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Viscoelastic flows through microstructured geometries transition from steady to time-dependent
and chaotic dynamics under critical flow conditions. However, the implications of geometric disorder
for flow stability are unknown. We measure the onset of spatio-temporal velocity fluctuations for a
viscoelastic flow through microfluidic pillar arrays, having controlled variations of geometric disorder.
Introducing a small perturbation into the pillar array (∼ 10% of the lattice constant) delays the onset
of the instability to higher flow speed, and yet larger disorders (≥ 25%) suppress the transition to
chaos. We show that disorder introduces preferential flow paths that promote shear over extensional
deformation and enhance flow stability by locally reducing polymer stretching.

Viscoelastic fluids encompass a wide range of complex
materials having a mechanical response to strain that lies
between elastic solids and viscous fluids [1]. Even in the
absence of inertia, viscoelastic flows can spontaneously
exhibit time dependency when elastic stresses overcome
viscous stresses. This condition is often characterized by
aWeissenberg number, Wi = τ γ̇ >Wicr ∼ 1, where γ̇ is the
typical shear rate and τ is the fluid relaxation time [2].
These viscoelastic instabilities impact a wide range of
natural and industrial applications, including secondary
flows in DNA and blood suspensions [3, 4], increased hy-
drodynamic resistance [5] along with power consumption
and cost in polymer processing, and enhanced mixing and
dispersion in microfluidic and porous media flows [6–8].

Parallel viscoelastic flows are non-linearly unstable [9,
10] and upstream flow perturbations are required to trig-
ger a subcritical transition [11, 12], where the result-
ing velocity fluctuations are commonly termed “elastic
turbulence” [13]. Conversely, in flows with strong base
curvature, a linear instability - initiated through poly-
mer stretching along curved streamlines [14] - results
in a supercritical transition [15, 16]. Focusing on the
latter case for flows through geometrically complex mi-
crostructure (e.g. porous media and pillar arrays) [17],
time-dependent, curvature-induced flow instabilities at
the pore scale [18, 19] communicate with adjacent pores
in highly connected networks to exacerbate fluctuations.
Experimental [15, 20–23] and numerical [24–26] efforts
have characterized elastic instabilities in a wide range of
geometries, but how geometrical disorder affects the on-
set of elastic instability remains an open question.

Geometrical disorder is a fundamental determinant of
transport properties for diverse physical systems, ranging
from Anderson localization [27] to colloidal glasses [28] to
network dynamics [29]. Similar to viscoelastic flows, cou-
pled dynamical systems are known to display chaotic dy-
namics under sufficient driving force [30]. However, sim-
ulations suggest that disorder can promote synchroniza-
tion among arrays of forced, coupled pendula [30, 31] and
cause a transition from a self-organized-critical (SOC)

distribution of avalanches to system-wide, periodic events
in earthquakes and neural networks [32, 33], phenomena
which have been realized in relatively few experimental
systems [31, 34]. In this Letter, we use microfluidic ex-
periments to demonstrate how flow channelization, con-
ferred by geometric disorder, suppresses the supercriti-
cal transition and chaotic dynamics of viscoelastic flow
(Fig. 1). The underlying mechanism of enhanced flow
stability is the promotion of shear over extensional defor-
mation, which reduces polymer stretching. The sensitiv-
ity of this transition to small geometrical perturbations
shows that the onset of linear viscoelastic instabilities in
hydraulic networks is not predicted by traditional met-
rics [14] such as the Weissenberg number. Rather, vis-
coelastic stability depends strongly upon the Lagrangian
deformation experienced by fluid particles, mediated by
disorder. This newfound insight into viscoelastic flow sta-
bility in complex geometries has direct implications for
remediation, extraction, and filtration processes, includ-
ing enhanced oil recovery where chaotic viscoelastic flow
promotes mixing and oil displacement [7, 8].

Microfluidic channels (25 mm long, 4 mm wide, 50 µm

high) containing arrays of cylindrical pillars (diameter,
d = 50 µm) were fabricated using soft lithography. Five
individual microchannels were fabricated with disorders,
β = [0, 0.125, 0.25, 0.5, 1.0], where pillar locations were
randomly displaced from an ordered hexagonal lattice
(lattice constant, a = 120 µm) within a hexagon of cir-
cumradius, βa (see Supplemental Material [35]) . The
viscoelastic fluid is a dilute solution (c/c∗ = 0.43) of high
molecular weight polyacrylamide (PAA; 18 × 106 g/mol;
c = 150 ppm) in a viscous solvent (97% aqueous glyc-
erol) [15]. The polymer solution is slightly shear thinning
(viscosity, η) and has a relaxation time, τ = 1.14 s±0.1 s,
where the latter was measured using a capillary breakup
extensional rheometer (CaBER; see Figs. S3 and S4 [35]).
The viscoelastic fluid is pressure-driven through the pil-
lar arrays (Elveflow OB1), and video microscopy (Nikon
Ti-e; 10×, 0.3 NA objective) captures the motion (100
fps; Andor Zyla) of fluorescent tracer particles (diame-
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FIG. 1. Disorder reduces chaotic fluctuations in viscoelastic flows. (a) Normalized, time-averaged speed field, ū(r)/max(ū(r)),
in a microfluidic pillar array for a range of Weissenberg numbers, Wi, and geometric disorders, β (40% of full field of view
shown; see also Supplemental Movies 1-5 [35]). Scale bar, 150 µm. (b) Local, normalized speed field fluctuations, ũRMS(r), as
a function of increasing Wi, corresponding to speed fields for β = 0 [green box in (a)]. (c) Local, normalized speed fluctuations
as a function of increasing disorder, corresponding to speed fields for Wi ≈ 4 [magenta box in (a)].

ter, 0.5 µm). Time-resolved velocity fields, u(r, t), are
measured using particle image velocimetry (PIV) [54],
and Lagrangian statistics are obtained by simultane-
ous particle tracking. A maximum Reynolds number of
Re = ρUd/η ≲ 10−4 (density, ρ; mean flow speed, U) en-
sures that inertial effects are negligible.

The introduction of geometric disorder into the pillar
arrays shifts the flow topology from highly periodic to
heterogeneous and decreases the temporal fluctuations of
the velocity field. Flow speed fields, u(r, t) = ∣u(r, t)∣, are
time averaged, ū(r) = ⟨u(r, t)⟩t, to quantify flow topol-
ogy [Fig. 1(a)] as a function of both disorder, β, and
flow strength, where the latter is characterized by the
Weissenberg number, Wi = τU/d. At low Wi, disorder
induces heterogeneities in the time-averaged speed field
[Fig. 1(a), Wi ≈ 0.1], similar to Newtonian flow [55, 56].
As Wi is increased, the flow speed in fast flowing re-
gions becomes amplified leading to ‘channelization’ of
the flow field [Fig. 1(a), β = 1.0]. In ordered ge-
ometries, the measured local temporal fluctuations [15],

ũRMS(r) =
√
⟨(ũ(r, t) − ⟨ũ(r, t)⟩t)2⟩t, of the normalized

speed field, ũ(r, t) = u(r, t)/U , increase with Wi, as ex-
pected for Wi ≳ 1 [Fig. 1(b), corresponding to green box
in Fig. 1(a)]. In surprising contrast, the amplitude of
the temporal flow speed fluctuations decreases by an or-
der of magnitude as the disorder is increased at high Wi
[Fig. 1(c), Wi ≈ 4; see also Supplemental Movies 1-5 [35]].

Careful inspection of the velocity field reveals that sub-
pore-scale spatial fluctuations are negligible, justifying
our coarse-grained, hydraulic network description of the

fluctuating flow field (Fig. 2(a)-(c)) [12]. The normalized
speed fields are interpolated [Fig. 2(b)] between pillars
to obtain a time-dependent speed profile [Fig. 2(d)-(e)],
ũ(λi, t), where λi runs across throat i. Kymographs of
the local throat flow speed fluctuations about the mean,
ũ′ = ũi(t) − ⟨ũi(t)⟩t, show that their spatial extent is
comparable to the pore scale [Fig. 2(d)-(e)]. Thus, we
take the instantaneous flow speed averaged across each
throat, ũi(t) = ⟨ũ(λi, t)⟩λi

, as our metric for speed fluc-
tuations [Fig. 2(f)]. The normalized throat flow speed
initially exhibits small fluctuations in the ordered sys-
tem, which markedly grow with increasing Wi [Fig. 2(f),
β = 0]. In distinct contrast, throat speeds for the disor-
dered system remain steady for all Wi [Fig. 2(f), β = 1]
with comparable fluctuations to the Wi ≈ 0.1 ordered sys-
tem [Fig. 2(f), β = 0]. This pore-scale analysis captures
the essential features of the system (Fig. 1) and provides
a convenient framework to determine how disorder affects
the dynamical transition to chaos.

Examination of the pore-scale flow speed fluctuations
demonstrates that the onset of time-dependent flow un-
dergoes a global, forward bifurcation [12, 35] in the or-
dered geometries but not in disordered geometries. The
ensemble-averaged, temporal fluctuation of the normal-
ized throat speeds, Σ̃ = ⟨

√
⟨(ũi(t) − ūi)2⟩t⟩i, is used as

the order parameter, where ūi = ⟨ũi(t)⟩t [Fig. 3(a)]. For
the ordered lattice (β = 0) at Wicr ≈ 0.5, we observe a
supercritical bifurcation in the throat speed fluctuations
lacking hysteresis (see Fig. S9 [35]), which is consistent
with prior work in ordered arrays [12] and the predicted
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FIG. 2. Pore-scale velocity fluctuations are indicative of elastic instability. (a) Normalized, time-averaged speed field for the
ordered lattice (β = 0, Wi ≈ 4). Streamlines (black) are computed from measured flow fields, and pillar locations (gray circles)
are used to discretize throat cross sections (gray lines). Scale bar, 70 µm. (b) Schematic of the throat flow profile, ũ(λi, t), and
spatially-averaged speed, ũi(t), with local coordinate, λi. (c) Normalized, time-averaged speed field for a disordered lattice
(β = 1, Wi ≈ 4). (d)-(e) Measured instantaneous (ũ(λi, t); green) and time-averaged (⟨ũ(λi, t)⟩t; black) throat speed profiles
(left) and flow speed fluctuation, ũ′i = ũi(t) − ⟨ũi(t)⟩t, kymographs (right) for individual throats from (d) ordered and (e)
disordered channels [blue throats in (a) and (c), respectively; Wi ≈ 4]. Instantaneous speed profiles (left, green) correspond to
indicated kymograph time (right, green). (f) Normalized, instantaneous throat flow speed for disordered (β = 0) and ordered
(β = 1) throats at three different Wi values [blue throats in (a) and (c), respectively].

linear instability [9, 14]. The transition is also accom-
panied by the onset of slow flow speed fluctuations (see
Supplemental Movie 2 [35]). A minor perturbation to
the ordered geometry (β = 0.125) significantly delays the
transition to Wicr ≈ 1.2, where time-dependent flow oc-
curs. At yet higher disorders, the transition may be de-
layed beyond the limits of our experiment as the flow ap-
pears stable up to Wi ≈ 5, with no discernible bifurcation
for β ≥ 0.25 and significantly damped speed fluctuations.
For example, Σ̃ for viscoelastic flows with β = 1.0 is one
order of magnitude smaller than for β = 0 and compara-
ble to Σ̃ for both Newtonian and shear thinning control
experiments [Figs. 3(a) and 3(c); see Supplemental Ma-
terial [35]]. This result represents the first observation of
the stabilizing effect of disorder on viscoelastic flow. The
simple scaling of Wicr across disorders fails to predict the
onset of the viscoelastic instability, indicating a deeper
coupling between flow topology and polymer stretching.

As disorder suppresses the abrupt onset of temporal
fluctuations, it introduces spatial heterogeneity into the
flow topology [56], where viscoelasticity further enhances
flow channelization (Fig. 1) [35]. The normalized, spa-

tial throat speed fluctuations, Γ̃ =
√
⟨(ūi − ⟨ūi⟩i)2⟩i, re-

veal a continuous increase with Wi from their respective,
measured Newtonian values, Γ̃N , for highly disordered
geometries (β = [0.25,0.5,1.0]) [Fig. 3(b)]. In contrast,
ordered geometries (β = [0,0.125]), where bifurcations in
Σ̃ are evident, show relatively little change in Γ̃ with Wi
[Fig. 3(b)]. The result is an apparent trade-off between
spatial and temporal fluctuations with increasing disor-
der [Fig. 3(c)]. The non-linear flow response of disordered
systems to increased Wi goes beyond a simple increase in
the spatial heterogeneity of flow speed, and the observed
channelization [Figs. 1(a) and 2(c)] [57] alters the nature
of the deformations experienced by fluid particles.

The local mode of fluid deformation, or flow type,
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FIG. 3. Disorder delays the onset of viscoelastic instabil-
ity. (a) Normalized temporal throat speed fluctuations as a
function of Weissenberg number, Wi, for a range of geomet-
ric disorders, β. Newtonian (97% glycerol; black circles) and
shear-thinning (3000 ppm xanthan gum; black stars) control
experiments shown for β = 0 (upper horizontal axis). (b)
Normalized spatial fluctuations of time-averaged throat flow
speed as a function of Wi in various disorders. Dotted lines
represent measured Newtonian values. (c) Temporal and spa-
tial fluctuations of both viscoelastic and Newtonian fluids for
various β at fixed mean flow speed corresponding to Wi ≈ 4.
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dramatically affects the hydrodynamic response of vis-
coelastic fluids [58]. The flow type parameter [59], Λ =
(∣∣D∣∣ − ∣∣Ω∣∣)/(∣∣D∣∣ + ∣∣Ω∣∣), quantifies the local flow kine-
matics ranging from pure rotation (Λ = −1) to shear
(Λ = 0) to pure extension (Λ = +1), where D and Ω

are the strain-rate and vorticity tensors, respectively, and
∣∣D∣∣ = √2D ∶D. At low Wi, the flow through both or-
dered (β = 0) and disordered (β = 1) arrays is dominated
by extension [Fig. 4(a), top row]. As Wi increases, the
flow type in the ordered geometry remains primarily ex-
tensional [Fig. 4(a), bottom left]. However, a clear shift
toward shear-dominated flow-type is evident in the disor-
dered geometry [Fig. 4(a), bottom right], suggesting that
the flow type experienced by fluid particles is integral to
the stabilizing mechanism of these viscoelastic flows.

The degree of polymer stretching is dependent upon
the Lagrangian flow type history of fluid particles, which
ultimately dictates the global dynamics of viscoelastic
flows [60]. The auto-correlation of the flow type [Fig.
4(b)] along measured particle trajectories [Fig. 4(a),
bottom right, green tracks] quantifies the constancy of
fluid deformation. In ordered arrays [Fig. 4(b), left,
β = 0], fluid particles are subjected to strongly exten-
sional flow with regular frequency, whereas the weakly
correlated flow type experienced in random media likely
facilitates polymer relaxation [Fig. 4(b), right, β = 1] de-
spite the spatial correlations introduced by flow channel-
ization (Fig. 1). To compare the relative flow type expe-
rienced by fluid particles across geometries, we compute
the ensemble-averaged, mean flow type (see Fig. S12 [35])
along measured particle trajectories [Fig. 4(a), bottom
right] over one relaxation time, τ [Fig. 4(c)]. This time-
averaged flow type initially decreases with Wi for all dis-
orders, tending toward shear. However, the most ordered
geometries (β = [0,0.125]) plateau at Λ > 0.3 for Wi ≳ 1,
corresponding to the unstable regime.

Examination of the flow type topology suggests that
shear-dominated preferential paths in disordered systems
globally reduce the extensional strain and the suscepti-
bility for instability. The local flow speed negatively cor-
relates with flow type in disordered arrays (Fig. S11 [35]):
Low speed regions experience relatively strong extension,
which efficiently stretches polymers and results in higher
local flow resistance [58]. Thus, as Wi increases, the
system self-selects to enhance flow along low resistance
preferential paths, where the locally unidirectional flows
are dominated by shear that weakly stretches fluid par-
ticles. In contrast, continuity in ordered geometries frus-
trates the formation of preferential paths and promotes
strongly-curved extensional flows around pillars, which
is the primary driver of viscoelastic instability [12, 14].
Taken together with the Lagrangian analysis, our results
show that disordered media enable viscoelastic flow to
minimize extensional strain and thus stave off elastic in-
stability, whereas ordered microstructure maintains suf-
ficiently strong, coherent extension to trigger instability.
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FIG. 4. Disorder regulates flow type history and the transition
to chaotic flow. (a) Flow type parameter maps measured from
time-averaged velocity fields, ū(r), for ordered and disordered
channels at low and high Wi. Particle trajectories (green)
shown for one relaxation time, τ (lower right). Scale bar,
100 µm. (b) Flow type auto-correlation along tracer trajecto-
ries for β = 0 (left) and β = 1 (right). (c) Ensemble-averaged
flow type along tracer trajectories over one relaxation time.

Lagrangian unsteady flows, having non-constant
stretch history, present theoretical challenges for un-
derstanding elastic flow instabilities [60]. The Pakdel-
McKinley criterion provides some insight into the
geometry-dependent conditions for elastic stability [14]:

[τUR
σ11

η0γ̇
]1/2 ≥Mcr, (1)

where R is the radius of curvature of a streamline, σ11 is
the stream-wise tensile stress, and η0 is the zero shear
rate viscosity. The first term, τU/R, represents the
contribution of geometry to polymer stretching through
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streamline curvature, but this effect has only a minor
variation across disorders (see Fig. S7 in the Supplemen-
tal Material [35]). The second term in the criterion,
σ11/(η0γ̇), is the ratio of extensional to shear stresses.
While we do not have access to the local σ11, the ob-
served evolution to shear-dominated flow with increasing
Wi and disorder (Fig. 4) is consistent with reducing the
Pakdel-McKinley number, tending toward stable flow.
In this Letter, we demonstrate that the introduction

of finite disorder into hydraulic networks suppresses the
onset of chaotic velocity fluctuations associated with vis-
coelastic instability. The stabilizing effect of disorder is
attributed to the formation of preferential flow paths,
which shifts the flow type history of fluid particles from
extensional in ordered systems to shear-dominated in dis-
ordered systems. This work emphasizes the need for a
Lagrangian understanding of viscoelastic flows in com-
plex geometries beyond the Weissenberg number [14].
While the Pakdel-McKinley criterion partially accounts
for flow topology, globally averaged metrics may be in-
sufficient to predict viscoelastic stability in complex net-
works underscoring the necessity for predictive theoret-
ical tools. More broadly, coupled systems often ex-
hibit chaotic dynamics, but few tangible examples of the
counter-intuitive restoration of stability by disorder have
thus far been demonstrated [34]. Hence, this work pro-
vides a novel, experimental example of the suppression
of chaos via disorder and adds to the growing canon of
this important phenomenon.
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by National Science Foundation awards CBET-1701392,
CAREER-1554095, and CBET-1511340 (to J.S.G.).
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