
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Knots and Non-Hermitian Bloch Bands
Haiping Hu and Erhai Zhao

Phys. Rev. Lett. 126, 010401 — Published  7 January 2021
DOI: 10.1103/PhysRevLett.126.010401

https://dx.doi.org/10.1103/PhysRevLett.126.010401


Knots and Non-Hermitian Bloch Bands

Haiping Hu1, 2 and Erhai Zhao1, ∗

1Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
2Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

Knots have a twisted history in quantum physics. They were abandoned as failed models of
atoms. Only much later was the connection between knot invariants and Wilson loops in topological
quantum field theory discovered. Here we show that knots tied by the eigenenergy strings provide
a complete topological classification of one-dimensional non-Hermitian (NH) Hamiltonians with
separable bands. A Z2 knot invariant, the global biorthogonal Berry phase Q as the sum of the
Wilson loop eigenphases, is proved to be equal to the permutation parity of the NH bands. We
show the transition between two phases characterized by distinct knots occur through exceptional
points and come in two types. We further develop an algorithm to construct the corresponding tight-
binding NH Hamiltonian for any desired knot, and propose a scheme to probe the knot structure via
quantum quench. The theory and algorithm are demonstrated by model Hamiltonians that feature
for example the Hopf link, the trefoil knot, the figure-8 knot and the Whitehead link.

Extending topological band theory to non-Hermitian
(NH) systems has significantly broadened and deepened
our understanding about the topology of Bloch bands.
NH Hamiltonians [1–9] are effective descriptions of a di-
verse set of many-body systems ranging from photonic
systems with gain or loss [10–31] to quasiparticles of finite
lifetime [32–39]. In contrast to Hermitian systems, NH
Hamiltonians have complex eigenenergies. This unique
property gives rise to a number of intricate phenomena
without Hermitian counterparts including for example
the exceptional point (EP), where eigenstates coalesce
[40–46], and the NH skin effect [47–62], where an exten-
sive number of eigenmodes are localized at the boundary.
A synopsis of earlier NH band theory is the classification
of topologically distinct NH Hamiltonians based on sym-
metry [63–68] akin to the Hermitian ten-fold way [69–72].
This classification scheme starts by distinguishing two
types of band gaps, the line gap and point gap. While
NH bands with line gaps can be continuously deformed to
their Hermitian counterparts, the point-gap topology is
intrinsically NH [73–75] and explains the NH skin effect.

Recently it was recognized that the NH band theory in
Refs. [63–66] based on the gap dichotomy is incomplete.
A NH Hamiltonian may not possess a well-defined point
or line gap. A more general theory only assumes sepa-
rable bands [76], i.e. the eigenenergies Ej(k) 6= El(k)
for all j 6= l and crystal momentum k. Moreover the
ubiquitous twisting and braiding of complex eigenener-
gies give rise to new topological invariants. For example,
in one dimension (1D), as k is varied form 0 to 2π, the
eigenenergy trajectories {Ej(k)} may form a “braid” (see
Fig. 1 below). Two topologically distinct NH band struc-
tures (two braids) cannot be continuously deformed into
each other while keeping the bands separable. Based on
homotopy analysis, recent work established that the dis-
tinct topological sectors of 1D NH Hamiltonians with N
separable bands correspond to the conjugacy classes of
the braid group BN [77, 78]. Unfortunately, homotopy
theory alone does not offer an algorithm to compute the
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FIG. 1. Four examples of links/knots in 1D NH Bloch bands.
Braid operator τi (τ−1

i ) denotes the i-th string crossing over
(under) the (i+1)-th string from left. Colors label different
knot components. Q is the biorthogonal Berry phase defined
in Eq. (3). The four knots are realized by NH Hamiltonians
T2, T3 as defined in Eq. (6), H8 and Hw [97], respectively.
The eigenenergy strings are shown in space (ReE, ImE, k).

invariants directly from the Hamiltonian [79]. This raises
the following open questions. (i) Given a generic NH
Hamiltonian, how to determine its topological invariant?
(ii) How to describe the phase transition between two
topologically distinct phases? (iii) How to design a NH
Hamiltonian whose bands form a desired braid pattern?

In this paper, we answer these questions by developing
a knot theory for NH Hamiltonians. We prove that the
topology of 1D NH Hamiltonians with separable bands is
fully characterized by the knots (or links) formed by the
eigenenergy strings, and the topological invariants are
thus knot invariants. This perspective based on knots
enables us to predict two types of phase transitions ac-
companied by the emergence of EPs and abrupt changes
in the biorthogonal Wannier centers. We also present an
algorithm to design tight-binding Hamiltonians to realize
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arbitrary knots, and demonstrate how the knots could be
revealed from quantum quench experiments and realized
in electric circuits and photonic arrays. In contrast to
the various knots residing in the 3D k-space and formed
by the zero-energy nodal lines of topological semimet-
als [80–93], the knots here live in the energy-momentum
space and describe the topology of the entire NH band
structures.

Knot classification of non-Hermitian band structures.
Our first main result is that 1D NH Hamiltonians with
separable bands and no symmetry are completely clas-
sified by knots inside a solid torus. It follows that a
topological invariant of the band structure must be a
knot invariant. To prove this statement, first we sum-
marize the results of Refs. [77, 78]. A 1D NH band
structure with N separable bands defines a map from
the Brillouin zone, a circle S1, to the configuration space
XN = (ConfN ×FN )/SN . Here ConfN is the ordered N -
tuples of complex energy eigenvalues, the quotient space
FN = U(N)/UN (1) describes the energy eigenvectors,
and SN is the permutation group. Since π1(FN ) = 0,
the equivalent classes of non-based map [S1, XN ] can be
reduced to [S1,ConfN/SN ], and further to the conju-
gacy classes of the braid group BN = π1(ConfN/SN )
[77, 78]. While this formal result based on homotopy the-
ory is rigorous, the conjugacy classes of BN are hard to
compute or visualize [94]. Here, we further relate them
to knots. Notice that the braids of energy eigenvalues
(constructed explicitly below) are closed due to the pe-
riodicity of the Brillouin zone, so the braid space is a
solid torus. A theorem in knot theory dictates that two
closed N -braids in BN can be smoothly deformed into
each other in the solid torus iff they are conjugate to
each other [94]. Thus, thanks to the one-to-one corre-
spondence between the conjugacy class of N -braids and
knots, we reach the conclusion that knots provide a nat-
ural language to classify 1D NH Bloch bands.

It is physically intuitive to construct the knot for a
given 1D NH Hamiltonian H(k). The procedure is out-
lined as follows. The complex eigenenergies form a set
E = {Ej(k)} with band index j = 1, ..., N . They are the
roots of the characteristic polynomial (ChP)

f(λ, k) = det(λ−H(k)) =

N∏
j=1

[λ− Ej(k)]. (1)

As k evolves from 0 to 2π, the trajectory of Ei(k) de-
fines a string in the 3D space spanned by (ReE, ImE, k).
Overall N such strings may tangle with each to form a
braid shown in Fig. 1. A braid can be faithfully de-
scribed by its braid diagram obtained by projecting the
N strings onto a chosen 2D plane parallel to the vertical
k-axis. A braid diagram consists of a sequence of string
crossings, each characterized by a braid operator τi in
Artin’s notation. For instance, when projected on plane
ImE = +∞, τi (τ−1i ) is defined by ReEi = ReEi+1 and

ImEi < ImEi+1 (ImEi > ImEi+1). In other words, τi
(τ−1i ) indicates that the i-th string crosses over (under)
the (i+1)-th string from left. Note that two non-adjacent
braid operators commute: τiτj = τjτi for |j− i| ≥ 2, and
τiτi+1τi = τi+1τiτi+1. The entire braid is then specified
by its braid word, a product of braid operators, see Fig. 1.
The set E is identical for k = 0 and k = 2π, so the braid
is closed and becomes a knot (oriented with increasing k)
in the (ReE, ImE, k) space, which is topologically a solid
torus. The end result of k evolution over one period 2π
is the permutation

σ =

(
E1(0) E2(0) ... EN (0)
E1(2π) E2(2π) ... EN (2π)

)
. (2)

As usual, we define its parity P (σ) = ±1 if σ can be
expressed as even/odd number of transpositions.

The braid diagram may not be unique for a given
band structure. Different choices of the projection plane
yield isotopic braids related to each other by Reidemeis-
ter moves. Moreover, choosing different starting points
k0 for the k interval [k0, k0 + 2π] corresponds to braids
within the same conjugacy class. This provides a clear
understanding of why the conjugacy classes, not the el-
ements, of BN are used for classification. These differ-
ent choices however always yield the same unique knot,
which is invariant under Reidemeister moves or transla-
tions along the k axis. Thus using knots to describe the
NH band structure is not only natural but also econom-
ical, free from the arbitrariness in braid representations.
Topologically distinct NH band structures correspond to
distinct knots. Fig. 1 lists four knots, known as the Hopf
link, trefoil knot, figure-8 knot, and Whitehead link. The
associated braids are also shown. To avoid clutter, here-
after we will also refer to links loosely as knots.

Knot invariants. It follows immediately that 1D NH
bands are characterized by knot invariants [95, 96]. In
addition to the well-known polynomial invariants [97],
here we introduce a Z2 topological invariant Q and re-
late it to the parity of band permutations defined ear-
lier. For NH Hamiltonians, the right and left eigenvectors
are defined as H(k)|ψn〉 = En(k)|ψn〉 and H†(k)|χn〉 =
E∗n(k)|χn〉, which satisfy the biorthogonal normalization
〈χm|ψn〉 = δmn [102]. Define the non-Abelian Berry con-
nection AmnB = i〈χm|∂k|ψn〉 and the global biorthogonal
Berry phase [103]

Q =

∮ 2π

0

dk Tr[AB ]. (3)

One can prove [97] that Q is quantized to 0 (π) when the
band permutation σ is even (odd),

eiQ = (−1)P (σ). (4)

While Q is indeed a knot invariant, due to its Z2 nature
it only coarsely classifies knots into two groups. For ex-
ample, the Hopf and figure-8 knot have the same Q = 0,
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and similarly trefoil and Whitehead knot have Q = π.
In Hermitian systems, Wilson loop provides a powerful
characterization of band topology [104–106]. For NH sys-
tems, we define the biorthogonal Wilson loop from the
Berry connection

WB = P ei
∮ 2π
0

dk AB , (5)

where P denotes path ordering. Its eigenphases νn, de-
fined by WB |µn〉 = eiνn |µn〉, are the Wannier centers
[31, 107, 108]. It can be shown [97] that Q =

∑
n νn.

A toy model: the twister Hamiltonian. To illustrate
different knots and their phase transitions, we introduce
a simple two-band NH Hamiltonian

Tn =

(
0 eink

1 0

)
, (6)

where n counts the number of twists of the two band
strings, E± = ±eink2 , as k evolves from 0 to 2π. The
braid word of Tn is simply τn1 . The twister [109] Hamil-
tonian Tn for n = 0, 1, 2 gives rise to the unlink, unknot,
and Hopf link, respectively. We will use Tn as building
block to construct a model with two tunable parameters
(m1, m2),

H12(k) = im1σz +m2T1 + T2. (7)

It has three topologically distinct phases, the Hopf link
(blue region), the unlink (green), and the unknot (pink)
phase, see the phase diagram in Fig. 2(b). The phase
boundaries are given by m2

1+m2
2 = 1 and m2 = ±m1−1.

The knot topology is apparent from the two eigenenergy
strings (blue and red solid lines in insets). For the unlink,
the two strings do not braid, each forming a loop; for the
Hopf link, the two strings braid twice, and the two loops
are linked; for the unknot, the two strings braid once to
form one single loop. We emphasize that all three phases
here exhibit NH skin effect [47–52, 54–62] because pro-
jecting the knot onto the complex E plane yields a band
structure (dash lines) with a point gap [73–75]. Previ-
ous classification framework [63–68] based on line/point
gaps however cannot distinguish these phases or describe
their phase transitions. The classification presented here
based on knots is finer and complete.

Phase transition through exceptional points. A transi-
tion between two phases characterized by different knots
must occur through the crossing of the strings, i.e,
through band degeneracy points. There are two kinds
of band degeneracies in NH systems, the exceptional
point (EP) or non-defective degeneracy point (NDP).
The key difference is that EPs are defective, where
the eigenvectors coalesce, leaving the Hamiltonian non-
diagonalizable, while at an NDP, the eigenstates remain
distinct. For a general 1D NH band with no symme-
try, NDPs are unstable and will split into several EPs
by small perturbations [110]. The proof of this state-
ment and an example can be found in [97]. Thus we are

FIG. 2. Phase diagram and phase transitions of H12(k) de-
fined in Eq. (7). (a) Schematic of knot transitions. Type-I
(type-II) transition occurs by going through one (two) EP.
(b) The phase diagram of H12 with parameters m1 and m2.
The blue, pink, and green regions label the Hopf link (τ21 ),
unknot (τ1), and unlink phase (τ01 ), respectively. In each re-
gion, a representative band structure is plotted. (c) and (e)
show eigenenergy |E(m1, k)| along the cut labelled by I and
II respectively in (b): an EP is visible at (1/

√
2, π) in (c),

while there are two EPs at (1, 0) and (1, π) in (e). (d) and
(f) show the Wannier centers νn along the cut I and II. (g)
Schematic of a periodic electric circuit that realizes H12. The
unit cell (oval) contains two “sites”, the red and blue nodes,
connected by resistors R, inductors L and negative impedance
converters C1,2,3, see [97] for details.

led to the conclusion that a transition between phases of
distinct knots is accompanied by exceptional points.

There are two scenarios for two strings to undergo a
“knot transition” and they are sketched in Fig. 2(a). In
a type-I transition, two strings change from cross to no-
cross (or vice versa) by going through an EP; the braid
word τ±1i → τ0i and Q also changes. One example is
trefoil knot transforming to Hopf link via τ1 → τ01 . A
type-II transition occurs when an over-cross becomes an
under-cross or vice versa, so the braid word τi → τ−1i .
It is usually accompanied by two EPs, while Q remains
the same. For H12(k), the transition from the Hopf link
to the unknot along the line m1 = m2 belongs to type I
and the EP is located at (m1, k) = (1/

√
2, π), as shown in

Fig. 2(c). The transition from the Hopf link to the unlink
along the m2 = 0 line is of type II, with two EPs located
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FIG. 3. Signatures of knots after quantum quench. The
red/blue curves are the eigenvectors |ψ1,2(k)〉 of H12(k) on
the Bloch sphere. From an initial state |ξ0〉 = (1, 0)T (north
pole), the state evolves with H12(k) and after a long time
falls into the solid line part of the eigenstates. The arrow de-
notes increasing k from 0 to 2π, and the orange (green) dots
represent the k = 0 (k = π) mode. The parameters are (a)
m1 = m2 = 0.5, the Hopf-link phase; (b) m1 = m2 = 0.9, the
unknot phase; and (c) m1 = 1.2,m2 = 0, the unlink phase.

at (m1, k) = (1, 0) and (1, π) as shown in Fig. 2(d).
Note that the Wannier centers undergo abrupt changes
at these transitions, see Fig. 2 (d) and (f).

How to design knotty Hamiltonians. Beyond these sim-
ple knots, it becomes challenging to construct the tight-
binding Hamiltonian HK(k) whose bands tie into certain
given knot K. Here we outline a solution to this problem,
which aids the experimental realization and probe of NH
knots. The key is to find a ChP f(λ, k) with λ ∈ C and
k ∈ [0, 2π] whose roots produce the desired eigenenergy
strings. Our algorithm consists of two steps [97]. In the
first step, f(λ, k) is constructed from the data of knot
K. From the braid diagram of K, decompose the per-
mutation σ into a series of cycles σ = s1s2... with ln the
length of cycle sn. For each cycle, standard trigonometri-
cal parametrization [97, 111] generates two real functions
Fn(k), Gn(k). The strings in cycle sn are given by coor-
dinates (Fn(kjn), Gn(kjn), k) with kjn = (k+ 2πjn)/ln and
jn = 0, ..., ln − 1. Thus the roots of the following ChP

f(λ, k) =
∏
sn

∏
jn

[λ− Fn(kjn)− iGn(kjn)] (8)

yield the desired knot K. The ChP obtained is a power
series of λ, f(λ, k) = λN +

∑N−1
j=0 ζj(k)λj , where ζj(k)

is a Laurent series of e±ik. In the second step, Hamilto-
nian HK is constructed from f(λ, k) above: it is a sparse
matrix [97] with the only non-zero elements being

Hi+1,i
K = 1, i = 1, 2, ..., N − 1;

Hi,1
K = −ζN−i(k), i = 1, 2, ..., N. (9)

For example, applying this algorithm to braid word τn1
yields the twister Hamiltonian Tn. The NH Hamiltoni-
ans for the figure-8 knot and Whitehead link, H8 and
Hw shown in Fig. 1, are similarly obtained. Their ex-
plicit expressions are lengthy and can be found in [97].
In general, more complicated knots require longer-range
couplings in the tight-binding Hamiltonian.

Experimental realization and probe of knots. The var-
ious proposed knots and their associated NH Hamilto-
nians can be realized in platforms such as photonic lat-
tices or electric circuits [112]. For the former, the asym-
metric coupling between the sites (ring resonators) can
be implemented via auxiliary microring cavities, see [97]
for details. For the latter, the NH Hamiltonians can
be simulated by the admittance matrix. For example,
the twister Hamiltonian H12 is simulated by the peri-
odic circuit shown in Fig. 2(g). It consists of resistors
R, inductors L, and negative impedance converters Ci
that provide intra- and inter-unit cell couplings, for de-
tails see [97]. Measurement of the admittance spectrum
[60, 62, 113] yields {Ej(k)}, which provides a direct probe
of the knotted band structures and the EPs.

An alternative probe of knots is through the eigen-
states. As an example, consider the two-band system
H12(k) where the eigenstates can be accessed via Bloch
state tomography [114–118]. Each of the two right eigen-
states |ψ1,2(k)〉 corresponds to a point on the Bloch
sphere. As k is varied, their trajectories trace out two
curves (in red and blue) on the Bloch sphere as illus-
trated in Fig. 3. For the Hopf-link phase (a), each curve
is a closed loop, and they intersect twice. In the unlink
phase (c), we have two closed loops that remain sepa-
rated. Both phases have even permutation parity, Q = 0.
In contrast, in the unknot phase (b), the red curve joins
the blue curve to form a single loop, and Q = π. It is
clear from this example that the knot topology of two
eigenenergy strings translates to characteristic crossing
patterns of the eigenvector loops on the Bloch sphere,
which can be distinguished from Bloch state tomogra-
phy. The invariant Q can also be read out directly.

We propose an effective way to prepare |ψ1,2(k)〉 via
quantum quench. From an (arbitrary) initial state |ξ0〉
at time t = 0, the system evolves according to H12(k).
Let the j-th eigenenergy Ej(k) = εj − iγj , the state at
later time t is |ξ(k, t)〉 =

∑
j e
−iεjte−γjt〈χj |ξ0〉|ψj〉 with

~ = 1. Thus, after a long time, the time-evolved state will
be purified and fall into the eigenstate with smaller γj .
Our numerical simulation of the quench dynamics verifies
that starting from |ξ0〉 = (1, 0)T (the north pole), long-
time evolution will bring the state to the solid curves
in Fig. 3 (the dashed curves are reached by evolution
with −H12). While the k-resolved tomography measure-
ment of the quenched state does not yield the full band
structure, different knots can be distinguished by their
signatures in the eigenvectors as shown in Fig. 3 [97].

Going beyond conjugacy classes of braid groups, we
have established a knot classification of generic 1D NH
Hamiltonians with separable bands: topologically dis-
tinct NH bands are described by different knots, and
their transitions are through EPs. A simple model is
built from Tn to showcase various knots, and an algo-
rithm is presented to construct the corresponding tight-
binding Hamiltonian for any given knot. We have demon-
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strated how these knots can be experimentally realized
and probed. Other physical consequences of the knot-
ted bands, including the relation between the NH knots
and skin effect will be left for further study [97]. An im-
portant open problem is to extend the analysis to higher
dimensions and other symmetry classes, where the in-
terplay of band braiding, eigenstate topology, and sym-
metries gives rise to rich unexplored phenomena, e.g.,
torsion invariants [77, 78].

This work is supported by AFOSR Grant No. FA9550-
16-1-0006 and NSF Grant No. PHY-1707484.
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