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Cosmological neutrinos have their greatest influence in voids: these are the regions with the highest neutrino
to dark matter density ratios. The marked power spectrum can be used to emphasize low density regions over
high density regions, and therefore is potentially much more sensitive than the power spectrum to the effects of
neutrino masses. Using 22,000 N-body simulations from the Quijote suite, we quantify the information content
in the marked power spectrum of the matter field, and show that it outperforms the standard power spectrum
by setting constraints improved by a factor larger than 2 on all cosmological parameters. The combination of
marked and standard power spectrum allows to place a 4.3σ constraint on the minimum sum of the neutrino
masses with a volume equal to 1 (Gpc h−1)3 and without CMB priors. Combinations of different marked power
spectra yield a 6σ constraint within the same conditions.

PACS numbers:

Introduction — Neutrinos are the last particles of the
Standard Model whose masses remain unknown. Oscilla-
tion experiments have measured two nonzero mass splittings
among active neutrinos, showing that at least two mass eigen-
states have nonzero mass, but the absolute mass scale and the
ordering of the eigenstates remain unknown (see [1] for a re-
cent review). Upcoming laboratory experiments (e.g tritium
endpoint and double beta decay experiments) are expected to
improve bounds on the neutrino mass scale (see [2] a for re-
view).

In the near future, cosmology offers a promising inde-
pendent probe of neutrino masses [3–5]. Neutrinos are so
abundant in the universe that their collective mass affects
the growth of cosmological structure, producing distinctive
signatures detectable with upcoming surveys. Cosmological
large-scale structure (LSS) is very sensitive to the sum of the
masses, which is Mν =

∑
imi > 0.06 eV if two neutrinos

are light and one massive (normal hierarchy), orMν > 0.1 eV
if two neutrinos are massive and one light (inverted hierarchy).
The current tightest constraint comes from combining ob-
servations of the cosmic microwave background anisotropies
with baryonic acoustic oscillation measurements, Mν < 0.12
eV at 95% C.L. for a flat ΛCDM cosmology [6].

If the late time matter/galaxy density fields were Gaussian,
then all the cosmological information would be embedded in
their two-point functions. Non-linear gravitational evolution
generates small-scale non-Gaussianity, inducing an informa-
tion leakage from the two-point function to higher order statis-
tics (see [7–9] for discussions on the bispectrum). One way
to retrieve this lost information is utilize different summary
statistics, e.g. statistics of peaks or voids. Voids have not un-
dergone virialization and are thus expected to retain much of
their initial cosmological information [10]. Voids are espe-
cially appealing as probes of neutrino physics: since they are
much emptier in baryons and dark matter than they are in neu-
trinos, voids are the regions where the ratio between the cos-

mic neutrino density and the cold dark matter density is the
highest in the Universe [11]. Several recent studies [11–13]
discuss the sensitivity of void-related observables to neutrino
masses and the authors of [14] have used the Quijote simu-
lations to estimate the information content of upcoming LSS
surveys.

The power spectrum is the most commonly used observable
to extract cosmological information from large-scale struc-
ture. Since the density power spectrum is significantly af-
fected by the most massive objects [15], it is expected to be
sub-optimal when extracting information embedded in low
density regions such as cosmic voids. Here we consider a way
to use power spectra that gives more weight to low density re-
gions, by utilizing the so-called marked power spectrum [16].
For the first time, we explore using marked statistics to weigh
neutrinos.

Marked power spectrum — Marked correlation functions
are modified two-point correlation functions where pairs are
weighted by a mark. The mark usually depends on proper-
ties of the considered tracer or on environment. Correlations
of marked point processes were first formalized by [16], and
they have been subsequently used in astrophysics to study how
galaxy clustering depends on galaxy properties such as mor-
phology, luminosity, color, etc. [17–20], and how halo cluster-
ing depends on merger history [21]. A description of marked
correlation functions in the framework of the halo model has
been developed in [22]. More recently, [23] proposed a mark
that depends on local density with the purpose of studying
modified gravity models. This mark aims to increase the
weight of pairs in low density regions, where modifications
of gravity are more likely to be present, and it has been used
by [24–26]. Here we consider the mark proposed in [23],

m(~x;R, p, δs) =

[
1 + δs

1 + δs + δR(~x)

]p
, (1)
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Figure 1: Projections in a region of 500 × 250 × 20(h−1Mpc)3 of
a simulation with fiducial cosmology at z = 0. Top panel shows
the projected matter density field and bottom panel displays the
marked density field with parameters R = 10 h−1Mpc, p = 2,
and δs = 0.25. Here we show how the large-scale structure looks
like in a marked field with positive p: high density regions are down-
weighted, while low density regions are up-weighted.

to build a marked statistics of the matter density field. The
mark depends on the local overdensity δR(~x) = ρR(~x)/ρ̄−1,
where ρ̄ is the mean matter density and ρR(~x) is the local den-
sity around the position ~x computed by smoothing the matter
density field with a Top-Hat filter of radius R. Overall, the
mark is a function of three parameters: a scale R, a density
parameter δs and an exponent p. The case δs → 0 is partic-
ularly instructive since it yields m(~x) → [ρ̄/ρR(~x)]

p. In this
case it is clear that positive values of p enhance the weight
of points in low density regions, while negative values of p
weight more points in high density regions. Figure 1 displays
the marked density field in the case of positive p and shows
how high/low density regions become down/up-weighted by
the mark.

In configuration space, the marked correlation function is

1 +M(r) =

N∑
i,j=1

δD(|~xi − ~xj | − r)m(~xi)m(~xj)

m̄2N2/V
, (2)

where δD is the Dirac delta and m̄ is the mean value of the
mark. In the literature, marked correlations are defined as
(1 + M)/(1 + ξ), where ξ is the correlation function. Here
we are not interested in removing the spatial clustering of
points, and therefore we do not use this definition. Moreover,
we choose to work in Fourier space rather than configuration
space, due to the lower computational cost needed to measure
power spectra.

To sum up, the marked power spectra are promising sum-
mary statistics to study neutrinos for multiple reasons. They

are straightforward to compute: the measurement of the local
density field is the only ingredient that needs to be added to a
power spectrum analysis pipeline in order to compute marked
power spectra. Moreover, the marked power spectra contain
information from higher order statistics because of the depen-
dence of the mark on the local density. One way to see this is
to note that when a mark in Eqn. (1) including the density field
is used, then the marked power spectrum is equivalent to the
power spectrum of a nonlinear transformation of the density
field. As many previous works have noted, certain nonlin-
ear transformations can make the density field more Gaussian
and thereby transfer information from high-order correlations
back to the 2-point function, significantly improving parame-
ter constraints from 2-point statistics (e.g. [27–30]). Finally,
marked power spectra overcome the need of identifying voids,
which can be computationally costly depending on the void
finder used. Yet, they extract information from low density
regions.

Fisher formalism — We quantify the information content
(or constraining power) of both standard and marked power
spectra using the Fisher formalism. In this framework, the
marginalised error squared σ2(θi) associated with a cosmo-
logical parameter θi is σ2(θi) ≥ (F−1)ii, where F is the
Fisher matrix defined as

Fij =
∂ ~d

∂θi
C−1

∂ ~dT

∂θj
, (3)

with ~d = (O1, O2, ...) being the data vector containing the
considered observable O (in our case the marked power spec-
trum and/or the standard power spectrum) evaluated at differ-
ent wavelength k, and C being the covariance matrix. A large
number of simulations are needed to accurately evaluate both
the derivatives and the covariance matrix.

Simulations — The Quijote suite [31] is a set of more
than 43,000 full N-body simulations covering a range of val-
ues of cosmological parameters. Their fiducial cosmology is
Ωm = 0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624,
σ8 = 0.834, Mν = 0.0 eV, and w = −1. We used the 15,000
realisations of the Quijote suite run in the fiducial cosmology
to compute covariance matrices, and the simulations with one
parameter varied above or below its fiducial value to compute
numerical derivatives (notice that this analysis focuses on 6
cosmological parameters (Ωm, Ωb, h, ns, σ8 and Mν) and w
is fixed to −1). All simulations contain 5123 cold dark mat-
ter particles (plus 5123 neutrino particles in the simulations
with massive neutrinos) in a 1 (h−1Gpc)3 box. Neutrinos are
implemented using a particle-based method [32, 33]: they are
described as a collisionless and pressureless fluid that is dis-
cretized into a set of neutrino particles. Due to the high neu-
trino thermal velocity, some of the neutrino particles cross the
simulation box multiple times, generating a white noise. This
effect is negligible when considering observables related to
the total matter. The derivatives with respect to Mν have been
computed using simulations with Zel’dovich initial conditions
(see [31] for more details). For each realisation at redshift
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Figure 2: Correlation matrix of the power spectrum and of the
marked power spectrum with parameters R = 10 h−1Mpc, p = 2,
and δs = 0.25, at z = 0. The covariance of the latter is clearly more
diagonal than the former, which allows for more information to be
extracted from small scales.

z = 0, we measure the matter power spectrum and a set of
125 different marked power spectra. The latter are obtained
by considering different values for the three mark parameters:
R = [5, 10, 15, 20, 30] h−1Mpc, p = [−1, 0.5, 1, 2, 3] and
δs = [0, 0.25, 0.5, 0.75, 1]. When considering massive neu-
trino cosmologies, we compute each statistic for both the total
matter density field ‘m’ (cold dark matter + baryons + neutri-
nos) and the cold dark matter + baryons density field ‘cb’. We
verified that the number of realisations used to compute co-
variance matrices (15,000) and derivatives (500) gives a con-
vergent estimation of the Fisher matrix and consequently of
the errors associated to the cosmological parameters.

Results — We use the Fisher formalism to quantify the
information content on the nonlinear matter power spectrum,
and use it as a benchmark to compare to the marked power
spectrum. We distinguish the case where the considered statis-
tic is computed on the ‘m’ or the ‘cb’ density field. The
marginalized errors obtained by including all modes with
k < 0.5 h Mpc−1 are presented in Table I. The constraints on
the sum of the neutrino masses from the standard power spec-
trum are σcb(Mν) = 1.4 eV and σm(Mν) = 0.8 eV, where the
subscript indicates the field used. As expected, tighter con-
straints on Mν can be achieved when using the total matter
power spectrum, because neutrino effects are larger in the ‘m’
field than in the ‘cb’ field [11, 34]. The marginalised errors as
a function of the maximum wavelength included in the analy-
sis are displayed in Figure 3.

The Fisher formalism can be used to identify the mark
model — among the 125 considered models — that gives
the tightest constraint on the neutrino masses. In order to
avoid the regime where the Quijote simulations may be af-
fected by numerical resolution, we restrict our analysis to the

regime where R > 10 h−1Mpc. We find that the best value
of the mark parameters for both the ‘cb’ and ‘m’ cases is:
R = 10 h−1Mpc, p = 2, and δs = 0.25. The marginalised
errors for this model M are shown in Table I, where all the
results have been obtained by considering only modes with
k < 0.5 hMpc−1. Even if chosen to maximize the infor-
mation on neutrinos, the mark power spectrum improves the
power spectrum constraints on all the other cosmological pa-
rameters by a factor of 2-3 and 4-10 when ‘cb’ or ‘m’ are con-
sidered. The errors on the neutrino masses from the marked
power spectrum are σcb(Mν) = 0.5 eV and σm(Mν) = 0.017
eV. The latter indicates that marked power spectra on the total
matter density can put a 3.5σ constraint on the minimum sum
of the neutrino masses using a volume equal to 1 (Gpc h−1)3.
Moreover, the chosen marked power spectrum improves the
power spectrum constraints on Mν by factors of 2.8 and 47
when the ‘cb’ and ‘m’ field are considered, respectively.

This large improvement arises for multiple reasons. First,
the covariance matrix of the marked power spectrum is much
more diagonal than the one of the power spectrum (Figure 2):
this allows extraction of more information on small scales.
Figure 3 shows that the information in the power spectrum
saturates on scales k < 0.5 hMpc−1, but it does not in
the mark power spectrum. Second, the marked power spec-
trum contains higher order statistics of the density field: [7]
showed that the bispectrum can improve the power spectrum
constraints on Mν by a factor ∼ 5, and [35] showed more
modest improvements using the matter PDF, which also con-
tains higher order statistics. Third, [34] showed that neutri-
nos induce a large and unique scale-dependent bias on linear
scales, when halos/galaxies are split according to neutrino en-
vironment. These features boost the constraining power of the
marked power spectrum. Finally, as stated above, our marked
power spectrum has been designed to incorporate information
from voids into the power spectrum.

The combination of standard and marked power spectrum
measurements allows to obtain tighter constraints on cosmo-
logical parameters, and in particular on Mν : σcb(Mν) = 0.44
eV and σm(Mν) = 0.014 eV (4.3σ constraint on the mini-
mum sum of the neutrino masses). Even tighter constraints
can be achieved by combining two or more different mark
models. For example, the combination of the mark con-
sidered above (M ) and a second one (M ′) with parameters
R = 10 h−1Mpc, p = 1, and δs = 0 yields σcb(Mν) = 0.35
eV and σm(Mν) = 0.01 eV (6σ constraint on the minimum
sum of the neutrino masses). The usage of 3 mark models
can improve these constraints by a factor of 1.3 and 1.1 when
considering the ‘cb’ and ‘m’ fields, respectively. All the above
combinations took into account correlations between the con-
sidered statistics.

Discussion — In this letter we propose the usage of
marked power spectra as efficient probes to weigh neutrinos
and in general to tightly constrain the value of the cosmolog-
ical parameters. For the first time, we computed the informa-
tion content on marked power spectra and compared it with
the one from the standard power spectrum. We also showed
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Parameter Pcb Mcb Pcb +Mcb Mcb +M ′cb Pm Mm Pm +Mm Mm +M ′m
Ωm 0.046 0.018 0.017 0.014 0.094 0.013 0.012 0.011
Ωb 0.016 0.0099 0.0091 0.008 0.039 0.010 0.009 0.008
h 0.16 0.092 0.083 0.068 0.50 0.098 0.082 0.069
ns 0.10 0.045 0.04 0.029 0.48 0.048 0.039 0.028
σ8 0.080 0.030 0.026 0.021 0.013 0.0019 0.0015 0.0015
Mν 1.4 0.50 0.44 0.35 0.83 0.017 0.014 0.01

Table I: Marginalised errors on the cosmological parameters obtained with the Fisher analysis for the standard (P ) and marked (M with
R = 10 h−1Mpc, p = 2, δs = 0.25, and M ′ with R = 10 h−1Mpc, p = 1, and δs = 0) power spectrum, and different combinations of them,
including the modes with k < kmax = 0.5 hMpc−1. The subscripts cb and m stand for cold dark matter + baryons and matter, respectively.
The inclusion of the marked power spectrum in the Fisher analysis improves significantly the constraints on all cosmological parameters. In
particular, the combination of two marked power spectra improves the power spectrum constraints on total neutrino mass Mν by a factor of 4
and 80 when ‘cb’ or ‘m’ are considered.
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Figure 3: Marginalized errors on the cosmological parameters and their dependence on the maximum wavelength considered. Dashed lines
show the results for the standard power spectrum and solid lines show the ones for the marked power spectrum M with R = 10 h−1Mpc,
p = 2, and δs = 0.25. The color code refers to the field considered: grey for cold dark matter + baryons and magenta for total matter. The
marked power spectra (M , solid line) always outperform the power spectrum (P ). The effect is even stronger when including neutrinos (Mm,
solid magenta line, compared to Mcb, solid grey line).

that combinations of different marked power spectra can yield
very tight constraints, and these combinations outperform the
standard power spectrum in constraining all considered cos-
mological parameters.

The analysis has been done at the underlying density field
level, distinguishing the ‘cb’ and ‘m’ density fields. The latter
brings tighter constraints on the neutrino masses, but it cannot
be observed in galaxy redshift surveys directly [36–38]. One
possible way to measure it is through weak-lensing observa-
tions, which give a 2D projection of the underlying ‘m’ field.
The ‘cb’ density field cannot be observed directly either, but
galaxies and other objects are tracers of it [36, 37]. Combi-
nations of galaxy clustering and weak-lensing measurements
can be used to define marks sensitive to ‘m’ and ‘cb’.

We have not considered the contribution of super sample
covariance — modes larger than the box size of the simu-
lations — to the covariance matrix, which will degrade our
constraints. Moreover, when using galaxy clustering, theoret-
ical uncertainties such as galaxy bias, redshift-space distor-
tions, and baryonic effects are also expected to degrade our
constraints after marginalizing over them. Additional degen-

eracies, e.g. between neutrino masses and modifications of
gravity, have not been considered. Our results show that a 6σ
constraint on the minimum sum of the neutrino masses can
be achieved by considering combinations of marked power
spectra of the total matter density in a volume equal to
1 (h−1Gpc)3. Upcoming surveys such as DESI [39], Euclid
[40], Roman Space Telescope [41], and Rubin Observatory
[42] are expected to probe volumes of tens of (h−1Gpc)3.
Thus, these surveys should achieve a statistically significant
detection of the neutrino masses, even if a significant fraction
of the information content is lost when marginalizing over the-
ory uncertainties [45]. We emphasize that these constraints
will arise solely from large-scale structure surveys, without
the usage of CMB priors. Thus, they will complement the
results of CMB constraints [43, 44] and serve as an internal
cross-check to verify the robustness of the results.
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