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A general thermodynamic framework is presented for open quantum systems in fixed contact with
a thermal reservoir. The first and second law are obtained for arbitrary system-reservoir coupling
strengths, and including both factorized and correlated initial conditions. The thermodynamic
properties are adapted to the generally strong coupling regime, approaching the ones defined for
equilibrium, and their standard weak-coupling counterparts as appropriate limits. Moreover, they
can be inferred from measurements involving only system observables. Finally, a thermodynamic
signature of non-Markovianity is formulated in the form of a negative entropy production rate.

Introduction.— The statement of thermodynamics
laws at the quantum level is an open and fundamental
task. However, given its practical implications in areas
such us quantum transport [1–3], quantum information
[4–6], or AMO physics [7–16], the motivation is far from
being only fundamental. For these reasons, the field of
quantum thermodynamics has emerged lately attracting
an extensive attention [17, 18].

A particularly interesting problem concerns the formu-
lation of a universally valid nonequilibrium thermody-
namic framework for open quantum systems in contact
with thermal reservoirs [19]. By “reservoir” we under-
stand a quantum system with an infinitely large, con-
tinuous, number of degrees of freedom, and a “thermal
reservoir” is the one which initially remains in its canon-
ical Gibbs state ρR(0) = ρR,β = exp(−βHR)/ZR. Here,
β = 1/(kBT ) is the inverse temperature (with T temper-
ature and kB Boltzmann constant), HR is the reservoir
Hamiltonian and ZR = Tr[exp(−βHR)] is its partition
function. Strictly speaking, since ZR becomes infinity
for an infinitely large, continuous, system, the density
matrix ρR,β is ill-defined in such a case. The rigorous
definition of this state is given as a functional in the al-
gebraic formulation of quantum mechanics [20]. How-
ever, we shall write ρR,β with a formal meaning. If the
interaction Hamiltonian between system and reservoir is
denoted by V , the total Hamiltonian reads

H(t) = HS(t) +HR + V, (1)

where HS(t) is a generally time-dependent system Hamil-
tonian (unless otherwise stated we shall adopt the
Schrödinger picture throughout the text). Considering
the system and thermal reservoir initially in the product
state

ρSR(0) = ρS(0)⊗ ρR,β , (2)

after some time interval t, the state changes to

ρSR(t) = U(t, 0)ρS(0)⊗ ρR,βU
†(t, 0), (3)

with the evolution family U(t, 0) := T exp
[
−

i
~
∫ t

0
H(s)ds

]
. This dynamics induces a time-evolution

in the open system S given by a dynamical map Λt,
i.e. a family of completely positive and trace-preserving
(CPTP) maps [21–23], ρS(0) → ρS(t) = ΛtρS(0) :=
TrR[ρSR(t)]. We shall address the derivation of the ther-
modynamics laws for the open quantum system S in this
situation.

Weak coupling considerations.— The first step is the
identification of system thermodynamic variables. Since
the global SR system is isolated, any energy change
(which only occurs for time-dependent Hamiltonians)
must be identified with work W . Thus, the power is
given by

Ẇ (t) :=
d〈H(t)〉
dt

= Tr[ḢS(t)ρSR(t)] = Tr[ḢS(t)ρS(t)],

(4)
where the overdot notation indicates time-derivatives.
This work is assumed to be performed by/applied to the
system as only depends on system variables.

Internal energy and heat are magnitudes more difficult
to be properly defined. However, this task can be suc-
cessfully accomplished in the limit of small interaction V .
In such a case, the expectation value of the total Hamil-
tonian becomes 〈H(t)〉 ' 〈HS(t)〉+ 〈HR〉, and so 〈HS(t)〉
can be unequivocally identified with the system internal
energy EU at time t [24]. Then, taking time-derivative
one obtains the first law in the form of

dE
(w)
U (t)

dt
=
d〈HS(t)〉

dt
= Ẇ (t) + Q̇(w)(t), (5)

with Q̇(w)(t) := Tr[HS(t)ρ̇S(t)] the heat flow in the weak
coupling approximation.

The second law can also be obtained in the weak cou-
pling limit. For a slow time-varying HS(t) compared
to the relaxation time of the reservoir [25], the dy-
namical map can be rigorously approximated by Λt =
T exp

[ ∫ t
0
LD(s)ds

]
where LD(t) is the time-dependent

“Davies generator” [26] with the (time-dependent) GKLS
form [27, 28], so that Λt is CPTP [21–23]. Thanks
to this, and applying a series of results [19, 29] based
on the monotonicity of the quantum relative entropy
D(ρ1‖ρ2) := Tr(ρ1 log ρ1) − Tr(ρ1 log ρ2) under a CPTP
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map Λ [30, 31],

D[Λ(ρ1)‖Λ(ρ2)] ≤ D(ρ1‖ρ2), (6)

it is possible to obtain the second law in the differen-
tial form d

dtSvN(t) − βQ̇(w)(t) ≥ 0, where SvN(t) :=
−kBTr[ρS(t) log ρS(t)] is the (thermodynamic) von Neu-
mann entropy. This can be extended to arbitrarily fast
periodic drivings [19, 32, 33]. Recently, other drivings
have also been analyzed [34].

Out of the weak coupling regime, several attempts have
been performed to formulate a thermodynamic frame-
work, e.g. [35–46]. A possible approach [35, 39, 40]

defines Q̇(e)(t) := −Tr[HR(t)ρ̇R(t)] and E
(e)
U (t) :=

Tr{[HS(t) + V ]ρSR(t)} as heat and system internal en-
ergy, respectively. Here, the superscript “e” stands for
“external” as, in this approach, those variables are ac-
tually external properties, defined in terms of reservoir
mean values. This is undesirable from the open system
theory, and implies the experimental difficulty of con-
trolling the state of the reservoir in order to make ther-
modynamic measurements. Nevertheless, it is possible
to obtain the first and the second law in the integrated
form ∆SvN(t)− βQ(e)(t) ≥ 0 for a “finite size” reservoir
[35, 39, 40]. Although they are also expected to hold
for true (infinite) reservoirs as an appropriate limit, one
should be careful at this point in the continuous limit be-
cause quantities such as the reservoir von Neumann en-
tropy are ill-defined. On the other hand, as we shall see in
a moment, these definitions do not fit with the expected
situation once the system reaches thermal equilibrium.
In order to overcome these difficulties an alternative ap-
proach is needed.

Equilibrium considerations.— Let us assume for a
moment that HS is time-independent in (1). There is
a vast literature showing that system and reservoir ther-
malize after some transient time interval [37, 47–60]. In
particular, under certain regularity conditions on reser-
voirs and couplings, it can be rigorously proven [47–54]
that

ρSR(t) = e−iHt/~ρS(0)⊗ ρR,βe
iHt/~ t→∞−−−→ e−βH

ZSR
. (7)

This convergence requires R to be an infinitely large con-
tinuum, and this implies ZSR = Tr[exp(−βH)] to be
singular, as commented. Thus, the limit in (7) must
be understood in functional sense [61]. Thermalization
suggests that, any suitable choice of nonequilibrium sys-
tem internal energy must fit the system internal en-
ergy obtained from the global canonical state ρSR,β =
Z−1

SR exp(−βH), once equilibration is reached (perhaps
asymptotically). That equilibrium thermal internal en-
ergy has been studied both in the classical [62–67] and in
the quantum [44, 63, 68, 69] realm. The method is based
on the definition of the “Hamiltonian of mean force” H∗S

by the equation

H∗S := −β−1 log
[(
ZSR

ZR

)
TrR(ρSR,β)

]
, (8)

so that the reduced system state at thermal equilibrium
is given formally by a Gibbs state for H∗S ,

ρS,eq := TrR(ρSR,β) =
e−βH

∗
S

Z∗S
, (9)

with Z∗S = ZSR/ZR. Now, one requires the fulfillment of
standard equilibrium relations such us F = −β−1 logZS,
EU = F + ∂βF , S = β2∂βF , and F = EU − TS, for Z∗S
playing the role of ZS = Tr[exp(−βHS)] (Z∗S approaches
ZS for vanishing coupling). Since the Hamiltonian of
mean force (8) is a function of β, H∗S(β), this leads to
the following redefinitions of internal and free energy and
thermodynamic entropy at equilibrium (units of kB = 1):

E∗U := Tr{ρS,eq[H∗S(β) + β∂βH
∗
S(β)]}, (10)

F ∗ := Tr{ρS,eq[H∗S(β) + β−1 log ρS,eq]}, (11)

S∗ := Tr{ρS,eq[− log ρS,eq + β2∂βH
∗
S(β)]}. (12)

A possible generalization of Eqs. (10)-(12) for nonequi-
librium is given by the straightforward substitution
ρS,eq → ρS(t) [44, 65, 67]. This choice satisfies ther-
modynamic laws for some restricted class of initial states
[44], but fails for the general initial condition (2) [70].
Therefore, we shall take a different route.

Time-independent system Hamiltonians.— Let us
consider first a time-independent HS. Typically,
TrR(V ρR,β) = 0 (otherwise this can always be achieved
by a convenient redefinition of system and interaction
Hamiltonians, see e.g. [23]), and so under the initial con-
dition (2) we have

〈H(0)〉 = Tr[HρS(0)⊗ρR,β ] = Tr[HSρS(0)]+Tr[HRρR,β ].
(13)

The first term of the right hand side of (13) can be un-
ambiguously identified with the system internal energy
at t = 0. In addition, because of (7), the internal energy
must become equivalent to (10) for asymptotic times.
Strictly speaking, since only relative differences appear
in the thermodynamic laws, this equivalence must hold
up to some time-independent additive constant (which
observes EU = F + ∂βF , S = β2∂βF , F = EU − TS at
thermal equilibrium). The third property we desire for
the choice of internal energy is that it should be given
just in terms of the reduced system dynamics. In similar
spirit to [45], all these properties are satisfied by defining

H~
S (t, β) := −β−1 log[Λte

−βHS ], (14)

such that Λte
−βHS = e−βH

~
S (t,β) and, in parallelism with

(10)-(12),

EU(t) := Tr{ρS(t)[H~
S (t, β) + β∂βH

~
S (t, β)]}, (15)

F (t) := Tr{ρS(t)[H~
S (t, β) + β−1 log ρS(t)]}, (16)

S(t) := Tr{ρS(t)[− log ρS(t) + β2∂βH
~
S (t, β)]}. (17)
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One should note that

H~
S (0, β) = HS, (18)

H~
S (∞, β) = H∗S + β−1 log[ZSR/(ZSZR)], (19)

where the last additive constant is due to the fact that
Λt is trace-preserving [71]. These relations ensure the
correct initial and long time limits of EU(t). Moreover,
for small coupling V , the dynamics is given by the Davies
semigroup [21–23] which has exp(−βHS) as a fixed point,

and so EU(t) → E
(w)
U (t) and the thermodynamic en-

tropy S(t) → −Tr[ρS(t) log ρS(t)] approaches the usual
von Neumann expression.

By construction, the definitions (15)-(17) satisfy
asymptotically, at thermal equilibrium, the ‘standard’
relations F (∞) = −β−1 logZ~

S (∞), EU(∞) = F (∞) +
∂βF (∞), and S(∞) = β2∂βF (∞). In addition, since Λt
is trace preserving, Z~

S (∞) := Tr{exp[−βH~
S (∞, β)]} =

Tr[exp(−βHS)] = ZS. This implies that the thermody-
namic variables at equilibrium take the same value re-
gardless of the strength of the coupling V [72], so they
can be obtained by e.g. their weak coupling expres-
sions. Namely, for the internal energy we have EU(∞) =

−∂β logZ~
S (∞) = −∂β logZS = E

(w)
U (∞) = Tr(ρS,βHS).

Similarly, S(∞) = −Tr(ρS,β log ρS,β) and so the entropy
(17) at equilibrium approaches 0 for vanishing tempera-
ture (in absence of degeneracy), as expected for a ‘ther-
modynamic’ entropy. This behavior has also been found
for S∗ [69], but it is not fulfilled for the von Neumann
entropy as entanglement may preclude the reduced state
to be pure for non-vanishing V .

On the other hand, since for a time-independent
Hamiltonian H there is no work, the first law defines
heat as

Q̇(t) =
dEU(t)

dt
⇒ Q(t) = EU(t)− EU(0)

= EU(t)− 〈HS(0)〉. (20)

In regard to the second law, it can be derived in the
integrated form. From Eq. (6),

D
{

Λt[ρS(0)]
∥∥∥Λt

(
ρS,β

)}
≤ D

[
ρS(0)

∥∥∥ρS,β

]
, (21)

which can be straightforwardly recast in the form

− Tr[ρS(t) log ρS(t)]− S(0)

− β{Tr[ρS(t)H~
S (t, β)]− 〈HS(0)〉} ≥ 0. (22)

By adding and subtracting β2Tr[ρS(t)∂βH
~
S (t, β)], and

using (20), we finally obtain

∆S(t)− βQ(t) ≥ 0. (23)

One may notice that this equation for the entropy pro-
duction reaches the zero value if the system is initially in

FIG. 1: Internal energy (left) and entropy production (right)
of a qubit interacting with a composite spin-boson reservoir.
The qubit is initially in its groud state. The internal energy
EU turns out to be a modest correction to the expectation
value of the system Hamiltonian 〈HS〉 (lighter color, dotted
line). The nonmonotonic entropy production (23) shows the
non-Markovian character of the dynamics, see Eq. (40). We
have taken ω0 = ω1, κ = 0.9ω0, and 10−3ω0 for the spin-boson
decay rates [70].

the Gibbs state ρS(0) = ρS,β , as in that case the equality
in (21) is trivially obtained. Actually, in such a situa-
tion, no thermodynamic magnitude in (15)-(17) changes
on time. This might seem surprising but it can be un-
derstood because, formally,

U(t, 0)ρS,β ⊗ ρR,βU
†(t, 0) =

e−βU(t,0)(HS+HR)U†(t,0)

ZSZR
.

(24)
Since at t = 0 (13) holds, system and reservoir starts ef-
fectively and remains canonical throughout the process,
at instantaneous ‘thermal equilibrium’ in the Gibbs state
of the ‘Hamiltonian’ U(t, 0)(HS + HR)U†(t, 0). Given
that, by hypothesis, there is no applied work, the inter-
nal energy and the rest of the thermodynamic proper-
ties remain constant. This ‘thermodynamic’ reversibil-
ity should be considered, in the strong coupling, as a
different concept from ‘informational’ reversibility. The
density matrix indeed changes on time despite the ther-
modynamic variables and so the thermodynamic ‘state’
remain constant. However, this does not contradict the
standard reversibility notion in weak-coupling thermody-
namics. That is a particular case of this more general for-
malism where both informational variables (e.g. the von
Neumann entropy) and thermodynamic variables (15)-
(17) coincide.

Time-dependent system Hamiltonians.— For a gen-
eral time-dependent HS(t), we still demand the same ini-
tial condition for the internal energy EU(0) = 〈HS(0)〉 =
Tr[HS(0)ρS(0)] as before, and the recovery of the previ-
ous results if HS(t) becomes time-independent. More-
over, we retain the requirement for a formulation just in
terms of system observables. This can be done by keep-
ing the definitions (15)-(17) and redefining the operator
H~

S (t, β) by

H~
S (t, β) := −β−1 log

[
Λt

{
e−βHS(0)−β

∫ t
0

Λ?
s [ḢS(s)]ds

}]
(25)
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where Λ? denotes the Heisenberg adjoint of Λ,
Tr[Λ(A)B] = Tr[AΛ?(B)] [45]. Note that H~

S (0, β) =
HS(0) and for time-independent HS the equation (14) is
recovered, as required.

The first law in this case reads

dEU(t)

dt
= Q̇(t) + Ẇ (t), (26)

and that is used to define heat,

Q(t) := EU(t)− 〈HS(0)〉 −
∫ t

0

Tr[ρS(s)ḢS(s)]ds. (27)

Note that, if we consider a quasistatic and small coupling

regime where Λt
(

exp
{
− βHS(0) − β

∫ t
0

Λ?s [ḢS(s)
]
ds
})
≈

exp[−βHS(t)] such that H~
S (t, β) ≈ HS(t), the weak-

coupling first law (5) is obtained. This reinforces the
definition (25).

In order to derive the second law, we define the auxil-
iary object

Ω(t, r) := −β−1 log
[
Λt

{
e−βHS(0)−β

∫ r
0

Λ?
s [ḢS(s)]ds

}]
,

(28)
which satisfies Ω(t, t) = H~

S (t, β). A straightforward
computation in (27) gives

Q(t) = Tr{ρS(t)[Ω(t, t)+β∂βH
~
S (t, β)]}−Tr[ρS(0)Ω(0, t)].

(29)
For the state

ρ0(β, r) := Z−1
S (r)e−βHS(0)−β

∫ r
0

Λ?
s [ḢS(s)]ds, (30)

with ZS(r) = Tr
(

exp
{
− βHS(0) − β

∫ r
0

Λ?s [ḢS(s)
]
ds
})

,

monotonicity of the relative entropy (6) yields

D
{

Λt[ρS(0)]
∥∥∥Λt[ρ0(β, r)]

}
≤ D

[
ρS(0)

∥∥∥ρ0(β, r)
]
, which

can be recast in the form

− Tr[ρS(t) log ρS(t)]− S(0)

− β {Tr[ρS(t)Ω(t, r)]− Tr[ρS(0)Ω(0, r)]} ≥ 0. (31)

Since this is fulfilled for all r, and particularly for r = t,
again by adding and subtracting β2Tr[ρS(t)∂βH

~
S (t, β)]

and using (29), we obtain the second law

∆S(t)− βQ(t) ≥ 0. (32)

This completes the thermodynamic formulation for gen-
eral open quantum systems in contact with a thermal
reservoir.

As a simple example of this approach we may con-
sider a qubit with Hamiltonian HS = ω0

2 σ
z
S, in dipolar

contact V = κ(σ+
S σ
−
R + σ−S σ

+
R ) with a composite spin-

boson reservoir [73] with Hamiltonian HR = Hspin +
Hboson + Vspin−boson. Here, Hspin = ω1

2 σ
z
R, Hboson =∫

dkω(k)a†(k)a(k), Vspin−boson = α
∫
dkg(k)σxR[a(k) +

a†(k)], a(k) denotes bosonic anihilation operators, and

σz,±S , σz,x,±R stand for Pauli matrices for system and spin
part of the reservoir, respectively. Note that the bosonic
part of the reservoir is not directly coupled to the sys-
tem qubit. The coupling between system and reservoir
is mediated by κ, whereas α is supposed small enough
such that a weak coupling treatment of the spin-boson
degrees of freedom is justified [70]. Figure 1 shows the
comparison between the internal energy EU, Eq. (15),
in the strong coupling and the mean value of the system
Hamiltonian 〈HS〉 for several temperatures. One can no-
tice that, for this model, the latter turns out to be a
modest correction to 〈HS〉 sharing a very similar time-
dependency.

Initially correlated states.— It is worth to examine
whether the previous approach can be extended to dif-
ferent initial system-reservoir states. We do not expect
that for any initial state, but for those sufficiently close
to the thermodynamic paradigm of a system coupled to a
thermal reservoir. Namely, we should consider just those
initial system-reservoir states where the reservoir can be
well-described via the temperature parameter β. This
condition can be rigorously formulated in the framework
of operator algebras [47, 51–53], but, for our purposes,
there are another two natural classes of states which can
be considered in addition to (2). They correspond to the
displacement from the global equilibrium ρSR,β either by
system driving HS(t) or by system quantum measure-
ments, respectively [44].

For the first case ρSR(0) = ρSR,β , and we can assume,
formally, a former product ‘initial’ condition ρS,β ⊗ ρR,β

at t0 = −∞ and ḢS(t) = ḢS(t)θ(t), with θ(t) the step
function. Following the same steps as before we conclude

S(t)− S(−∞)− βQ−∞(t) ≥ 0, (33)

where Q−∞(t) :=
∫ t
−∞ Q̇(s)ds is the heat in the interval

(−∞, t). Then, by splitting this integral into positive
and negative time values, and adding and subtracting
S(0), which in this case is the entropy (17) of the reduced
equilibrium state (9), we have

S(t)− S(0) + S(0)− S(−∞)

− β
[∫ t

0

Q̇(s)ds+

∫ 0

−∞
Q̇(s)ds

]
≥ 0. (34)

Since we have taken ḢS(t) = 0 for t < 0, and the entropy
production for the canonical system state ρS,β reaches
the zero value for time-independent system Hamiltoni-

ans, S(0)−S(−∞)−β
∫ 0

−∞ Q̇(s)ds = 0. Hence, we obtain
the desired result (32) for ρSR(0) = ρSR,β .

For the second case, the joint initial state (after a gen-
erally nonselective, projective measurement) is written
as

ρSR(0) =
∑
k

pkΠk ⊗ ρR|k (35)
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with Πk = |k〉〈k| a complete set of orthonormal projec-
tors and

pk = Tr
(
Πk ⊗ IρSR,β

)
, ρR|k =

TrS

(
Πk ⊗ IρSR,β

)
pk

.

(36)

For this kind of states it is possible to write the re-
duced system dynamics as Λ̃tρS(0) = ρS(t) for ρS(0) =∑
k pkΠk, with Λ̃t a CPTP map [74, 75].
On the other hand, ρSR,β remains static before the

measurement, with system internal energy (15) given by

EU(eq) := Tr{ρS,eq[H~
S (eq, β) + β∂βH

~
S (eq, β)]}, (37)

where H~
S (eq, β) = H∗S + β−1 log[ZSR/(ZSZR)] accord-

ing to (19). Therefore, it seems reasonable to take the
internal energy after the measurement

EU(0) = Tr{ρS(0)[H~
S (eq, β) + β∂βH

~
S (eq, β)]}, (38)

with ρS(0) =
∑
k pkΠk. A finer choice could be possible

with a microscopic model for the measurement interac-
tion where the measurement change was not ‘instanta-
neous’. Then by redefining H~

S (t, β) as in (25) with Λ̃t
and H~

S (eq, β) in the roles of Λt and HS(0), respectively,
the derivation of (32) follows from the same argument as
in previous sections.

Non-Markovianity.— Finally, we show that, within
this approach, it is possible to establish a thermodynamic
signature of non-Markovianity (see also [44, 46, 76, 77]).
Suppose the dynamical map Λt to be CP divisible [78–
80] (actually P-divisible is enough [81]); namely, it can
be decomposed as Λt = Λt,sΛs for any pair t > s with
Λt,s CPTP. Then, monotonicity of the relative entropy
(6) implies

S
{

Λt+ε[ρS(0)]
∥∥∥Λt+ε[ρ0(β, r)]

}
≤ S

{
Λt[ρS(0)]

∥∥∥Λt[ρ0(β, r)]
}
, (39)

for ε > 0. From here, following similar steps as for (32)
and dividing by ε in the limit ε→ 0, we obtain a positive
entropy production rate

dS(t)

dt
− βQ̇(t) ≥ 0. (40)

Hence, a negative production rate for some t is a rigorous
indicator of the non-Markovian character of the dynam-
ics. It is clear the presence of intervals with a strong
negative production rate in Fig. 1.

Conclusions.— We have presented a general thermo-
dynamic framework for open quantum systems in contact
with a thermal reservoir. This was done by identifying
the nonequilibrium internal energy imposing suitable ini-
tial and asymptotic conditions, and the recovery of the
standard weak-coupling result as an appropriate limit.

The factorized initial condition was analyzed in detail
and generalized to two natural extensions of correlated
initial states. Furthermore, we have found that Marko-
vian dynamics imply monotonically increasing entropy
production. This provides quantum non-Markovianity
with a thermodynamic meaning, and allows for the intro-
duction of new physical quantifiers of non-Markovianity.
Notably, all quantities in this approach can be inferred
from measurements involving only system observables.
At most, several preparations might be needed to de-
termine H~

S (t, β) and its derivatives, but no controlled
reservoirs are required. This greatly simplifies the ap-
proach and opens the possibility to measure these strong
coupling thermodynamic variables in the lab.
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[74] C. A. Rodŕıguez-Rosario, K. Modi, A. Kuah, A. Shaji,
and E. C. G. Sudarshan, Completely positive maps and
classical correlations, J. Phys. A: Math. Theor. 41,
205301 (2008).

[75] The CPTP map is formally given by the Kraus opera-
tors Km,n =

∑
k

√
λm|k〈ψR,m|k|U(t, 0)|ψR,n|k〉Πk, where

ρR|k =
∑
m λm|k|ψR,m|k〉〈ψR,m|k| is the spectral decom-

position of ρR|k [74].
[76] S. Bhattacharya, A. Misra, C. Mukhopadhyay, and A. K.

Pati, Exact master equation for a spin interacting with a
spin bath: Non-Markovianity and negative entropy pro-
duction rate, Phys. Rev. A 95, 012122 (2017).

[77] S. Marcantoni, S. Alipour, F. Benatti, R. Floreanini,
A. T. Rezakhani, Entropy production and non-Markovian
dynamical maps, Sci. Rep. 7, 12447 (2017).

[78] A. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-
Markovianity: Characterization, quantification and de-
tection, Rep. Prog. Phys. 77, 094001 (2014).

[79] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Col-
loquium: Non-Markovian dynamics in open quantum sys-
tems, Rev. Mod. Phys. 88, 021002 (2016).

[80] L. Li, M. J. W. Hall, and H. M. Wiseman, Concepts
of quantum non-Markovianity: A hierarchy, Phys. Rep.
759, 1 (2018).

[81] A. Müller-Hermes and D. Reeb, Monotonicity of the
Quantum Relative Entropy Under Positive Maps, Ann.
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