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Determining the size of a network dynamical system from the time-series of some accessible units
is a critical problem in network science. Recent work by Haehne et al. [1] has presented a model-
free approach to address this problem, by studying the rank of a detection matrix that collates
sampled time-series of perceptible nodes from independent experiments. Here, we unveil a profound10

connection between the rank of the detection matrix and the control-theoretic notion of observability,
upon which we conclude when and how it is feasible to exactly infer the size of a network dynamical
system.

Introduction. From natural to technological settings,
network dynamical systems constitute a powerful ap-15

proach to study collective dynamics [2–4]. Within this
modeling scheme, each network node is associated with
an individual dynamical system and each link encapsu-
lates the interaction between two coupled units. Fueled
by the increasing availability of massive datasets, the the-20

ory of network dynamical systems promises to unveil the
underpinnings of complexity [5].

Toward achieving this ambitious goal, considerable ef-
fort is being placed to establish effective methodologies
to build network representations from time-series of in-25

dividual units. Through advancements in statistically-
principled network reconstruction, neuroscientists can
tackle the inference of functional connectivity patterns
in the brain from electroencephalography data [6], Earth
scientists can utilize weather data to pinpoint causal links30

underlying the climate [7], and biologists can track ani-
mals’ motion to unveil social structures behind collective
behavior [8].

Pervasive to most of these efforts is the assumption
that the researcher has complete access to all the nodes in35

the network. However, seldom do we possess full knowl-
edge about the dynamics of the system, since many of the
units are hidden from measurements. Hence, the process
of network inference could be hindered by the presence
of hidden nodes that would confound the dynamics of ac-40

cessible units. For example, should one be interested in
the organization of a migrating fish school [9], they must
rely on measurements of only a few tagged individuals:
the vast majority of the school will not be measurable.
In fact, the researcher may not even know how many45

individuals compose the school.

Detecting the number of hidden nodes from a few per-
ceptible nodes was the open question addressed in Ref. 1.
Therein, the authors put forward a promising model-
free approach to estimate the true network size from the50

rank of a detection matrix that comprises the sampled
time-series of perceptible nodes from independent exper-
iments. Here, we uncover deep roots of this model-free
approach in the classical theory of control systems by

Kalman [10]. Upon these roots, we rigorously study the55

inner workings of the detection matrix to determine when
and how it is feasible to exactly infer the size of a net-
work dynamical system. Our results demonstrate that
the seemingly distinct challenges of identifying the num-
ber of units in a network from perceptible nodes and60

reconstructing the state of the whole network from them
are, in fact, intertwined.

Detecting hidden nodes and network size. We consider
a network of N dynamical systems described by a vector
function F : RN → RN , such that65

ẋ(t) = F (x(t)), (1)

where x(t) = [x1(t), · · · , xN (t)]T collates the scalar states
of all the nodes, F encodes both the dynamics of the
individual units and their interconnecting network, and
t ∈ R

+ is time. Given an ensemble of M measurements,70

each sampled at k consequent times t1, . . . , tk for n per-
ceptible nodes, can we infer that there are other N − n
hidden nodes?

The approach of Ref. 1 is based on the detection matrix

T(k,M) =





y(1)(t1) · · · y(M)(t1)
· · · · · · · · ·

y(1)(tk) · · · y(M)(tk)



 , (2)75

where y(m)(t) ∈ Rn is the measurement vector formed
by the time-evolution of the n perceptible nodes during
the m-th experiment. For a sufficiently large number
of experiments and time-samples, the authors proposed
that the rank of T(k,M) ∈ Rkn×M is an estimate of N .80

Through extensive numerical simulations, they find that
the method works reliably on several synthetic and exper-
imental networks of coupled dynamical systems, linear or
nonlinear.

An example where the method fails. To illustrate85

the roots of the detection matrix in mathematical con-
trol theory, we consider an undirected, unweighted path
graph of N = 3 nodes, such that 1 is the center and 2
and 3 are the terminals. Let the three nodes implement
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a linear consensus algorithm [11], where each of them90

averages its state with its neighbors according to

ẋ(t) = −Lx(t), (3)

with L being the Laplacian matrix [12], that is, L =




2 −1 −1
−1 1 0
−1 0 1



. If only node 1 is perceptible, we could

only measure a sampled version of x1(t), which, upon95

integrating (3), reads

x1(t) =
1

3

(

2e−3t + 1
)

x10+
1

3

(

1− e−3t
)

(x20+x30), (4)

where x10, x20, and x30 are the initial conditions.
By sampling the time-evolution of this perceptible

node at k times and considering M experiments associ-100

ated with initial conditions x
(1)
0 , . . . , x

(M)
0 , we construct

the detection matrix in (2). Irrespective of how large
M and k are, it is impossible to find three columns of
the detection that are linearly independent. The initial
conditions of nodes 2 and 3 enter the evolution of the105

perceptible node only via their summation, thereby leav-
ing undistinguishable footprints on the evolution of node
1. In this case, the rank of the detection matrix will con-
verge to two and the method will incorrectly suggest that
there is only one hidden node. To produce three inde-110

pendent columns in the detection matrix and infer the
exact network size, we should require that nodes 2 and 3
separately enter the evolution of node 1.
The mathematical backdrop to formulate general con-

ditions for the successful application of the detection ma-115

trix should be sought in the notion of observability, for-
mulated by Kalman more than fifty years ago [10] to ex-
amine the problem of reconstructing unmeasurable state
variables from measurable ones. Several recent stud-
ies within the control community [13–19] have studied120

observability of network dynamical systems, but they
assumed complete knowledge of the system dynamics.
Here, we seek to lay the mathematical foundations for
the fundamental question posed in Ref. 1, that is, to
detect hidden units and network size from a detection125

matrix assembled from raw time-series. We focus our
mathematical treatment on linear time-invariant (LTI)
systems, like the consensus problem in (3) – analysis of
linear time-varying systems is included in the Supplemen-
tal Material [20].130

Theory. For a LTI system with state matrix A, the
state transition matrix Φ(t, 0) that maps the initial state
vector x0 to its value at t is given by the matrix expo-
nential [21], that is, Φ(t, 0) = eAt. The computation of
the matrix exponential can be carried out in a number of135

ways [22]. One possibility is to apply Cayley-Hamilton
theorem that states that every square matrix satisfies its
own characteristic equation [22], thereby implying that
any power of A higher than N can be written as a linear

combination of lower powers, from 0 to N − 1. Since the140

matrix exponential is an analytic function that can be
written in Taylor series, we establish

Φ(t, 0) =

N−1
∑

j=0

αj(t)A
j , (5)

where α0(t), . . . , αN−1(t) are unknown analytic time-
functions that can be written in terms of the spectrum145

of A.
Assuming for simplicity that all the eigenvalues of A

are distinct, we can project (5) on each of the eigen-
vectors of A to obtain the following linear system for
α0(t), . . . , αN−1(t) [23]:150

eλit =

N−1
∑

j=0

αj(t)λ
j
i , (6)

for i = 1, . . . , N , where λ1, . . . , λN are the com-
plex eigenvalues of A. By introducing vectors
α(t) = [α0(t), · · · , αN−1(t)]

T ∈ R
N and E(t) =

[eλ1t, · · · , eλN t]T ∈ CN , we can write (6) in the com-155

pact matrix form E(t) = V α(t), where V ∈ CN×N is
the Vandermonde matrix constructed from the eigenval-
ues of A. The j-th column of the Vandermonde ma-

trix is
[

λj−1
1 , · · · , λj−1

N

]T

. Given that the eigenvalues are

distinct, V is invertible and its determinant is equal to160

∏

1≤i<j≤N (λj − λi) [24].
Without loss of generality, we assume that the first

n network nodes are the perceptible ones, so that the
output matrix of the LTI system is C = [Inn, 0n(N−n)],
where Inn is the identity matrix in R

n×n and 0n(N−n)165

is the zero matrix in Rn×(N−n). From (5), the time-
evolution of the perceptible nodes is

y(t) = Cx(t) =

N−1
∑

j=0

αj(t)Ojx0, (7)

where we have introduced the matrices Oj = CAj

to form the so-called [21] observability matrix O =170

[OT
0 , . . . ,O

T
N−1]

T ∈ RnN×N . The observability matrix
of an LTI system maps the initial condition to the vector
collating the time-derivatives of the output at the initial
time, up to the order (N − 1), thereby quantifying the
extent by which the internal dynamics of the network can175

be observed from its perceptible nodes.
For the assembly of the detection matrix in (2), we

must sample y(t) at k different times – for simplicity, we
assume that these times are equidistant at a sampling
period ∆t, such that ts = (s − 1)∆t with s = 1, . . . , k.180

Hence, we determine the following compact form for the
detection matrix:

T(k,M) =
[

α(k) ⊗ Inn
]

OX0, (8)
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where ⊗ is the Kronecker product [21], X0 =

[x
(1)
0 , · · · , x

(M)
0 ] ∈ RN×M , and α(k) ∈ Rk×N collates the185

sampled values of the coefficients in the Cayley-Hamilton
expansion. By using (6), we express each row of the ma-
trix α(k) in terms of the samples of E(t), yielding

α(k) = ET
(k)V

−T, (9)

where E(k) ∈ RN×k is such that its s-th column is E(ts).190

Two hypotheses on the quantity and quality of the per-
ceptible dynamics are needed to ensure that the rank of
the detection matrix could be informative of the size of
the network, or, at least, part of it. First, we should have
at least N time-samples, that is, k ≥ N . Under this as-195

sumption and given that we are focusing on equidistant
samples, the first N columns of E(k) constitute a nonsin-
gular Vandermonde matrix, implying that E(k) is full row
rank [25]. Second, we should have M ≥ N to obtain N
independent experiments, such that X0 is full row rank.200

Before we proceed, we recall three classical matrix
properties [24, 26]. Given two conforming matrices A
and B: first, if A is full column rank, then rank(AB) =
rank(B); second, if A is full row rank, then rank(BA) =
rank(B); and third, rank(A⊗B) = rank(A)rank(B). By205

recalling that V is invertible, the second property im-

plies that rank
(

α(k)

)

= rank
(

ET
(k)

)

; given that E(k) is

full row rank, then α(k) is full column rank. By virtue
of the third property, the Kronecker product in (8) con-
stitutes a full column rank matrix and application of the210

first property implies that rank
(

T(k,M)

)

= rank (OX0).
Finally, by recalling that X0 is full row rank, application
of the second property leads to our main claim,

rank
(

T(k,M)

)

= rank(O). (10)

Hence, monitoring the rank of the detection matrix215

helps estimating the rank of the observability matrix of
the associated LTI system, which is equal to the size of
the network if and only if the LTI system is (completely)
observable [21]. If the system is not observable, the rank
of the detection matrix provides an estimate of the di-220

mension of the largest observable subset of the system,
based on Kalman decomposition [21]. The latter con-
sists of a coordinate transformation that decomposes the
dynamics into an observable and an unobservable com-
ponent. In the transformed block-triangular structure of225

the system, all the measurements are performed on the
observable component, which evolves independently of
the unobservable one.
Analogous claims to (10) can be derived for linear time-

varying systems, associated with time-varying topologies230

and node dynamics; see Supplemental Material. The
main difference is that the length of the time-series could
be much longer than the network size to ensure conver-
gence of the rank of the detection matrix to the exact
network size for observable systems.235

Application of the theory to consensus problems. With
respect to the earlier example of a three-node path graph,

the observability matrix isO =





1 0 0
−2 1 1
6 −3 −3



. The rank

of O is equal to two, consistent with what we could dis-
cover from the detection matrix. Should we have access240

to any of the terminals, rather than the center, O would
have rank equal to three and the detection matrix will
help discover the true size of the network. In this case,
the initial conditions of non-perceptible nodes would sep-
arately enter the evolution of the perceptible one, differ-245

ent from (4).

Even without access to the terminals, the three-node
graph is observable from its center if we weighted the
links by two unequal, nonzero constants w12 and w13,
since | det(O)| = |w12w13(w12 − w13)| 6= 0 [27]. Like-250

wise, introducing time-varying patterns in the interac-
tion between the nodes can facilitate observability by
modulating the effect of hidden nodes on the percepti-
ble dynamics. As shown in the Supplemental Material,
it is possible to design periodic temporal patterns that255

will ensure observability of the path graph, even though
the corresponding time-average network would describe
an unobservable LTI system.

Criteria for observability of undirected, unweighted
path graphs of arbitrary size have been formulated in260

Ref. 17. Interestingly, only path graphs with 2q nodes,
with q being a positive integer, are observable from any
node, thereby supporting the exact inference of the net-
work size from any choice of perceptible nodes. For any
other path graph, unless we have access to one of the two265

terminals [16], the rank of the detection matrix could un-
derestimate the exact network size [28]. Similar claims
are gathered for undirected, unweighted cycle graphs [17],
where observability is achieved by accessing two adjacent
nodes or even any two nodes if N is a prime number, but270

never via a single node.

The study of observability of path and cycle graphs in-
dicate some of the drawbacks in the application of the de-
tection matrix to networks with homogeneous degree dis-
tribution. A much more dramatic scenario is noted when275

dealing with star networks, where the detection matrix
may be of no practical use. In fact, for an undirected, un-
weighted star of N nodes, observability requires access to
at least N −2 of the terminals, so that correctly estimat-
ing the network size from the detection matrix requires280

accessing all but two nodes. The proof of this claim is
based on the Popov-Belevich-Hautus lemma [21], which
states that an LTI system is unobservable if and only if
A has an eigenvector w in the null space of C.

Specifically, the state matrix is symmetric [12], with285

eigenvalues N and 0 of multiplicity 1, and 1 with mul-
tiplicity N − 2. Taking node 1 as the center, the eigen-
vector corresponding to the largest eigenvalue is wN =
[N−1,−1, · · · ,−1]T, the one corresponding to the small-
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est one is w1 = [1, · · · , 1]T, and the eigenspace corre-290

sponding to the unit eigenvalue is W2 = Span{w1, wN}⊥.
For any choice of n ≤ N−2 perceptible nodes in the star
that includes the center, there is always w 6= 0 in W2,
which has zero components in correspondence to all the
perceptible nodes. If the center is not part of the per-295

ceptible dynamics, any choice of n ≤ N − 3 perceptible
nodes would lead to the existence of some w 6= 0 in W2

with zero components in correspondence to any percep-
tible node [29].
Dealing with random networks, we reach the same con-300

clusions, whereby the inference of the size of heterogenous
networks from the detection matrix could not be practi-
cally viable. We illustrate this claim by studying two
unweighted directed random graphs with average out-
degree ⌊N/10⌋: the homogeneous random graph consid-305

ered in Ref. 1 and a heterogenous random graph obtained
by adapting the version of the Barabási-Albert [30] algo-
rithm proposed in Ref. 31. The algorithm starts from
a complete network of ⌊N/10⌋+ 1 nodes and iteratively
adds new nodes in a sequence of steps, which are pref-310

erentially attached to high in-degree nodes, maintaining
an almost constant out-degree distribution.

Figure 1 shows that access to less than 10% of the
nodes is sufficient to exactly infer the network size
(rank(O) = N) of a homogeneous network, which is in315

line with numerical evidence by Ref. 1, but reliably esti-
mating the size of a heterogeneous network is unfeasible.
While the standard deviations in the rank of the detec-
tion matrix are negligible for the homogeneous network,
we record standard deviations as large as 5% for hetero-320

geneous networks. Hence, the selection of the perceptible
nodes has negligible influence on the accuracy of the in-
ference for homogeneous networks, while it can play a
critical role for heterogeneous networks. This evidence
is in agreement with our analysis of star graphs, which325

supports that access to the center is less important than
access to terminal nodes, and with results in Ref. 16,
which pinpoint at a mediating effect of local connectivity
on network observability in star-shaped networks.
These findings confirm that caution is warranted when330

drawing inference regarding the size of a network from
the dynamics of perceptible nodes, unless one has some
prior knowledge regarding the network dynamical sys-
tem. Practically, we can only attempt at estimating the
size of the largest observable subset of the network dy-335

namical system, which could be only a small portion
of the whole system. For consensus protocols over un-
weighted networks, heterogeneity has a detrimental effect
on observability, whereby access to most of the network
nodes is required for accurately inferring the network size.340

Conclusion. Technical progress in the theory of net-
work dynamical systems has often been informed by
mathematical control theory. For example, the study of
synchronization of chaotic oscillators has benefitted by a
strong connection with the theory of Lyapunov stability345
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FIG. 1. Rank of the observability matrix of (a) homogenous
and (b) heterogenous directed random networks of N nodes,
executing the consensus protocol in (3), as a function of the
fraction of perceptible nodes n/N , for N = 50 (blue squares),
N = 100 (open red circles), and N = 150 (orange triangles).
Simulations are average values over 100 runs and error bars
indicate standard deviations. The black dashed line indicates
perfect inference of the network size.

[32], which allows for the formulation of a master stabil-
ity function that clarifies the interplay between individ-
ual dynamics and network topology on synchronization.
Likewise, the notions of controllability and controllabil-
ity Gramian have clarified the possibility of steering the350

evolution of a network dynamical system toward desired
states through control actions at a few selected nodes
[33, 34].

We propose that the relationship between the detection
matrix [1] and the concept of observability uncovered in355

this work could beget similar methodological and theo-
retical advances. This paper shows that the success of the
detection matrix in exactly estimating the size of a net-
work is, in fact, conditional to the complete observability
of the system from its perceptible dynamics. Irrespec-360

tive of the number of independent experiments and the
number of samples, any inference based on measurable
nodes is limited to the observable portion of the network
dynamical system.

The observable portion of the network dynamical sys-365

tem could be a small portion of the entire system when
dealing with networks of heterogeneous degree distribu-
tion. For example, while one or two perceptible nodes
would be sufficient to exactly estimate the size of an un-
weighted path graph, all but two of the nodes must be ac-370

cessed when attempting to infer the size of an unweighted
star graph executing a consensus protocol. Likewise,
working with consensus over random networks, a few
randomly selected nodes may be sufficient for the infer-
ence of homogeneous networks, but access to almost all375

the nodes could be needed for heterogeneous networks.
Hence, prudence is recommended in the application of the
approach to several domains of investigation where het-
erogeneous networks are pervasive, such as social, trans-
portation, and sociotechnical systems [35]. Interestingly,380

temporal patterning of the network connections might
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facilitate observability and improve the power of the de-
tection matrix, by enhancing differences in the footprint
of hidden nodes on the perceptible dynamics.

From the perspective of control theory, the correspon-385

dence between the detection matrix and the concept of
observability could be leveraged in other applications,
where one has knowledge of the network size, but not
about the dimension of its largest observable subset.
In this vein, it may be possible to establish model-free390

strategies to study observability of networks from the de-
tection matrix. These model-free strategies could com-
plement existing methodologies to reconstruct network
structure from time-series [36, 37] and discover model
equations [38], facilitating the study of critical control-395

theoretic metrics from data.

Upon the discovered connection between the detection
matrix and network observability, one may pursue several
lines of further inquiry. In its present formulation, the
approach assumes that each network node has a scalar400

dynamics, so that the dimension of the largest observ-
able set corresponds to the network size. It is paramount
to establish model-free techniques for inferring the size
of networks whose nodes have vectorial dynamics, poten-
tially of different order. In addition, the mathematical405

treatment presented herein is based on a linear, analytic
model for the network dynamical system, which might
not be valid in many applications across natural and
technological settings where nonlinearities, nonsmooth-
ness, and stochasticity cannot be discarded.410
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