, for the

trivial limit, i.e., tb = 0 [Fig. 2(a)], one has

C̄q = 0, (3)

where C̄q stands for the long-time average of Cq(t). Mean-
while, for the nontrivial limit i.e., ta = 0 [Fig. 2(b)], one
has

C̄q =
1

2
. (4)

Equation (4) indicates that non-vanishing value of C̄q un-
der the proper choice of the initial state reflects the pres-
ence of the nontrivial topology in the bulk. It should be
noted that the difference between the trivial limit and
the the nontrivial limit is whether the plaquettes with fi-
nite hoppings are intra-unit-cell ones or an inter-unit-cell
ones. In fact, even away from the limiting cases, assign-
ing larger hoppings on inter-unit-cell plaquettes than the
intra-unit-cell ones is essential to obtain the finite value
of C̄q, as we will show later.

We briefly remark the role of Γα. In fact, the sim-
ilar factor is included in the MCD for one-dimensional
systems [69, 70]. In that case, its role is to make the
contributions from the negative-energy bands and those
from the positive-energy bands additive; otherwise they
cancel each other. This fact also implies that the MCD
is adaptable to chiral symmetric systems with an even
number of topological bands. In fact, Γα in the MCQM
is incorporated in the same spirit, but in a rather heuris-
tic manner. Nevertheless, it is indeed essential so that
the MCQM serves as a topological marker, as clarified
in the decoupled cluster argument [85]. Moreover, the
topological characterization is valid even in the presence
of the chiral-symmetry-breaking term, Hrand, as we will
show later.
Numerical demonstration.— We now demonstrate the

validity of the MCQM for topological characterization.
In Figs. 3(a) and 3(b), we plot Cq(t) to t = 50 for topo-
logical and trivial cases respectively, for the clean systems
(i.e., W = 0). Here the numerical computations are car-
ried out for 20 × 20-site (i.e., 10 × 10-unit cell) systems
under the open boundary condition. At the initial state,
two particles are localized at the sublattice 1 at the unit
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FIG. 4. The MCQM for the disordered system with (a) ta =
−0.3, tb = −1.0, W = 0.2 and (b) ta = −0.3, tb = −1.0,
W = 1.0. The error bars are represented by the shades.

cell (0, 0) and the sublattice 3 at the unit cell (−1,−1).
We see in these figures that, for the topological case with
weak interaction (V = 0, 0.3), Cq(t) oscillates around 1/2
as expected, whereas it oscillates around 0 for the trivial
case. Therefore, the long-time average of Cq(t) indeed
can be used to extract the topological character of this
model.

We also remark the boundary effects. In fact, the par-
ticles are initially located near the center of the system,
and they reach the boundary at t ∼ 20. Although the
amplitude of the oscillation of the MCQM increases after
reaching the boundary, the center of the oscillation is still
unchanged, manifesting the robustness of C̄q against the
boundary effects. Also, the fact that the finite value of
MCQM in the topological case is obtained before reach-
ing the boundary indicates that the finite MCQM is not
attributed to the corner states, and thus this is indeed
the bulk property.

It can also be found in Fig. 3(a) that the role of the
interaction becomes manifest even for moderate strength
of the interaction (V = 1.0). In the topological case, the
MCQM deviates from the non-interacting case, namely,
the MCQM exhibits gradual increase (decrease) to t . 30
(t & 30). This value of V is smaller than the band gap at
the half-filling. This result indicates the essential differ-
ence between the dynamical properties and the ground-
state properties at the half-filling, because the latter is
stable against interactions as far as the excitation gap is
not closed [45]. We also note that, in the trivial case, the
MCQM seems to be rather insensitive to the interaction
strength.

It should also be noted that the “topological transi-
tion” of the dynamical properties is not as sharp as that
for the ground state. To show this, we plot C̄q(t) as a
function of |ta|/|tb| in Fig. 3(c). We see that the depen-
dence on |ta|/|tb| of C̄q is smooth, rather than a steep
jump; this is another indication of the difference between
the dynamical properties and the ground-state proper-
ties, as the latter is characterized by the jump of the
quantized topological number. Note that, at the criti-
cal point (ta = tb), the behavior of Cq(t) is qualitatively
different from that deep inside the topological or trivial
cases, namely, Cq(t) does not oscillate around a certain
value; see Supplemental Material [85]. This behavior will
serve as a useful hallmark indicating that the system is
near the critical point.

Robustness against disorders.— We further study the
effects of disorder potentials, to test the robustness of
the MCQM. In Fig. 4, we plot Cq(t) for the topologi-
cal case with weak (W = 0.2) and moderate (W = 1.0)
disorders. Here the average is taken over 432 configu-
rations of the random disorder potential. We see that
Cq(t) remains to oscillate around 1/2 for a weak disorder
case. In particular, for t . 20 where the particles do not
reach the boundary, the error bars due to the disorder
average are very small. Even for the moderate disorder
case, the short-time behavior (i.e., t . 5) is almost un-
affected by the disorders. However, after the long time
(t & 20), the Cq(t) starts to decrease gradually and devi-
ates from 1/2. These results manifest the robustness of
the MCQM against disorders, which indicates that this
is a measurable quantity in experiments for moderately
clean samples.

Summary.— We have proposed how to extract the
topological character of the quadrupolar phase by the
quench dynamics. Specifically, we introduce the MCQM
as a marker of a topological character. Although the ini-
tial state in the present setup is localized, the system
is translationally invariant without any boundaries. The
numerical results on the two-particle BBH model indicate
that the MCQM indeed captures the topological nature
for weakly-interacting and moderately clean systems. It
has also been clarified that there are essential differences
between the ground-state topological properties at the
half-filling and the MCQM, with respect to the stability
against the interactions and the sharpness of the topo-
logical transition. This is attributed to the fact that the
former is protected by the finite excitation gap, whereas
the latter is affected by the information of all the eigen-
values and eigenvectors.

It is worth pointing out that our method of tracking
two-particle dynamics is also applicable to bosonic sys-
tems. We find that the results are qualitatively the same
as those for fermions [85]. This may indicate that each
particle contributes to the MCQM additively as far as the
few-body systems are concerned and it holds regardless of
whether the system is bosonic or fermionic. Considering
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this fact, the present method can cover a wide range of
experimental setups, including fermionic and bosonic ul-
tracold atoms under the optical lattice, photonic crystals,
and discrete quantum walks. Meanwhile, insensitivity for
the particle statistics may not hold for the many-bony
systems and studying such cases is an interesting future
problem [80]. We hope our proposal opens up a way to
understanding novel aspects of the quadrupolar phase.

This work is supported by the JSPS KAKENHI, Grant
Nos. JP17H06138, JP20K14371 (TM), Japan, and JST
CREST, Grant No. JPMJCR19T1, Japan. Parts of nu-
merical calculations were carried out on the Supercom-
puter Center at Institute for Solid State Physics, Univer-
sity of Tokyo.
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