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We show that relatively simple integrated photonic circuits have the potential to realize a high
fidelity deterministic controlled-phase gate between photonic qubits using bulk optical nonlinearities.
The gate is enabled by converting travelling continuous-mode photons into stationary cavity modes
using strong classical control fields that dynamically change the effective cavity-waveguide coupling
rate. This architecture succeeds because it reduces the wave packet distortions that otherwise
accompany the action of optical nonlinearities [J. Shapiro, Phys. Rev. A, 73 (2006)] and [J. Gea-
Banacloche, Phys. Rev. A, 81 (2010)]. We show that high-fidelity gates can be achieved with
self-phase modulation in x® materials as well as second-harmonic generation in x‘® materials. The
gate fidelity asymptotically approaches unity with increasing storage time for an incident photon
wave packet with fixed duration. We also show that dynamically coupled cavities enable a trade-off
between errors due to loss and wave packet distortion. Our proposed architecture represents a new
approach to practical implementation of quantum gates that is room-temperature compatible and
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only relies on components that have been individually demonstrated.

The quest for determinstic photon-photon logic gates
has generally been hindered by the absence of sufficiently
strong nonlinearities at optical frequencies. One possi-
ble solution is to use detection as an effective nonlinear-
ity [1], but two-qubit gates realized this way are prob-
abilistic and require large resource overheads [2]. Even
with large Kerr nonlinearities, Shapiro showed in 2006
that two-photon gates between traveling wave packets
cannot achieve high fidelity [3]; this fundamental limit
was further elucidated in Refs. [4-7], shedding doubt on
the possibility of quantum computing with bulk nonlin-
earities. Recent theoretical proposals have re-opened the
discussion by showing that arbitrarily high fidelity is pos-
sible in certain limits, but their implementations require
cryogenically cooled identical two-level emitters [8, 9],
atomic ensembles [10], or non-local nonlinearities [11, 12].

Here, we introduce a new approach that achieves near-
unity gate fidelity in a compact and room-temperature
compatible architecture, which only relies on the bulk
nonlinearities of optical cavities realized in common ma-
terials for photonic integrated circuits. The scheme relies
on two-photon interactions when the photons are dynam-
ically stored in a nanophotonic cavity. Fig. 1 illustrates
the concept for x® and x® nonlinearities in photonic
crystal (PhC) cavities. Photons with carrier frequency wy,
(purple) travel in a waveguide and couple to cavity mode
a (also at w, as shown in the bottom panel of Fig. 1)
with a static rate, 7. In the x® example, mode b (red)
is decoupled from the waveguide and couples to mode
a through a three wave mixing interaction controlled by
a strong classical field occupying a mode at w, (green),
such that w, + wy = we. Adjusting the amplitude and
phase of the control field results in a time-dependent ef-

fective coupling between mode b and the waveguide that
enables complete absorption and emission of specifically
shaped wave packets. If two photons are absorbed into

Absorption
Photon Controls
y
Storage W/ —
Cavity Mode
Emission
Left Mirror Right Mirror
Bandgaps "“_ of
+ .
Cavity - -
Spectra Wy Wp 2wy Wq w1 Wa Wp Wq
FIG. 1. Absorption, storage, and emission process with

schematic illustrations of cavity implementations in x® (left)
and x® (right) materials. Two sets of photonic crystal
mirrors oriented perpendicularly (x®) or inline (x®) have
bandgaps in different frequency ranges as illustrated by the
black lines in the bottom panel. One-sided cavities required
for complete absorption are achieved by a slight frequency
offset between the bandgaps of the right (solid black) and left
(dashed black) mirror. The decoupled mode (blue) is within
the bandgap of both mirrors while the coupled mode (purple)
lies at the band edge of the left mirror. Only the decoupled
cavity modes must have small volumes for efficient photon-
photon interaction. The control modes are confined by weak
mirrors (w1 and w2) located at the exterior of the small cavity
modes.

mode b, the quantum state undergoes Rabi oscillations



between two photons in mode b and one photon in mode
¢ at 2wy (blue). Adjusting the storage time to equal one
full Rabi oscillation introduces a m-phase compared to
storing a single photon in mode b, which accomplishes
the conditional phase operation. For a x® nonlinearity,
modes a and b are coupled through four wave mixing us-
ing two classical control fields at w; and wo such that
wo—w1 =wg—wp. The conditional phase shift arises from
self-phase modulation of two photons in mode b, which
is absent for a single-photon input. Dynamically coupled
cavities are also useful for manipulating wave packets of
individual photons as illustrated by a recent proposal for
separating temporal modes of propagating photons [13].

While stored in decoupled cavity modes, photons are
single-mode in the limit of zero intrinsic cavity loss.
The fidelity limitations pointed out in Ref. [3] therefore
do not apply to their interaction during this time.
However, the control field that optimally absorbs and
emits wave packets depends on the photon number when
nonlinear interactions are present during the absorption
and emission process. Since the same control field must
be applied to any input state, it unavoidably introduces
a finite amount of error consistent with Refs. [3-7].
Crucially, our numerical analysis reveals that this error
scales favorably with the ratio between the storage time,
T, and the duration of the input wave packet.

Our CPHASE gate works with either a dual- or single-
rail encoding. For the former, two waveguides that carry
the logical 1 for each qubit are in the joint state |11) if and
only if both qubits are logical 1. Applying a 50/50 direc-
tional coupler to these waveguides transforms this joint
state to (|02)+|20))/v/2. Each waveguide feeds an identi-
cal copy of either version of our one-sided cavity structure
illustrated in Fig. 1. Thus two photons are loaded into
each cavity if and only if both input qubits are logical 1.
The two waveguides that code for logical 0 are also each
terminated by a copy of our one-sided cavity to ensure a
consistent phase shift among the other logical states. (for
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FIG. 2. (a) Absorption of a Gaussian wave packet includ-
ing the solution of A®) for both x® and x® materials. (b)
Fourier transformations of A (t) from (a). The shaded ar-
eas plot Lorentzian resonances of mode a with linewidths
v/Qg =6 for a x® material (blue) and v/Qg = 30 for a x®
material (red).

an illustration of this wave-guide configuration see, e.g.,
Ref. [14]). In this circuit, the phase difference between
one- and two-photon wave packets incident on the cav-
ities ensures the logical gate operation. We denote the
action of the gate using bars (e.g. [01) — |01)). Single-
photon input states like |1) = [dt&, (1) (¢)|0) are fully
characterized by their wave packets, &, (t), where normal-
ization requires [|&mn(¢)[2dt=1 and () is the continuous-
time annihilation operator of the waveguide. Output
wave packets are defined through |1) = [dt&ou ()0 (¢)]0)
or [T1) = [[dtmdtn&ount(tm,tn) W (ty)01(¢,)]0) corre-
sponding to the input |11). With identical cavities at
the end of all four waveguides, states |00), |01), and
|01) acquire the same phase. The controlled-phase op-
eration therefore corresponds to the phase requirement,
arg((0]0)) =arg((1]1)) = (arg((11]|11))+m)/2, and we de-
fine the one- and two-photon state fidelities as

B =|(1D)[2=| / Eont (1) Eon(t—T)dt? (1a)
F11:‘/ éhout(trmtn)*gin(tn_T)gim(tm_T)dtndtm2' (1b)

We include a loss rate, «r, for all cavity modes. The
output is therefore in a mixed state but we only calcu-
late the dynamics of the zero-loss subspace so that the
output states above are not normalized, and the fidelities
in Eq. (1) become lower bounds on the fidelities [15].

To calculate the output wave packets, we use a
Schrodinger-picture version of the established time-bin
formalism [16-18], which allows us to derive explicit
equations of motion for the cavity states and input-
output relations in terms of the cavity Fock basis. In
the time-bin formulation the waveguide field is divided
into N time-bins of duration At, and the cavity inter-
acts with the time bins one after the other. We refer to
Ref. [15] for detailed derivations of all the equations of
motion and input-output relations used here.

In time bin n, the classical control field that couples
modes a and b is A, where (k) refers to a x® mate-
rial. In Ref. [15] we derived explicit solutions for A%
that enable complete absorption of a single photon with
an arbitrary wave packet or emission of an arbitrary out-
put. The solutions differ due to cross-phase modulation
imparted on cavity modes a and b by the control fields
only in x® materials. Fig. 2a shows an example of the
absorption process with &, being a Gaussian centered
at Tj, with temporal full-width-at-half-maximum 7; and
spectral width €g. The occupation probability of mode
b is Pé’l”, where k again refers to the order of the non-
linearity. A® has a time-dependent phase to compensate
for the cross-phase modulation it induces on modes a and
b. This broadens and shifts its Fourier spectrum as seen
in Fig. 2b. The absence of cross-phase modulation in
x® materials also enables a similar absorption probabil-
ity with a five times smaller coupling rate, y, compared
to x® materials.



The probability of absorbing an incoming wave packet
only depends on the ratio between mode a’s linewidth,
v, and the spectral width of the wave packet, ;. Fig. 3
plots the error in the one-photon state fidelity, 1 — F7,
for a Gaussian wave packet with a storage time of
T/1;=14.4. The different curves correspond to different
loss rates, =y, which is assumed equal for all cavity

modes. As seen in the figure, the error decreases much
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FIG. 3. Error in one-photon state fidelity, 1—F}, as a func-
tion of the linewidth of mode a for different loss rates (solid
lines). Gray corresponds to vz, /€2g =0 while it increases from
1077 (blue) to 1072 (red) in steps of 10 dB. Dashed lines plot
the corresponding error in the conditional one-photon state
fidelity, 1— F1.
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FIG. 4. (a) Plot of 1—Fy; for a x® material as a function of
storage time, T, for different loss rates. Gray corresponds to
v1/Q¢ =0 and it increases from 4x10~" (blue) to 10™2 (red).
Dashed lines with the same color plot the corresponding val-
ues of the error in conditional fidelity, 1—F};. (b) Plot of 1-F14
as a function of the intrinsic quality factor, 1, correspond-
ing to the vertical cross-sections in (a). The legend shows the
limiting values of the conditional fidelity, 1—F11. Parameters:
v/ =30, x¥ =1.8x10""* m?/V? [19], A=1550nm, T =23.4,
VP =10"% (\/m)>.

faster with increasing /g for x® materials than x®
materials due to the absence of cross-phase modulation.
The curves flatten where the error becomes dominated
by loss. Fig. 3 also plots the error in the conditional
one-photon state fidelity defined by F; = Fy/(1[]1). F
may be understood as the probability of the input
and output states being identical given there was no
loss because it corresponds to the fidelity calculated
using the re-normalized state |1)/\/(1]1) [15]. The ideal
scenario for lossy cavities is that the output wave packet
is a scaled version of the input, {ou(t) = /Néin(t—T).

For a given loss rate, =, there is a corresponding
value of n from which A{ is calculated to achieve
Eout (1) = /Néin(t—T), see Ref. [15] for details. Since the
conditional fidelity by definition is independent of the
scaling factor n, we expect it to be negligibly dependent
on loss so that Fy; ~ Fi(y; = 0), which is confirmed
in Fig. 3. Thus, the photons will exhibit high visibility
quantum interference with other photons in Gaussian
wave packets if they are not lost. For increasing loss, it
is always possible to achieve such high visibility at the
cost of a corresponding decrease in 7.

The gate fidelity is defined as the minimum state fi-
delity over all input states [14, 20]. We can ensure that
Fy = 1if v/Qg is large enough, which means that the
gate fidelity is given by Fj;. Below, we choose v/Q; =6
for x® materials and /s =30 for x® materials, which
we see from Fig. 3 fulfills this requirement. The non-
linear interactions responsible for the conditional phase
shift are described by the Hamiltonians

HO =ty (15 + 2100 (20

ata—1)ata + (iﬂz}—l)iﬂb)

H®) =hys4 (aTaET b+ ( . (2b)
where ¢ is the annihilation operator for photons in the

mode at 2w, (see Fig. 1). The nonlinear coupling rates
are [21, 22]

[ Ty wy X(2)
X2 =\~ 3
€ N /V(Q)

where @? = \/W,wpwiwa, N2 = /n(wa)n(wp)n(wi)n(ws),
€0 is the vacuum permittivity, x® is the k*"-order
nonlinear susceptibility, and V,i¥) is the mode volume for
kth-order interactions.

3 hw? x3)
27 @)

and x3 =

Fig. 4a shows the error, 1—Fyq, for a x® material as a
function of storage time for different values of the cavity
loss rate, ;. Note that for each storage time, 7', the
nonlinear coupling rate, x3, was chosen to achieve the
phase requirement mentioned above. Without loss, the
error scales as 1—Fy;0c1/T%9 and 99 % fidelity is possi-
ble with T/7; < 30. The dashed colored lines in Fig. 4a
plot the conditional fidelity, Fy; = Fy;/(11[11). Note
that 11 ~ Fy1(yz = 0) as in Fig. 3, which means that
1 — F1; may be understood as the error resulting from
wave packet distortion alone, while 1 — F}; additionally
includes error from loss. Increasing the storage time (be-
yond the optimum indicated by circles in Fig. 4a) reduces
wave packet distortions at the cost of increased loss, re-
sulting in a trade-off between the two error mechanisms.

Eq. (3) can convert the normalized loss rate,
AL =71/8g, into an intrinsic quality factor, Qr =w/~vr.
We do this using the parameters listed in the caption



of Fig. 4 for a silicon cavity with an ultra-small mode
volume [23-25]. Fig. 4b plots the error, 1 — Fi;, as
a function of @ for the three vertical cross-sections
in Fig. 4a corresponding to three limiting values of the
conditional fidelity. The error is dominated by loss
where the curves are linear and becomes dominated by
wave packet distortion where the curves saturate.

Fig. 5a shows the error, 1—Fyy, for a x® material as
a function of storage time for different values of the cav-
ity loss rate. Here, the nonlinear coupling rate, ys, is
adjusted so T corresponds to one Rabi oscillation of the
SHG process. The error-scaling is 1—Fy; oc1/T*!, which
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FIG. 5. (a) Plot of 1 — Fi; for second-order nonlinearity as a
function of storage time. Gray corresponds to vz /g =0 and
it increases from 1077 (blue) to 2x 1072 (red). Dashed lines
with the same color plot the corresponding values of the error
in conditional fidelity, 1—Fi1. (b) Plot of the minimum error
as a function of x /v corresponding to the circles in Fig. 4a
(k=3, red) and Fig. 5a (k=2, blue). Dashed lines plot the
corresponding values of the conditional fidelity. The slope
of all curves are -1, demonstrating the relationship 1—Fi; =
C®~r/xK, where C® =5.5 and C® =18.7. Note that (a)
and (b) share the y-axis.

is better than in Fig. 4a since the photons only interact
when they are both in mode b, while they interact dur-
ing the entire absorption and emission process through
both cross- and self-phase modulation for x® materi-
als. For the optimum choice of T (indicated by circles
in Figs. 4a and 5a), the error grows in proportion to the
ratio between the loss rate and the nonlinear coupling,
1—F11 =C®~ /xk, where k again denotes the order of
the nonlinear interaction. Fig. 5b plots this relationship
for both x® (blue) and x® materials (red). It also shows
that the conditional error, 1—Fj;, follows the same re-
lation but is 5.1 and 3.0 times smaller (dashed lines) for
x® and x® materials, respectively. The error may then
be related to the quality factor and mode volume by

‘77%2) 17(3)
17F1(f):c(2)7L and lfFl(f):C(S)%, (4)

where V® = V®(A/n)® and C* o C® /™. Table I
lists the values of C™® for the two most promising x®
materials and the most common x® material, silicon.

The table also lists the required intrinsic quality factor
to achieve a conditional fidelity of 99% for an ultra-small

mode volume, V,\¥) =103 [23-25], and a standard size

for one-dimensional photonic crystal cavities, f/n(@k) =0.5.

LiNbO3 GaAs Si

c 5.0x 10° 8.6x10° | 5.9x10'

vl 1072 | 05 | 107 [0.5] 1073 | 0.5

Qr [3x10°|7x107|5x10%|10%|2x10°|10?

TABLE I. Required values of the intrinsic quality factor to
achieve a conditional fidelity of 99% for three relevant mate-
rials. The corresponding values of Q, for a fidelity of 99% are
5.1 times larger for x® materials and 3.0 times larger for y®
materials. Parameters: LiNbOs: x® = 54pm/V [26], A =
1550 nm, n=2.1. GaAs: x® =270pm/V [27], A =3100nm,
n=3.5. Si: x® =1.8x10""" m?/V? [19], A=1550 nm, n=23.4.

Towards Practical Implementations: While the num-
bers in Table I are very challenging for x® materi-
als, they are much closer to state-of-the-art LiNbOj3 de-
vices. Quality factors of ring resonators have reached
107 [28, 29] and 1D PhC cavities are currently at
10° [30, 31]. Cross-bar PhC designs (as shown in Fig. 1)
have been demonstrated in GaAs [32, 33], and could be
used to reach the doubly-resonant (resonances at wy, and
2wp) requirement. Dynamically coupled cavities have
been demonstrated using free-carrier dispersion [34, 35]
and frequency conversion between cavity modes (neces-
sary for our coupling scheme) has been studied theoreti-
cally [36, 37] and demonstrated experimentally [38-42].

From Fig. 2 it is evident that the control pulses and
photon wave packets are of similar duration, which sug-
gests that optical control fields are necessary, although
electrical control has been demonstrated in LiNbO3 [42].
Ultra fast pulse shaping [43] and time-lenses [44] have
demonstrated precise control of optical fields suggesting
that pulses like A® in Fig. 2 could be synthesized with
existing technology (note that 7, ~ 200ps for F1; =99%
and V¥ =0.5 in Fig. 2).

Thermo-refractive noise at room-temperature in high
Q/V cavities will limit the performance of Si-based
gates but not the x® materials in Table I [45]. As-
suming V& = V@ we find y2/x3 ~ 105 for LiNbO3
(x®=1.6x10"%'m?/V? [46]) and ~10? for GaAs (x¥=
2.0x1071"m?/V? [47]). Noise from higher-order nonlin-
ear effects is therefore negligible for LiNbOg3 but should
be included for GaAs.

Although many of the required cavity specifications
have been reached with different components, more work
is needed to demonstrate them in one device. Our work
provides a practical architecture for combining them
into deterministic two-qubit gates and establishes the



progress necessary to achieve room-temperature quan-
tum information processing.

Note added: shortly after we posted this work on the
arXiv, a similar concurrent study was also posted [48].
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