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We construct new many-body invariants for 2d Chern and 3d chiral hinge insulators charac-
terizing quantized pumping of bulk dipole and quadrupole moments. The many-body invariants
are written entirely in terms of many-body ground state wavefunctions on a torus geometry with
twisted boundary conditions and a set of unitary operators. We present a number of supporting
evidences for the invariants via topological field theory interpretation, adiabatic pumping argument,
and direct mapping to free-fermion band indices. Therefore, the invariants explicitly encircle sev-
eral different pillars of theoretical descriptions of topological phases. Furthermore, our many-body
invariants are written in forms which can directly be employed in various numerics including the
exact diagonalization and the density-matrix renormalization group simulations. We finally confirm
our invariants by numerical computations including infinite density matrix renormalization group

on quasi-one-dimensional systems.

1. Introduction: The discovery of topological band
insulators initiated a serious revisit to the band theory of
insulators, which has fruited in the last fifteen years."
So far, the classification of the band topology has made
a remarkable success and found numerous topological in-
sulators.” " Moreover, insightful band indices and under-
lying structures’»*’ have been revealed. One particular
progress, which attracted a huge attention recently, is the
so-called higher-order topological insulators,’ " whose
topology manifests as the symmetry-protected corner or
hinge states instead of more familiar surface states. How-
ever, the understanding of higher-order topological insu-
lators has been limited mostly to non-interacting band
insulators, except for a few cases.' '~ This is in stark
contrast to their ancestors, e.g., insulators with bulk po-
larization © and Chern insulators,’” where one can de-
fine and detect the topology even without referring to
the band structure. For instance, the Resta’s formula
measures the polarization in a non-perturbative fashion
for any insulators.

In this Letter, we propose many-body invariants for
prototypical chiral topological phases, i.e., 2d Chern in-
sulator'* and 3d chiral hinge insulator.””” Two insula-
tors are characterized by quantized chiral pumping of
bulk quantum numbers under the adiabatic change of
the background U(1) gauge field. We show that how our
many-body invariants directly measure the bulk topol-
ogy of such chiral pumpings within the many-body wave-
functions by generalizing Resta’s pioneering work.” We
combine different theoretical approaches to support the
validity of our invariants: many-body adiabatic pumping
argument, topological field theory interpretation, and re-
duction to free-fermion band indices. We finally confirm
our invariants via numerical calculations.

can be applied to
and to systems without
Even for clean and non-

The many-body invariants™
correlated states of matter
translational symmetries.

interacting systems, the invariants provide a complemen-
tary diagnosis to the free-electron momentum-space band
indices. Not only practically but also fundamentally,
the construction of many-body invariants is important on
its own, as it can provide a classification of the quantum
phases of matter in the most general setups.

Many-body invariants for Chern insulators has been
intensively studied since the seminal paper by Niu, Thou-
less, and Wu.”" Using the “effective” Brillouin zone where
the twisted boundary conditions replaces the role of
Bloch momenta, many-body Chern number can be ex-
pressed as an integral of many-body Berry curvature over
the effective Brillouin zone.” "~ While the integral guar-
antees the quantization of the many-body Chern num-
ber, Hastings and Michalakis® showed that the many-
body Berry curvature itself is quantized up to a ‘almost-
exponentially’ decaying error term in system size when
the bulk gap is non-zero. This leads to the one-plaquette
formula for the many-body Chern number.”” Finally, a
many-body formula, which tracks the winding of the
y-direction many-body polarization as a function of z-
direction flux ®,, appeared in Ref.

In this Letter, we consider the following function de-
fined in terms of many-body ground state wavefunctions:

<GS [q)a] |[?t0p ‘ GS [q)a]>
(GS[0]|Utop| GS[O])

Z[®,] = (1)
where we use two and only two many-body ground states
|GS[®,]) on a torus geometry, whose boundary condition
along the a-direction of the torus is twisted by a flux
®,, whereas other directions are chosen to be periodic
without twisting. We choose Uy, depending on the bulk
topology of interest. We will show below that the many-
body invariant is encoded in the U(1) phase factor of
Z[P,].

For the systems of our interest, it is sufficient to con-
sider only two unitaries: Resta’s polarization operator



along the j-direction,
N 21 .
O1; = exp (szr:xjn(r)), 2)

and the quadrupole operator along the zy-plane from our
previous work

Uy = exp (L2:LZU Z :Eyﬁ(r)). (3)

We assume that two unitary operators can measure the
bulk dipole and quadrupole moments of many-body in-
sulators under appropriate conditions.

2. Chern Insulator: We first construct the many-
body invariant for the many-body Chern number from
many-body wavefunctions |GS[®;]) defined on a torus
geometry, where the flux ®, along the z-direction is cho-
sen to be small. We encode the flux via coupling the
system to the uniform gauge field A, = %; Finally, we
obtain the many-body Chern number C by

(GS[0]|U1,|GS[0])

Z. [éz] = = |Z‘ exXp (ZC(I)JC) (4)

While our formula Eq. (4) only approximates the quan-
tized many-body Chern number C for a finite system
with finite flux ®,, it recovers the quantized C' in the
thermodynamic limit, i.e., first take ®, — 01 for each
system size and then take the system size to infinity,
when the bulk gap remains finite. For the details on the
finite size effects and comparison between Eq. (4) and
the previous ones, please refer to the Supplemental
Material (SM).

To justify of our formula, we first prove that C in
Eq. (4) reduces to the band Chern number for non-
interacting band insulators. While sketching the key
steps below, we defer a more complete derivation to
SM."* In a non-interacting fermion system, one first con-
structs single-particle eigenstates |k) ® |u(k)), where |k)
is the plane wave labeled by the (Bloch) momentum and
|u(k)) is the corresponding Bloch state. The ground state
is given by the Slater determinant of the occupied single-
particle states. Note that the flux ®, merely modifies
the allowed set of momentum k. For a single filled band
insulator, Eq. (4) becomes

o _ M, (ulke & 22k [u(ke + 220Ky + 25))
S R C R s

where the products in the denominator and the numer-

ator are over the same set of momenta, i.e., k, = %—”na
a

with n, € {1,2,---L,} and L, being the linear system

size in the a-direction. For L, large, we can approximate

o e [ by Ay (i + 22,
[Ty, exp [i f dhy Ay (ke )|
Ly, exp [2miP, (k. + 32))
C eew [2riPy (k)]

where P, (k;) is the y-directional polarization for a given
momentum k,. Finally, Eq. (4) reduces to:

Z.= Hexp [2771'(7%, (km + %) - Py(k’z))]
0 @

27
dkw‘”)y(km)} — exp(i®,C),  (5)
; dk,

R exp [i‘bw
where we have identified the change in the polarization
Py in k, as the Chern number.”" The multiband case is
presented in the SM.

We now employ the many-body adiabatic pumping to
show that Eq. (4) must be related to the Hall conduc-
tivity o,,. We first note that the Resta operator Ul,y
measures the many-body polarization.”” Using the Resta
operator,

Z. x exp |2mi (Py(P,) — Py(0)) }7

where P, (®,) is the many-body polarization along the
y-direction for the ground state under the flux ®,. Note
that for band insulators, Py(®,) = 3, Py (ks + 7=).
When &, is small,

dp,
o,

Z. ~ exp {QMCI):,; } = exp |:27T’L'<Dm01y} = exp (iC’tI)m>,
where we used the fact that the change in the polarization

P, in the ground state can be induced by the adiabatic
dP, _ dP,/dt Jy
) dD, . dd,/dt E, — Ozy

and the last equality follows from o,y = 5=. Since we
did not assume that the ground state is a band insula-
tor, we expect that Eq. (4) can be applied beyond band
insulators.

The final proof of Eq. (4) is via the topological field
theory. To this end, we show that the many-body invari-
ant picks up the level C of the Chern-Simons action,

change in the flux &, i.e.

Fla |

Seff = % /de?x e A8, A, (6)

which is the effective field theory of the Chern insulator
with the Chern number C'. We emphasize again that we
do not make any assumption on the ground state hence
Eq. (4) applies to any correlated insulators. We get

(GS[®,]]01,,|GS[@]) o exp (iSes514,]) = exp (i9,0),



where A, is fixed by the twisted boundary condition ®,
and the insertion of the unitary Ulyy, ie, (Ao;Ag, Ay) =
(6(7)%% %7 ) By inserting this gauge configuration
into Eq. (6), we indeed find that the level C' appears in
the RHS of the above equation. We note that the same
approach for multipole insulators has been employed be-
fore.

3. Chiral Hinge Insulator: We now present the
many-body invariant for C4T-symmetric chiral hinge in-
sulators: '~

(GS[®.]|Us|GS[-])

2l = = st icsiop

= | 2] exp(i®.Cw), (7)

where |GS[®.]) is the ground state with the boundary
condition along the z-axis being twisted by an infinites-
imal ®,. We explicitly see below that Cyy is the integer
labeling the quantized pumping of the quadrupole mo-
ment under the adiabatic insertion of the flux ®,. Simi-
lar to Eq. (4), Eq. (7) contains finite size effects which is
expected to vanish in the thermodynamic limit when the
bulk gap is nonzero. For a band insulator, Cy equals
the Wannier-sector Chern number.

To justify our many-body invariant, we first reduce
Eq. (7) to a band index, which computes the quan-
tized pumping of the quadrupole moment along k..
As before, many-body ground state is given by the
Slater determinant of occupied single-particle eigen-
states. The single-particle states are given by the Bloch
functions |u, (k1 ,k.)) and the plane waves |k, k.), i.e.,
[tn (ki k) = ki, k) ® |un(kl,k,)) with n labeling
the filled bands and k; being the momentum in the zy-
plane. The many-body invariant Eq. (7) is then reduces
to

2 [Te. [, o, FK ko ke + 72)
h = )
sz Hkmkﬁ_ ‘F(kﬁ_v kl7 kz)

(8)

where the momentum k£, in the products is over the set
k, € {i—”nz, n, =0,1,---L,—1}, and similarly for k and
k’. Here, F is defined in terms of the Bloch functions:

]-'( 'k k %)

L,
[0)) i2may d
— / ZZ|eTaly _z
detK Lkt e kl,kz+Lz>

(o (Wbt ) (e + i)}]

where the matrix in the determinant by writing are de-
noted by its component. Using the fact that Us measures
the bulk quadrupole moment,' *'~ we identify

H ]-“( ki k. + %) = exp {QﬂiQaﬂy (kz + iz)] ’
ko ok, - :

where Qg (k) is the zy quadrupole moment for a given
k.. Finally, Eq. (8) for an infinitesimal ®, becomes

Z, = Hexp [QWi(sz (kz + %) - me(kz)):|
ke :

. o dQqy (k) ‘
~ exp [Z(I)Z/o dkzdk‘z] = exp [z@ZC’W],

i.e.,, Eq. (8) measures the chiral pumping of quadrupole
moment Q,,(k,) along k., as advertised.

Remarkably, our formula Eq. (7) is consistent with the
effective field theory of the chiral hinge insulator pro-
posed in Ref. [29]:

Sl = i—w / drd®z A, (8,0,A, + 0,0, A, — 20,0, Aq).
7

We first note that
(GS|U5|GS) x exp (isgf f[AM]),

where A, is fixed by the twisted boundary condi-

tion ®, and the insertion of the unitary U, ie,
(Ao; Az, Ay, As) = (6(7) EZEZ ;0,0, %) By inserting this
gauge field configuration to the effective field theory, we
find Eq. (7). Note that the effective topological field the-
ory description is valid for interacting and/or disordered
cases, implying that the same is true for Eq. (7).

Finally, we discuss the physics hidden behind Eq. (7).
Our discussion below highlights the relation between
our formula Eq. (7) and the Wannier-sector Chern
number.' >~ We first note that the ground state over-
laps in Eq. (7) give the bulk quadrupole moments along
the xy-direction of the ground states:

Z), o< exp [2m’ (Quy(®2) — Q,, (0)) }7

where sz(@z) is the zy-plane quadrupole moment of the
ground state under the flux ®,. Assuming that Q,,, is a
smooth function of ®,, we find:

dQgy /dt Jduad

= 2™ T ar = 2™ TE T (9)

. dq,
2#1@2#
*

Z, xe
where we note that an adiabatic change of the flux ®,
induces the electric field along the z-direction on the sur-
face. The change in quadrupole moment is then given
by the surface current Jquada perpendicular to the z-
direction. By demanding that the last expression of
Eq. (9) to be equivalent to Eq. (7), we find

O.Quad — Jggad — CW

ry E, or

This process is precisely what one expects from the
nested Wilson loop picture,” and hence provides an ad-
ditional supporting evidence for our formula. We com-
plete the comparison by performing another transforma-
tion on Eq. (9). Let us rewrite Jg;ad as the variation of



the quadrupolar surface orbital magnetization Mg;ad, ie,

uad
Jquad — dng
Ty dz

/1/8

. Similarly, we rewrite E, = %7 where

is the surface chemical potential. Then, we find
quad Ig;ad

Ty

Zh _ 627ri<1>z jol 62”1‘@2@7'5

By equating the last expression to the one in Eq. (9), we
find
dMEsd Oy,
dus 21
This is again consistent with the nested Wilson loop
picture” and the orbital magnetization calculation.

Hence, starting from Eq. (7), we derive the following
quadrupolar “Streda formula”:

dQuy _

uad uad
_JgeddMgd Cy
dd, E, dus o2’

(10)

which is consistent with the effective field theory
description.

4. Numerical demonstrations: In this section,
we provide numerical confirmations of our many-body
invariants Egs. (4) and (7) for the Chern and chiral
hinge insulators. We numerically compute the invari-
ants for various insulators including band insulators, non-
interacting insulators without translational symmetry,
and correlated insulators. In all cases, our many-body
invariants faithfully measure the bulk topological invari-
ants.

We begin with two tight-binding models of Chern in-
sulators’' on a square lattice:

ﬁélh) = Z CL [(m — tcos(ky) — tcos(ky))o
k
+ Asin(kg)o, + Asin(ky)oy |, (11)
and

ﬁg}f = Z CL [(m —tcos(ky) — tcos(ky))o
k
+ Aq(cos(ky) — cos(ky))oy

+ Agsin(ky) sin(ky ) oy | cx (12)
where cL = (CL,A,CLB) with A and B labeling the or-
bitals. By tuning m while keeping ¢t and A ({A1, As})

fixed, the half-filled ground state of f[gg (Hé?) real-
izes the quantum phase transitions between C' = +1
(C = £2) Chen insulator to trivial insulator. In FIG. 1
(a) and (b), we confirm that our many-body invariant
Eq. (4) reproduces the phase diagrams of H ((31}3 and H, ((32}3

For a further confirmation of Eq. (4), we consider
a tight-binding model with onsite random disorder by

adding position dependent mass terms ). mpcho.cp,

where cf. = (CI_}A,CZ,B) and m, € [0, W] with W con-

trolling the disorder strength. In FIG. 1 (c), we see that
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FIG. 1. The Chern numbers from Eq. (4) for (a) Héh)

with (t,A) = (1.0,1.0) and (b) HS) with (t,Ar,As) =
(1.0,1.0,+£1.0) as a function of m. (c) The disorder averaged
Chern number as a function of disorder strength W. We fix
(t,m,A) = (1.0,1.0,1.0) in Eq. (11) and add additional po-
sition dependent mass term according to m, € [0, W]. [Clav
is computed over 1000 disorder realizations. (d) Change in
the y-polarization per unit z-length as a function of z-flux
per unit z-length ®,/L, for fl((jlh) + I:IU. We use the param-
eters (t,m,r;U) = (1.0,1.0,1.0;1.0), N, = 4, and the bond
dimension x = 100 in the iDMRG simulations.

the disorder averaged Chern number [C],, computed us-
ing Eq. (4) stays quantized as a function of W. This
shows the stability of our formula against adding weak
disorder. Cases with strong disorder are discussed in the
SM.

Next, we consider an interacting model H = H'g}z +
ﬁU, where ﬁU = UZT c: AcT’Ac: pCr,B IS an onsite
Hubbard interaction. We perform an infinite density-
matrix renormalization group (iDMRG) simulation’*
on the infinite cylindrical geometry. We choose the z-
axis as the infinite cylindrical axis direction and the y-
direction as the finite circumference direction contain-
ing L, sites. From the infinite matrix product states
(iMPS) generalization of Eq. (4),” we can extract the
Chern number using two iMPS ground states—one with-
out any flux insertion and the other with an infinitesimal
flux-per-unit-length inserted along the z-direction.

Our method bears some similarity with the usual
method”” for measuring the Chern number in the
iDMRG simulations. In fact, both methods measure the
identical observables if L, is sufficiently large. However,
when L, is finite and small, as in the usual iDMRG
simulations on quasi-1d systems, two methods measure
the Chern number differently. The usual method”" mea-
sures the polarization along the infinite z-direction ex-
actly, but twisting the boundary condition adiabatically
by threading the flux ®, from 0 to 27 along the finite
y-direction. Since the allowed momentum along the y-
direction is highly restricted due to the smallness of L,,
it is important to keep track of the winding of the x-
polarization via full adiabatic changes of ®,. On the



other hand, our method measures the polarization along
the y-direction approzimately using U, , operator, but
only requires an infinitesimal gauge flux along the infi-
nite z-direction. Since the momentum along the infinite
direction is fully available, it is sufficient to consider the
states with zero and an infinitesimal flux-per-unit-length.
In the iDMRG simulation, we use the parameters where
the ground state of H 8}3 +Hy is adiabatically connected
to the U = 0 ground state. In FIG. 1 (d), we see that
the y-directional polarization-per-unit-length computed
from our formalism shows perfect linear behavior as a
function of the z-flux-per-unit-length ®, /L., thereby in-
dicating that the many-body invariant for iMPS ground
states sincerely computes the many-body Chern num-
ber. In the SM," we showed that our many-body invari-
ant captures a trivial Mott insulating regime where U is
large.

Finally, we numerically confirm the many-body invari-
ant Eq. (7) for C4T-symmetric chiral hinge insulators.
We consider the following tight-binding model:

Hiinge = Y _ch[(m—t > cos(ki))T-00 (13)

k 1=x,Y,2
+ A Z sin(k;)7,0; + Ag(cos(ky) — cos(ky))Ty00] ck,
i=2,y,2
where cx = (Ck.a4)Ch.AL>Ck.BA4ChoB,L) - In FIG. 2

(a), we use the many-body invariant Eq. (7) to compute
Cw as a function of the mass parameter m with fixed
(t, A1, As). The many-body invariant Eq. (7) reproduces
the phase diagram up to finite size effects.

For a final non-trivial test, we add an onsite Hubbard
interaction U .. . 4 g fip.a17ir.q,) to Eq. (13). Interac-
tion effects are caﬂptufed via self-consistent Hartree-Fock
method which variationally finds the energy minimizing
single Slater determinant state. We turn on small U so
that the ground state is adiabatically connected to the
U = 0 ground state. The phase factor of the many-body
invariant Eq. (7) are tracked under the full 27 flux inser-
tion along the z-direction. In FIG. 2 (b), we see perfect
linear behaviors with the slopes equal Cy as expected.

There exists chiral hinge insulators where the chiral
modes originated from boundary Chern bands, not from
the bulk quadrupole moments, i.e., Cyr = 0 in Eq. (7).
Detection of these insulators using Eq. (1) and the appli-
cability of U, in measuring boundary observables will be
reported elsewhere.

5. Conclusions: We have provided many-body in-
variants for 2d Chern and 3d chiral hinge insulators.
Our many-body invariants have natural interpretations
in terms of three different theoretical approaches: many-
body adiabatic pumping, topological field theory, and
reduction to free-fermion band indices. Our invariants
provide not only a unified theoretical framework of un-
derstanding various chiral insulators, but also efficient
ways of computing bulk topological numbers as the in-
variants require only two ground states and are easily im-
plementable in various numerics. We have tested our for-
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FIG. 2. (a) Cw from Eq. (7) for the half-filled ground state
of Eq. (13) with (¢, A1,A2) = (1.0,1.0,1.0), system size
(Ly, Ly, L) = (20,20,40), and &, = 0.01. (b) Change in
the phase factor of Z,(®.) as a function of ®.. The ground
states are constructed using the Hartree-Fock approximation.
We fix (t,A1,A2) = (1.0,1.0,1.0) and use the linear system
size L = 10. We see perfect linear behaviors in both cases
where the slopes capture the correct Cyy .

mula for various non-interacting models with and with-
out translation symmetries, and interacting models. In
all cases, we see that our invariants faithfully detect the
ground state topology.
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