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We demonstrate experimentally that a granular packing of glass spheres is capable of storing
memory of multiple strain states in the dynamic process of stress relaxation. Modeling the system
as a non-interacting population of relaxing elements, we find that the functional form of the predicted
relaxation requires a quantitative correction which grows in severity with each additional memory
and is suggestive of interactions between elements. Our findings have implications for the broad
class of soft matter systems that display memory and anomalous relaxation.

Subjected to a perturbation, many systems in nature
will relax anomalously (i.e., non-exponentially) over long
timescales, suggesting complex dynamics and common
underlying, far-from-equilibrium physics. Examples of
specifically logarithmic relaxation are the slow breaching
of colloidal particles at an interface [1], the magnetiza-
tion decay in type-II superconductors [2], the dynamics
of crumpled elastic sheets [3, 4], the evolving area of fric-
tional contact between two interfaces [5, 6], and the stress
decays in a granular packing at fixed strain [7, 8].

A versatile framework applied to the relaxation of vis-
coelastic [9] and dielectric materials [10–12] idealizes a
system as an ensemble of simple, exponential relaxers in
parallel with one another, with a distribution of differ-
ent relaxation times (DRT). To explain the widespread
occurrence of logarithmic relaxation, Amir et al. [13] mo-
tivated a specific distribution of relaxation times on fairly
general grounds. Importantly, the Amir, Oreg, and Imry
(AOI) variant of DRT was also used to explain two-step
nonmonotonic relaxation observed in crumpled mylar [4],
a frictional interface [6], and bulk rock salt [14], after sub-
jecting such systems to a particular driving protocol.

Nonmonotonic relaxation is a surprising and non-
intuitive phenomenon. In the process of energy dissi-
pation, with no external input after the initial driving,
a state variable evolves in one direction before turning
around after some timescale that was imprinted during
the prior driving history. In contrast with memories that
are revealed only when the system is driven [15], these
memories reside in dynamic processes and thus offer a
foothold into studying the quixotic march to equilibrium
of a far-from-equilibrium system.

Here we employ a granular packing to study nonmono-
tonic relaxation within the DRT framework. We store
the memory of an additional strain state in experiment
by appending a compression step at the end of a two-step
driving protocol. The functional form of the relaxation,
while qualitatively similar to that predicted by the model,
requires a quantitative correction which grows in sever-
ity with the additional memory. We suggest a route to
reconciliation between the model and experiment, guided
by the presence of discrete relaxation events in the data.

For each experiment, 5mm diameter soda lime glass
spheres (MoSci) were poured into a 5cm diameter latex

membrane to form a 2:1 column (height to diameter)
(Fig. 1a). Isotropic confinement of 40kPa was applied
via holding the interior of the membrane at lower pres-
sure. The column was compressed by an Instron univer-
sal materials tester to a strain of ε = 0.1, as a fraction
of the initial (uncompressed) height, over two minutes.
During this initial compression, stress builds across the
packing and grain reconfigurations lead to stress fluctu-
ations (Fig. 1b). All experiments in this Letter began
in this way and then were followed by up to two addi-

tional strain steps ∆ε(i) after wait times t
(i)
w . The stress

relaxation of interest occurs in the final static hold, dur-
ing which nothing further is done to the granular system
beyond monitoring the stress.

Simple uniaxial compression followed by a hold with-
out any additional steps of (de)compression leads to
stress relaxation of the granular material that is approx-
imately logarithmic in time (Fig. 1c), in agreement with
past results [7, 8]. That the relaxation is non-exponential
suggests granular materials might be able to exhibit non-
monotonic relaxation after appropriate driving protocol,
and the logarithmic form in specific invites a treatment
with the AOI distribution of relaxation rates, as in [4, 6].

One possible protocol to initiate nonmonotonic relax-
ation is as follows: rather than holding the system at
a strain state ε indefinitely, it is allowed to relax par-

tially for some time t
(1)
w , but then the applied strain is

decreased to ε − ∆ε(1). After driving a granular pack-
ing in this way, it relaxes in a strikingly non-intuitive
manner: without any additional prompting, nor any ad-
ditional energy input to the system, the stress measured
increases for a period of time before turning around and
resuming a slow decrease that shows no signs of stopping

on experimental time scales. Further, the timescale t
(1)
w

of the hold in the strain state ε emerges as a memory
which is revealed in the turnaround time tp (Fig. 1d,e).

We employ DRT to explain the nonmonotonic relax-
ation, as was previously done by Lahini et al. [4]. Within
the framework of DRT, a system is idealized as a pop-
ulation of simple, exponential relaxers in parallel with a
distribution of relaxation rates P (λ). In the AOI vari-
ant [13], P (λ) ∼ 1/λ over a range [λmin, λmax], yielding
logarithmic relaxation over timescales between λ−1

max and
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FIG. 1. Anomalous relaxation in a granular packing of glass spheres. (a) The 5mm glass spheres used in experiment, magnified
and in the latex membrane. (b) Stress-time data for single step relaxation, where a packing is compressed to strain ε = 0.1 and
then held statically for the remainder of the experiment. Inset illustrates the experimental protocol: arrows pointing inward
(outward) correspond to compression (decompression), and red lines denote holds at constant strain. (c) The stress decays
approximately logarithmically from the moment compression halts. These data are from (b), with stress normalized by its
value at the start of the hold. (d) Stress-time data for two-step relaxation. (e) The stress of two-step relaxation for three

different t
(1)
w , with turnaround time marked by arrows. (f) The turnaround time, tp, scales approximately linearly with t

(1)
w ,

for constant ∆ε(1).

λ−1
min. Compelling reasons in support of this distribu-

tion of relaxation rates were described in earlier work
on luminescence [16]. P (λ) ∼ 1/λ is uniform in logλ
space and identical whether working in terms of rates λ
or timescales τ = λ−1. Both λ and τ are scale parame-
ters – i.e., domain of (0, ∞) – and as such this distribu-
tion is the maximum entropy distribution [17] for which
minimal prior information has been assumed. The distri-
bution maximizes generality, providing a reason for the
widespread occurrence of logarithmic relaxation.

Each of the relaxing elements holds a portion of stress
Γ(λ) which dissipates exponentially in time according to
dΓ = −λΓdt, and the measured signal (i.e., the total
stress) is the sum over all elements. Compression af-
fects all elements equally and is taken to occur over a
timescale negligible to even the fastest elements (i.e., a
(de)compression step takes Γ(λ) ← Γ(λ) + α∆ε, with α
a constant). Figure 2c shows the system state at various
stages of relaxation, where the elements are displayed
from slowest (left, dark) to fastest (right, light). At a
time tw into the relaxation (Fig. 2c II), the fastest ele-
ments have relaxed to Γ = 0 stress and the slowest still
bear most of their original stress.

In such a state, the system has dual natures: through
the slow elements it remembers the initial, unstrained
state, and through the fast ones it has adapted to the
strain state ε. Decompression at this time decreases the
magnitude of the stress in the slow elements and nega-
tively stresses the fast elements, creating a system state
Γ(λ) in which subsets of the elements will relax in oppos-
ing directions. The fast elements relax first, causing the
paradoxical increase in stress over time even though all
elements decrease in energy, which scales with the square
of the stress. Eventually the slow elements turn the re-
laxation around, giving rise to nonmonotonic dynamics.
The memory is clearly visible in the stress held across
the relaxing elements, Γ(λ), in state III of Fig. 2c, where
the timescale of the switch in sign was imprinted by the

duration of the hold t
(1)
w .

Casting the nonmonotonic relaxation of the granu-
lar packing within the DRT framework shows that the
storage capacity of memories should be larger than two.
Specifically, by appending a small strain step in the origi-
nal (positive) direction, we can create three steps of relax-
ation in a simulated system (Fig. 2b). Again, the mem-
ory is manifest in Γ(λ) of state V in Figure 2c, where the
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FIG. 2. The different relaxation times framework (DRT) with
the Amir-Oreg-Imry distribution of relaxation rates (AOI).
(a) Simulated stress-time data for two-step relaxation. Inset:
The relaxation from the start of the final hold. (b) Simulated
data for three-step relaxation. Inset: The relaxation from the
start of the final hold. In (a) and (b) the dashed line shows

the relaxation of f(t) without the extra strain step ∆ε(1) and

∆ε(2), respectively. (c) The state of the system Γ(λ) at vari-
ous points in time, shown as the stress held by each element
ordered from slowest (dark, left) to fastest (light, right). The
time of the states are marked in (a) and (b) as Roman nu-
merals I-V. The arrows show the direction and qualitative
magnitude of relaxation. The scale of Γ(λ) is relative to the
stress in each element in state I.

population of relaxing elements has been split into three
counter-relaxing contingents.

Guided by the simulated system, we find three-step
relaxation – the first observed in any disordered system,
to the best of the authors’ knowledge – in our packings
by adding a small compression step ∆ε(2) in the forward

direction, after waiting time t
(1)
w at ε and then t

(2)
w at

ε − ∆ε(1) (Fig. 3a). The resulting stress during relax-
ation undulates back and forth without any intervention:
it decreases, increases, and then decreases again over
timescales imprinted during the loading process. After
fixing the strain state for the final hold, nothing is done
to the granular system to prompt the nonmonotonicity;
thus at the start of the hold the packing is in a state that
‘knows’ to turn around in stress after 4 seconds and then
again some 90 seconds later.

The DRT model with the AOI distribution yields a
functional form for the nonmonotonic relaxation: a sum
of alternating logarithms, staggered in time according to

a
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FIG. 3. Three-step relaxation of glass beads. (a) Stress dur-
ing the final hold of three-step relaxation, rescaled by its value
at the start. Inset: Stress-time data for the various stages of

relaxation, showing the two wait times t
(1)
w and t

(2)
w before the

final hold. (b) Varying t
(1)
w while holding the rest of the driv-

ing protocol constant shifts the time of the second turnaround
in stress. Memories are thus played out in the reverse order
from which they were stored during driving.

the start of the prior strain steps [4] (see Figs. 4a, b).
However, we find a correction is necessary to achieve rea-
sonable fits to the two- and three-step relaxation data
(Fig. 4). Specifically, we find that the wait times in-
side the logarithms need to be multiplied by a parameter
C > 1. This does not arise from the model (where C = 1)
and indicates deficiency in its descriptive power. Impor-
tantly, only a significant modification to the model could

scale the waiting timescales t
(i)
w in this way; changes to

P (λ) or the excitation upon compression ∆ do not rescale

t
(i)
w [18]. C > 1 was also necessary to fit the two-step re-

laxation in Ref. [4], though no attention was called to it,
presumably because C was close to unity. We find that
three-step relaxation data significantly increases the dis-
crepancy between the AOI DRT prediction and the ex-
perimental results, with fitted C values often an order of
magnitude larger than the model allows (Fig. 4c).
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FIG. 4. Fitting multistep relaxation data to the form pre-
dicted by the model. (a) An example of two-step relaxation
data fitted to the form predicted by the model (C = 1) and
to a form where C is allowed to vary. (b) The same, for an
example of three-step relaxation. (c) The best-fit values of
the parameter C across all two- and three-step relaxation ex-
periments. The dashed line, C = 1, represents DRT with the
AOI distribution.

We conjecture about C > 1 based on observations of
discrete events that occur during the relaxation of a gran-
ular packing. During such events, the stress or its deriva-
tive suddenly change in magnitude. These events appear
to be the same local restructuring events that constitute
plastic deformation under continued compression (Fig.
1b, and [19]). In many cases, one of which is shown in
Fig. 5a, an event renews fast timescale relaxation late
into a static hold. In terms of the DRT framework, the
event effectively “rejuvenated” faster relaxing elements
which had long since adapted to the current strain state.
This is suggestive of crosstalk between the relaxing ele-
ments, occurring in discrete steps during events such as
the one shown and ostensibly continuously during the
gradual flow of the granular packing. That the renewed
relaxation is approximately logarithmic over more than
two orders of magnitude in time shows the crosstalk re-
distributed stress to the fast elements nearly uniformly.

A simple form of crosstalk between elements can be
incorporated into the model through an effective diffusion
of stress in Γ(λ). The diffusion is included as a Laplacian
in logλ space, scaled by a coefficient D. Implemented in
this way, all relaxation curves (Fig. 5b) are fit by the
same series of logarithms as in Fig. 4a, and the fitting
parameter C grows from 1 in the absence of diffusion to as

a
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FIG. 5. Crosstalk between elements in the model. (a) A
sudden relaxation event late into one of the experiments (left
panel, at t=277.22s) leads to a renewal of logarithmic decay in
stress (right panel). In the framework of DRT, this occurs as a
renewal of the fastest relaxing elements. (b) Simulated two-
step relaxation where the driving protocol is held constant
and diffusion between elements is varied. The fitting function
is the same as in Fig. 4a.

large as 3 for the specific (t
(1)
w , ∆ε(1)) two-step protocol

simulated. With faster stress diffusion, the value of C
decreases until eventually the nonmonotonicity vanishes.

The diffusion of stress between relaxers lies in the same
vein as modifications to DRT where the relaxation rates
can evolve in time [20]. It offers a means to incorpo-
rate coupling between elements and to venture into the
gulf between parallel and sequential models of relaxation
(e.g., [21–23]). However, we also find that this implemen-
tation of diffusion modifies single step relaxation away
from logarithmic at large timescales, and preliminary
sweeps of three-step relaxation did not lead to values of
C much greater than 2.

In this work, the seemingly paradoxical behavior of a
nonmonotonically relaxing disordered system has been
investigated in a new guise: a granular packing of glass
spheres. The general DRT model, with the AOI distri-
bution of relaxation rates, was used to explain two-step
relaxation and predict three-step relaxation before ex-
posing its own deficiency in the fitting function for the
stress relaxation. Three-step relaxation experiments thus
present the most stringent test to date for models of
anomalous relaxation, and offer unique insight to the dy-
namics of far-from-equilibrium systems.
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