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Elastic scattering of antiprotons off 4He, 12C, and 16,18O is described for the first time with a
consistent microscopic approach based on the calculation of an optical potential (OP) describing the
antiproton-target interaction. The OP is derived using the recent antiproton-nucleon (p̄N) chiral
interaction to calculate the p̄N t matrix, while the target densities are computed with the ab initio
no-core shell model using chiral interactions as well. Our results are in a good agreement with the
existing experimental data and the results computed at different chiral orders of the p̄N interaction
display a well-defined convergence pattern.
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With the Facility for Antiproton and Ion Research
(FAIR) construction under way [1] and the recent PUMA
proposal [2, 3], scientific interest in new experiments on
antiproton scattering off nuclear targets (nucleons and
nuclei) will experience a renaissance.

In the past, there has been a lot of activity in the
antiproton physics at the Low Energy Antiproton Ring
(LEAR) at CERN as well as at KEK in Japan and
Brookhaven National Laboratory (BNL) in USA. At
LEAR, in particular, several measurements of cross sec-
tions have been made for antiproton elastic and charge-
exchange scattering reactions at antiproton momenta in
the range 100 MeV/c ≤ p ≤ 2 GeV/c [4–7].

The dominant feature of antiproton-proton scattering
at low energies, i.e. the energy region on which our pa-
per is focussed, is the annihilation process that, due to
its large cross-section, greatly reduces the probability of
rescattering processes. Antiproton-nucleus (p̄A) scatter-
ing is thus likely to be described by simple reaction mech-
anisms without the complication of multiple scattering
processes, which makes it a very clean method to study
nuclear properties. In fact, the pronounced diffraction
structure of the differential cross sections (in contrast
with elastic proton scattering) is commonly interpreted
as a consequence of the role played by the strong ab-
sorptive potential driven by the annihilation of nucle-
ons and antinucleons. Antiproton absorption is surface-
dominated [7–9] and is strongly sensitive to nuclear radii.
The exchange mechanism and the antisymmetrization
between the projectile and the target constituents are
not relevant in the p̄A interaction, while the role played
by the three-body forces involving an antiproton and two
nucleons (p̄NN) still remains an open question.

From the theoretical point of view, the description
of antiproton-nucleon (p̄N) processes was mainly based
on long-range meson exchanges, with the addition of

phenomenological models for annihilation contributions.
Several approaches have been proposed over the last forty
years. One of the most successful potentials is the model
proposed by Dover and Richard [10, 11] who were in-
spired by the Paris potential. Other antinucleon-nucleon
(N̄N) interactions, based on the meson theory, were also
derived [12, 13], where the N̄N potential of Ref. [13]
was used to study p̄A quasi-bound states [14]. A more
general approach [15] was also employed to provide a
partial-wave analysis of antiproton-proton data. A simi-
lar situation is found for p̄A scattering processes. In the
80s, several nonrelativistic and relativistic calculations
were performed with different approaches which made
use of an optical potential (OP) [16] but required some
phenomenological input. A summary of all these calcula-
tions can be found in Ref. [17]. Even in recent years new
phenomenological models have been presented [18–21].

Due to the tremendous advances in computational
techniques achieved in the past decades, it is now possi-
ble to compute the OP for p̄A scattering in a fully mi-
croscopic and consistent way. The purpose of this letter
is to construct the first fully microscopic OP for elastic
p̄A scattering using the most recent techniques in nu-
clear physics, in particular, the application of chiral p̄N
potentials combined with nuclear densities obtained from
ab initio calculations with chiral two- (NN) and three-
nucleon (3N) interactions. The results for the elastic
differential cross sections produced with our OP will be
then tested against the existing experimental data. For
such a purpose, we adopt a scheme analogous to that em-
ployed in Ref. [22], where a microscopic OP for proton-
nucleus (pA) elastic scattering has been derived within
the Watson multiple scattering theory [23] at the first
order term of the spectator expansion [24] and assuming
the impulse approximation. Recently, interest in the mi-
croscopic calculation of the OP for nucleon-nucleus (NA)
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processes produced several new papers and a very recent
review can be found in Ref. [25]. Here we mention the
work of Burrows et al. [26], which improved the calcula-
tion of the OP including the coupling between the target
nucleon and the residual nucleus, the work of Arellano
and Blanchon [27] on the irreducible nonlocality of the

OP, the work of Whitehead et al. [28] based on the calcu-
lation of the nucleon self-energy within the framework of
the improved local density approximation, and the work
of Kohno [29] on the Pauli rearrangement potential.

In the present work the OP is computed in momentum
space as
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∑
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where q and K represent the momentum transfer and
the average momentum, respectively. Here P is an inte-
gration variable, tp̄N is the p̄N free t matrix and ρN is
the one-body nuclear density matrix. The parameter η
is the Møller factor, that imposes the Lorentz invariance
of the flux when we pass from the p̄A to the p̄N frame in
which the t matrices are evaluated. Finally, E is the en-
ergy at which the t matrices are evaluated and it is fixed
at one half the kinetic energy of the incident antiproton
in the laboratory frame.

The calculation of Eq.(1) requires two basic ingredi-
ents: the p̄N scattering matrix and the one-body nu-
clear density of the target. The calculation of the den-
sity matrix is performed using the same approach fol-
lowed in Ref. [22], where one-body translationally invari-
ant (trinv) densities were computed within the ab ini-
tio no-core shell model [30] (NCSM) approach using NN
and 3N chiral interactions as the only input. The NCSM
method is based on the expansion of the nuclear wave-
functions in a harmonic oscillator basis and it is thus
characterized by the harmonic oscillator frequency ~Ω
and the parameter Nmax, which specifies the number of
nucleon excitations above the lowest energy configura-
tion allowed by the Pauli principle. In the present work
we used the NN chiral interaction developed by Mach-
leidt et al. [31, 32] up to the fifth order (N4LO) with
a cutoff Λ = 500 MeV. In addition to the NN inter-
action, we also employed the 3N force to compute the
one-body densities of the target nuclei. We adopted the
3N chiral interaction derived up to third order (N2LO),
which employs a simultaneous local and nonlocal regular-
ization with the cutoff values of 650 MeV and 500 MeV,
respectively [33, 34]. The interaction is also renormalized
using the similarity renormalization group (SRG) tech-
nique which evolves the bare interaction at the desired
resolution scale λSRG and ensures a faster convergence of
our calculations. The densities have been computed us-
ing ~Ω = 20 MeV and Nmax = 14 for 4He and ~Ω = 16
MeV and Nmax = 8 for 12C and 16,18O. For all these cal-
culations we always adopted λSRG = 2.0 fm−1. Finally,
the importance-truncated NCSM basis [35, 36] was used

for the 12C and 16,18O calculations at Nmax = 8. We
refer the reader to Ref. [22] for all the details about the
calculation of the densities and the removal of the center-
of-mass contributions.

The same NN interaction was used in Ref. [22] to com-
pute the pA scattering matrix. The p̄N interaction is
different from the proton-nucleon (pN) one and in the
present case it is not possible to compute the tp̄N matrix
with the same potential adopted for the calculation of the
density. For such calculation we use the first p̄N interac-
tion at the next-to-next-to-next-to-leading order (N3LO)
in chiral perturbation theory (ChPT) recently derived by
Dai, Haidenbauer, and Meißner [37]. In recent years, ap-
proaches based on ChPT had a great success, especially
in the NN sector [31, 32, 38, 39]. They are able to in-
clude symmetries and symmetry-breaking patterns of low
energy QCD and, at the same time, provide a reliable
framework to express the NN force in terms of a series
of pion-exchange and contact interaction terms. Two-
body and many-body contributions naturally arise from
the same prescriptions. The NN reaction matrix is ob-
tained solving a regularized Lippmann-Schwinger equa-
tion for the bare NN potential. We refer the reader
to Ref. [40, 41] for a complete survey of ChPT and to
Refs. [42, 43] for the recent developments. Higher-order
corrections to Eq. (1) are very difficult to estimate [44],
in particular in a consistent picture along the chiral ex-
pansion of the NN potential, but surely deserve future
studies.

In comparison with conventional NN scattering, some
issues must be addressed in the case of N̄N scattering.
The main difference is that in the N̄N case the annihila-
tion channel is available because the total baryon number
is zero. For low-momentum protons, elastic p̄N scatter-
ing requires a higher number of partial waves compared
to the pN counterpart. All phase shifts are complex be-
cause of the annihilation process and both isospin 0 and
1 contribute in each partial wave [48]. As a consequence,
a treatment of p̄N scattering is intrinsically more com-
plicated than the usual NN system.

A conventional way to relate the NN interaction to
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Figure 1. (Color online) Differential cross sections as a function of the center-of-mass scattering angle for elastic antiproton
scattering off different target nuclei. The results were obtained using Eq.(1), where the tp̄N matrix is computed with the p̄N
chiral interaction of Ref. [37] and the one-body trinv nonlocal density matrices are computed with the NCSM method using
two- [32] and three-nucleon [33, 34] chiral interactions. Experimental data from Refs. [45–47].

the N̄N counterpart is G-parity, i.e. a combination of
charge conjugation and rotation in isospin space [37]. It
connects the pion-exchange physics, so even in the N̄N
case the long-range physics is completely determined by
chiral dynamics. In Ref. [37], Dai et al. developed a
p̄N potential at N3LO in analogy with the correspond-
ing NN potential presented in Refs. [38, 39, 49], with
the same power counting and a regularization scheme in
the coordinate space. It seems that such a local scheme
could avoid problems with the long-range part of the in-
teraction due to pion exchange that, of course, should
not be affected by any regularization procedure. We are
aware of the many theoretical aspects beyond the regular-
ization procedures (see Ref. [50] and references therein)
and more studies will be needed in the future. In Ref.
[37], five different potentials are provided with different
values of the coordinate space cutoff R, that reproduce

with almost the same quality the N̄N phase shifts. In
the present work we employ the R = 0.9 fm version.

In Fig. 1 our results for the differential cross sections
of elastic antiproton scattering off 4He and 12C, com-
puted at the antiproton laboratory energy of 180 MeV,
and 16,18O at 178 MeV are presented and compared with
the experimental data. Our model provides a very good
description of the data for all the target nuclei consid-
ered. In particular, it is remarkable the agreement in
correspondence of the first minimum of the diffraction
pattern for all the targets and the general reproduction
of the data for 18O, since this is an sd-nucleus and is on
the borderline of applicability of the NCSM.

One of the advantages of using a NN or an N̄N in-
teraction in the ChPT scheme is the ability to estimate
the theoretical error associated with the truncation of the
potential at a certain order of the chiral expansion. In



4

0 10 20 30 40 50 60

θ
c.m.

 [deg]

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

d
σ

/d
Ω

 [
m

b
/s

r]

LO
NLO

N
2
LO

N
3
LO

12
C (p,p)

12
C

180 MeV

Figure 2. (Color online) Differential cross section as a function
of the center-of-mass scattering angle for elastic antiproton
scattering off 12C at 180 MeV, computed at different chiral
orders. Experimental data from Ref. [46].

Fig. 2 we display the convergence pattern of the differen-
tial cross section for the 12C(p̄, p̄)12C reaction computed
at different chiral orders. For a consistent comparison,
all the calculations have been performed with the p̄N
and NN interactions at the same order in the chiral ex-
pansion. For the calculation of the density at N2LO and
N3LO we included the 3N force at N2LO with the cou-
plings cD and cE constrained to the triton half-life and
binding energy. This produced two more fits of these pa-
rameters [51], different from those employed with theNN
N4LO interaction, to be used with the NN interaction at
the same chiral order. All these results are displayed in
Fig. 2. As can be seen in the figure, at the leading order
(LO) the calculated cross section is in clear disagreement
with data and has a minimum at about 33◦ that is more
than two orders of magnitude lower than the experimen-
tal one, which is positioned at about 23◦. A bit better
result is obtained at NLO, where the first minimum is
shifted towards smaller angles but the agreement with
the experimental cross section is still poor. At N2LO the
minimum is increased by about two orders of magnitude,
close to the experimental value, but in comparison with
the experimental cross section the calculated cross sec-
tion is shifted towards larger angles and the agreement
with data remains poor. Only at the N3LO the first min-
imum is well reproduced and the general agreement with
data is quite good. It is interesting to note how the dif-
ferences between the results at different orders decrease
going from LO to N3LO, which reflects the improvement
and confirms a well-defined convergence pattern. Similar
results were found in Refs. [52, 53], where a similar anal-
ysis was performed for pA elastic scattering using several
chiral NN interactions at N3LO and N4LO. The con-
clusion is that, for energies around 200 MeV, a good de-
scription of the experimental data is obtained with NN
or N̄N interactions up to at least N3LO. However, the

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

d
σ

/d
Ω

 [
m

b
/s

r]

NN-N
4
LO+3Nlnl  -  λ

SRG
 = 2.0 fm

-1

NN-N
4
LO+3Nlnl

NN-N
4
LO

0 20 40 60 80 100 120

θ
c.m.

 [deg]

-1

-0.5

0

0.5

1

A
y

4
He (p,p)

4
He

180 MeV(a)

(b)

Figure 3. (Color online) Differential cross section (a) and ana-
lyzing power (b) as functions of the center-of-mass scattering
angle for elastic antiproton scattering off 4He at 180 MeV.
The solid line represents the same result displayed in Fig. 1,
the dashed line has been obtained with the target density
computed without the SRG procedure, while the dash-dotted
line has been obtained with the target density computed with
only the NN interaction and without the SRG procedure. We
always used the same values of Nmax and ~Ω. Experimental
data from Ref. [46].
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Figure 4. (Color online) Analyzing power as function of the
center-of-mass scattering angle for elastic antiproton scatter-
ing off 12C and 16,18O computed at the same energies and
with the same inputs of Fig. 1.

choice of a different fitting procedure [54] can produce
an interaction capable to describe the experimental data
already at N2LO, as recently showed in Ref. [26] for the
NA case.

All the results presented so far were obtained with tar-
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get densities computed using NN and 3N interactions
renormalized via the SRG. To assess the impact of the
SRG procedure in our calculations, we display in Fig. 3
the results for the differential cross section and analyz-
ing power for 4He computed with the bare NN and 3N
interactions and the same values of Nmax and ~Ω. The
results are also compared with the ones in Fig. 1. As
can be inferred from the figure, the resulting densities
produce the same results with minor differences at large
scattering angles. Unfortunately, this is the only fully
consistent calculation that we can perform at the mo-
ment, since, in general, the usage of the bare interaction
requires higher values of the Nmax parameter for a com-
plete convergence of the structure calculations and this
is computationally prohibitive for heavier systems like
Carbon or Oxygen.

Finally, in Fig. 4 we display our predictions for the an-
alyzing power of 12C and 16,18O, computed at the same
energies and with the same inputs of Fig. 1. We also show
the only available experimental data [55] obtained on car-
bon targets as part of the LEAR run of experiments. The
measured asymmetries are small, statistically compatible
with zero, and suggest smaller polarisation parameters
than those predicted by some N̄N phenomenological po-
tential models (see Fig. 11 of Ref. [17]). Our predictions,
on the other hand, are consistent with measurements.

In summary, a fully microscopic OP for p̄A scattering
has been derived within the Watson multiple scattering
theory using the N̄N , NN , and 3N chiral interactions
as the only input for our calculations. The new N̄N
interaction derived up to N3LO has been used in our cal-

culations to obtain the tp̄N scattering matrix needed in
Eq.(1). We tested our OP in comparison with the avail-
able experimental data for antiproton elastic scattering
off 4He, 12C, and 16,18O. Our results are in good agree-
ment with data and are able to reproduce the correct
angular position of the diffraction minima. The OP has
been also computed using the p̄N interaction at lower
orders in the chiral expansion to test the convergence
of our results. As obtained in previous pA calculations,
also in this case for a good description of the data it is
mandatory to use an interaction derived at least up to
N3LO. As a concluding remark, we mention that at this
stage new questions arise about the importance of p̄NN
interactions in both structure and reaction calculations.
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[48] P. Bydžovský, R. Mach, and F. Nichitiu, Phys. Rev. C
43, 1610 (1991).
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