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Recent experiments began to explore the topological properties of quench dynamics, i.e. the time
evolution following a sudden change in the Hamiltonian, via tomography of quantum gases in optical
lattices. In contrast to the well established theory for static band insulators or periodically driven
systems, at present it is not clear whether, and how, topological invariants can be defined for a
general quench of band insulators. Previous work solved a special case of this problem beautifully
using Hopf mapping of two-band Hamiltonians in two dimensions. But it only works for topologically
trivial initial state and is hard to generalize to multiband systems or other dimensions. Here we
introduce the concept of loop unitary constructed from the unitary time-evolution operator, and
show its homotopy invariant fully characterizes the dynamical topology. For two-band systems in
two dimensions, we prove that the invariant is precisely equal to the change in the Chern number
across the quench regardless of the initial state. We further show that the nontrivial dynamical
topology manifests as hedgehog defects in the loop unitary, and also as winding and linking of its
eigenvectors along a curve where dynamical quantum phase transition occurs. This opens up a
systematic route to classify and characterize quantum quench dynamics.

Introduction. Topological structures are ubiquitous in
nature. They appear either in real space, e.g. a smoke
ring or linked coronal loops near the Sun, or in momen-
tum space, e.g. skymions in a Chern insulator or hedge-
hogs in a Weyl semimetal. Recently, the investigation of
topological phenomena [1, 2] extended to time-dependent
quantum systems, e.g. Floquet systems under periodic
driving [3–13] or quench dynamics following a sudden
change in the Hamiltonian, H0 → H [14–30]. For these
dynamical systems, the topological structures are hidden
in the momentum-time continuum. Intriguingly, there
seems a deep connection between the static band topol-
ogy and quench dynamics. For example, topological in-
sulators in integer classes can be systematically classified
by quantum quenches starting from a trivial state based
on the dynamical bulk-surface correspondence [21, 26].
Quench dynamics has been measured in details for exam-
ple in experiments on ultracold atoms [31–33] and pho-
tonic quantum walks [34, 35]. This raises the question,
how to systematically construct the topological invari-
ants for the quench dynamics of band insulators?

The answer to this question remains open. Previ-
ous work on the quench dynamics of two-band Bloch
Hamiltonians cast the problem mathematically as a Hopf
map to arrive at a powerful result: the time evolution
is characterized by the so-called Hopf invariant, which
counts the linking number of the preimages of two time-
evolved states, and equals to the Chern number of the
post-quench Hamiltonian H [18]. Experimentally, such
Hopf links in the momentum-time space have been ob-
served using Bloch-state tomography for ultracold 40K
and 87Rb atoms in optical lattices [31–33]. This frame-
work based on Hopf mapping however works only for two-
band Hamiltonians in two dimensions (2D). Moreover, it
requires the pre-quench Hamiltonian H0 to be topolog-

ically trivial. For quenches from a nontrivial state, the
Hopf invariant is no longer well-defined [36–38]. Thus,
a unified theory valid for general quench is still lacking.
A proper topological invariant that remains well defined
regardless of the triviality of the initial state is highly
desired.

The quench dynamics of Chern insulators has also
been studied from the perspective of dynamical quantum
phase transition (DQPT) [39–50]. A DQPT is identified
when physical observables show nonanalytic behavior at
some time instant, e.g. when the post-quench state be-
comes orthogonal to the initial state [41]. It remains
unclear how DQPT is related to the topological invari-
ants for quench dynamics. Relatedly, periodically driven
systems have been systematically classified into the peri-
odic table of Floquet topological insulators [11, 12]. Pos-
sible connection between Floquet dynamics and quench
dynamics, however, has not been noticed or emphasized.

To address these questions, we propose a new frame-
work to characterize the topological properties of quench
dynamics. We introduce the loop unitary Ul and show its
homotopy invariant W3 relates the pre- and post-quench
Chern numbers by W3 = Cf − Ci, which works for any
H0 and H. For trivial initial state, W3 reduces to the
Hopf invariant [18]. We reveal the origin of dynamical
topology in the hedgehogs (π-defects) of the phase band
of Ul. Moreover, we introduce the notion of DQPT curve
to show the dynamical topology also manifests as the
windings, links, or knots of the eigenvector of Ul along
this curve. We illustrate our theory by applying it to
a highly tunable model of two-band Hamiltonian in 2D.
The framework paves the way to study the topological
properties of more general quantum quenches.

Loop unitary for quantum quench. We will focus on the
quantum quench dynamics of a generic two-band system
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in 2D. The system starts from an arbitrary initial state
|ξ0〉 at time zero, then evolves according to a post-quench
Hamiltonian H = H(k) · σ, where the quasimomentum
k = (kx, ky) and σ = (σx, σy, σz) is the Pauli matrix. At
a later time τ , the state evolves into |ξ(τ)〉 = e−iHτ |ξ0〉
with ~ = 1. Let ±Ek be the spectrum of H, and assume
H is gapped, Ek > 0. As far as the topological properties
are concerned, we can rescale H and replace it with h =
H/Ek = ĥ(k) ·σ where ĥ is a unit vector. This amounts
to the standard band flattening. Equivalently, we can
view H → ĥ as a rescaling of time τ → t = Ekτ . The
rescaling yields a key observation: at t = π, the state
returns to the initial state up to a minus sign, |ξ(π)〉 =
−|ξ0〉. Thus, the quench dynamics has period π.

Previous works represent the two-component spinor
|ξ(t)〉 with a point ξ = 〈ξ|σ|ξ〉 on the Bloch sphere S2.
This defines a mapping from the (k, t)-space, a three-
torus T3, to S2 with homotopy group π3(S2) = Z [51–53].
If the initial state |ξ0〉 is topologically trivial with Chern
number Ci = 0, the quench dynamics can be character-
ized by the Hopf invariant as a Chern-Simons integral
[18]

L =
1

4π2

∫
T3

d2kdt εµνρAµ∂νAρ. (1)

Here Aµ = i〈ξ|∂µ|ξ〉 is the Berry connection, the indices
(µνρ) take values in (kx, ky, t), and Einstein’s summation
convention is used. It is proved in Ref. [18] that L = Cf ,
where Cf is the post-quench Chern number. However, in
general Ci 6= 0, L is not well-defined [36–38]. Modified
Chern-Simons integral can only give (Cf − Ci) mod 2Ci
[37]. So new ideas are required to construct the invariant
for generic quantum quenches.

We solve this problem by introducing the concept of
loop unitary for quench dynamics. The unitary evolution
does not have period π, U(t = π) 6= I. However, it can be
decomposed as the product of a loop unitary Ul that has
time period π and the evolution of some constant Hamil-
tonian [11] where we must include information about the
initial state or pre-quench Hamiltonian. This motivates
us to define the following loop unitary operator

Ul(t) = e−ihteih0t, (2)

where the first term on right is the time-evolution U , and
h0 is the pre-quench Hamiltonian with |ξ0〉 as ground
state: h0|ξ0〉 = −|ξ0〉. One can check that Ul indeed has
period π, Ul(0) = Ul(π) = I. In contrast to the T3 →
S2 mapping above, Ul defines a mapping T3 → SU(2)
valid for arbitrary |ξ0〉, h0 and h. Then, the topological
invariant for quench dynamics is the 3-winding number

W3 =
1

24π2

∫
T3

d2kdt εµνρ ×

Tr[(U−1
l ∂µUl)(U

−1
l ∂νUl)(U

−1
l ∂ρUl)], (3)

with t ∈ [0, π]. It is an integer following from homotopy
group π3(SU(2)) = Z. Note that Ul(t)|ξ0〉 = e−it|ξ(t)〉

and |ξ(t)〉 represent the same state with different phase
factors. It is easy to check W3 reduces to Hopf invariant
L when |ξ0〉 is trivial, see [54, 59] for details.
π-defect in phase band. Now we are ready to relate W3

to the Chern numbers Cf,i. To this end, it is convenient
to diagonalize Ul in its eigenbasis,

Ul(t) = eiφ(k,t)|φ+〉〈φ+|+ e−iφ(k,t)|φ−〉〈φ−|. (4)

Here ±φ(k, t) (with 0 ≤ φ ≤ π) are called phase bands,
with |φ±〉 the corresponding eigenstates [11, 60]. We de-
fine spin vector ±m̂ = 〈φ∓|σ|φ∓〉 from the phase bands,
and note that Ul is homotopic [54] to a two-step evolution
Ug given by Ug = e−i2ht for 0 < t < π

2 ; Ug = −ei2h0(t−π2 )

for π
2 < t < π. Consequently Ul and Ug have the same

topological properties and W3 = W3[Ug]. This relation
reveals a deep connection between quantum quench and
Floquet driving described by Ug. Via the phase bands of
Ug, which are easier to work with, we can prove [54]

W3 = Cf − Ci. (5)

Hence W3 gives the Chern number change and fully char-
acterizes the quench. Compared to the Hopf invariant L,
W3 is gauge-independent and valid for any initial state.
Eqs. (3) and (5) are two key results of our paper.

The phase band analysis also provides an intuitive pic-
ture for the dynamical topology: W3 counts the topo-
logical charge associated with the point degeneracies in
the phase band [11, 60] at φ = π, which we refer to as
π-defects. These π-defects are located at special points
in the (k,t)-space with t = π

2 and k determined by

ĥ = n̂0 = 〈ξ0|σ|ξ0〉, i.e., when the post-quench Hamil-

tonian vector ĥ is parallel to the initial spin vector n̂0.
Expanding Ul near a π-defect, we find it takes the form of
Weyl Hamiltonian, e.g. Ul(δkx, δky, δt) = −I−iδkiKijσj ,
with δki ∈ (δkx, δky, δt) being deviations from the degen-
eracy point. Such a Weyl point carries topological charge
sgn(det(K)) [60]. We can show that W3 counts the total
charges of these π-defects [54]

W3 =
1

8π

∑
P

∫
SP

dSP · εijk(mi∇mj ×∇mk). (6)

Here SP is a surface enclosing the π-defect, and the sum-
mation is over all π-defects. The phase-band spin vector
m̂ forms a hedgehog [Fig. 1] around the π-defect.
Examples. To illustrate our theory, we apply it to a

simple model with Hamiltonian Hq = H · σ given by

Hx + iHy = (sin kx + i sin ky)q −R;

Hz = M − cos kx − cos ky. (7)

At R = 0, the Chern number of the lower band C = q
when 0 < M < 2; C = −q when −2 < M < 0; and
C = 0 otherwise. When q = 1, the model reduces to the
Qi-Wu-Zhang model [61] of 2D Chern insulators recently
realized using ultracold atoms in optical Raman lattices
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FIG. 1. Topological π-defects (solid red dots) as hedgehogs in
the momentum-time space for quantum quenches. They are
Weyl-like degeneracy points in the phase band of loop unitary
Ul at φ = π. The arrow denotes the phase-band spin vector
m̂ near the defect. (a)-(b): quench from a trivial initial state
|ξ0〉 = (0, 1)T to Hq=1 and Hq=2 defined in model (7). (c)-
(d): quench from the ground state of Hq=1 to h = σz and
Hq=2 respectively. The topological charge of the hedgehog
is +1,+2,−1,+1 from (a) to (d), and equal to the Chern
number change Cf − Ci in each case. R = 0, M = 1.6. (e)
Schematics of the DQPT curve Γ (magenta line). It is the
intersection of the t = π

2
plane and the equal-φ surface of

φ = π
2

(green) which encloses the π-defect. Along Γ, vectors

n̂0, ĥ and m̂ are perpendicular to each other.

[62, 63]. We keep R,M as tuning parameters and assume
0 < M < 2 below.

Let us consider four distinct quench pathways. The
first two examples start from a trivial initial state |ξ0〉 =
(0, 1)T and quench to Hq above with q = 1 and q = 2 re-
spectively. The π-defect for these cases is at (kx, ky, t) =
(0, 0, π2 ), and the hedgehog patterns of the m-vector
around the defect are depicted in Figs. 1(a)(b). For
q = 1, expanding the loop unitary near the defect yields
Ul = −I+i(dδkyσx−dδkxσy−2δtσz) with d = 1/(2−M).
The charge therefore is +1. For q = 2, the expansion
yields a quadratic Weyl point [54] carrying charge +2.
Next we consider quenches from the ground state of Hq

with q = 1, i.e. from a topologically nontrivial initial
state with Ci = 1. In the third example, the post-quench
Hamiltonian is trivial h = σz, Cf = 0. We find a π-defect
at (0, 0, π2 ) with charge −1, see Fig. 1(c). In the fourth
example, the post-quench Hamiltonian is Hq with q = 2,
Cf = 2. The π-defect is at (− arccos(M − 1), 0, π2 ) with
charge +1 as depicted in Fig. 1(d). One can check Eq.
(5) indeed holds in all these four cases.

DQPT curve and winding number. The π-defects dic-
tating the topology of quench dynamics reside in the 3D
(k,t)-space. Next we show that the dynamical singu-
larity also manifests along a lower dimensional curve, if
the pre-quench (or post-quench) Hamiltonian is trivial.
This provides another intuitive picture for the dynam-
ical topology to reveal a deep connection to DQPT. A

FIG. 2. (a)-(c): Winding of the phase-band spin vector m̂
(arrows) along the DQPT curve Γ for quench from initial
state |ξ0〉 = (0, 1)T to Hq with q = 1, 2, 3 (left to right).
The corresponding winding number as defined in Eq. (8)
is ν = 1, 2, 3. (d)-(f): Hopf links in momentum-time space
for the same quench to Hq with q = 1, 2, 3 (left to right).
Shown are preimages of two time-evolved states±ξ = (1, 0, 0).
R = 0.2, M = 1.6.

central concept in DQPT is Loschmidt echo (LE), which
measures the overlap between the initial state and time-
evolved state: S(t) = |〈ξ0|ξ(t)〉|2 [64]. The LE is equal
to the squared average of the loop unitary operator over
the initial state, S(t) = |〈ξ0|Ul(t)|ξ0〉|2. Geometrically,
after the quench, the spin vector ξ of the time-evolved
state precesses around ĥ. By definition, DQPT occurs
when LE is zero, i.e. when ξ becomes anti-parallel to n̂0.
This requires t = π

2 and ĥ ⊥ n̂0, as depicted in Fig. 1(e).
All the points satisfying these two conditions constitute
a closed curve Γ on the t = π

2 plane, dubbed the DQPT
curve. One can check that for points along Γ, the eigen-
phase of Ul takes φ = π

2 . Hence Γ is also the intersection
of the equal-φ surface with φ = π

2 and the t = π
2 plane,

as illustrated in Fig. 1(e).
Suppose Γ is parameterized by some angle θ ∈ [0, 2π].

Along Γ, the phase-band spin vector is given by m̂ =
ĥ × n̂0, which in general tilts as θ is varied. By a uni-
tary transformation V †h0V = σz, Ul becomes V †UlV =
i(m̃xσx + m̃yσy). Hence the vector m̂ is fully described
by polar angle χ = arctan(m̃y/m̃x), and its round trip
along Γ is characterized by the winding number

ν =
1

2π

∮
Γ

dθ ∂θχ. (8)

One can further prove [54] that ν coincides with Cf , and
by the chain of identities established above it is also equal
to W3 and L, when the initial state is trivial.

The winding of m̂ is illustrated in Fig. 2 for our model
(7) with initial state |ξ0〉 = (0, 1)T . The DQPT curve in
this case is given by M − cos kx − cos ky = 0. We plot
(m̃x, m̃y) as a vector on the local x-y plane normal to Γ.
Figs. 2(a)-(c) illustrate the winding of m̂ for q = 1, 2, 3,
respectively. By traveling counterclockwise along Γ, one
observes that m̂ winds 1, 2, 3 times within the x-y plane,
in agreement with the calculation ν = q. For comparison,
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we have chosen two arbitrary states and plotted their
preimages in the (k, t)-space in Figs. 2(d)-(f). The two
preimages form a Hopf link with linking number L =
1, 2, 3, respectively, consistent with ν above.

Torus links and knots. Next we discuss quench from
a trivial state to a Hamiltonian H with Dirac points,
i.e. band degeneracies at certain isolated k points. To
this end, it is useful to imagine a torus (pipe) of unit
cross-sectional radius extending along Γ. Then the end
points of m̂ trace out a curve Γ+ on the torus surface.
Similarly −m̂ traces out another curve Γ−. For fully
gapped H, the Gauss linking number of these two closed
curves, Γ±, is nothing but ν. If band degeneracies exist,
one can verify that all Dirac points lie on Γ projected
onto the Brillouin zone. At each Dirac point, the two
phase bands |φ±〉 become degenerate. The net effect of
the band touching is the role switch m̂ ↔ −m̂. At the
Dirac points, the curves Γ± continue smoothly, only to
switch their characters there, Γ+ ↔ Γ−. It follows that
Γ± together form either torus links or torus knots [65].

This can be illustrated by using our model Eq. (7).
When R = [1− (M − 1)2]3/2 for q = 3, one of the Weyl
charges touches Γ at the Dirac point, while the other
two charges remain inside as depicted in Fig. 3(a). The
corresponding Γ± curves are projected onto a 2D plane
for clarity. In this case, the Γ+ ↔ Γ− switch happens
only once. Together they form a single closed curve, a
torus knot with crossing number cK = 5. A different
scenario is shown in Fig. 3(b) for q = 2 where H has
one pair of Dirac points. The switch occurs twice to give
rise to two curves. They form a torus link with linking
number cL = 1.

The invariants for these links and knots can be ob-
tained as follows. Without loss of generality, we can
treat H with Dirac points as the critical boundary be-
tween two gapped Hamiltonians with Chern number C<
and C> respectively as some tuning parameter (e.g. R)
is varied. In the first scenario, C> − C< = odd, i.e.,
there are odd number of Dirac points on Γ, leading
to odd times of ±m̂ switch and the formation of a
torus knot [Fig. 3(a)]. Its crossing number [65] is then
cK = 2C< + C> − C< = C< + C>. In the second sce-
nario, C>−C< = even with even number of Dirac points
on Γ. Accordingly, ±m̂ form a torus link [Fig. 3(b)],
and its linking number is half the crossing number [65],
cL = (C< + C>)/2. These general results agree with the
examples above. For q = 3, C< = 3 and C> = 2 to give
cK = 5; while for q = 2, C< = 2 and C> = 0 so cL = 1.
Thus, the concepts of loop unitary and DQPT curve also
provide insights for quench to Dirac semimetals.

Outlook. In summary, we establish a new framework
to characterize the topological properties of quench dy-
namics by introducing loop unitary Ul and its homotopy
invariant W3, which goes beyond the Hopf mapping and
is independent of initial state. The dynamical topology
is revealed pictorially in two ways, the π-defects in the

FIG. 3. Top view of a knot (a) and a link (b) formed by
two curves Γ± traced by vector ±m̂ along Γ for quenches to
critical Hq with Dirac points. The insets show the topological
charges on the t = π/2 plane. They cross Γ exactly at the
Dirac points where the two curves switch, Γ+ ↔ Γ−. (a): A
single curve ties into a knot with crossing number cK = 5,
q = 3, R = 0.512. (b): Two closed curves form a torus link
with linking number cL = 1, q = 2, R = 0.64. M = 1.6.

phase bands, and the winding of m̂ along the DQPT
curve. The theory is generalized further to discuss the
link and knot structures for quench into critical Dirac
semimetal. A series of identities are proved to relate the
Chern, crossing, linking, and winding number.

For concreteness, we have focused on the dynamics
of two-band Hamiltonians in 2D. Our scheme based on
the loop unitary however is general. For example, we
have applied it to obtain the Z2 dynamical invariant
for the quench dynamics of Hopf insulators [66] in 3D,
and characterize the quench dynamics of the four-band
Bernevig-Hughes-Zhang model [54]. For these more com-
plicated cases, the loop unitary must be chosen to be
time-periodic to ensure a closed base manifold, and the
additional symmetry constraints must be properly taken
into account [54] in constructing the desired dynamical
topological invariants. Through the concept of loop uni-
tary and homotopy relation Ul ∼ Ug, our work also re-
veals an intrinsic connection between quench and Floquet
dynamics [11, 12]. It suggests that a wealth of link and
knot structures will also emerge in (k, t)-space in Floquet
systems. For example, Hopf link was recently shown to
appear in periodically driven 2D systems [59].

Recent experiments have begun to quantitatively ac-
cess quench dynamics via time- and momentum-resolved
tomography [67–70]. In particular, spatiotemporal Hopf
links [31–33] after quantum quench have been observed.
The π-defect in the phase band can be observed via
the same Bloch-state tomography technique. For exam-
ple, its topological charge, which is quantized and pro-
tected against small perturbations, can be extracted lo-
cally from the nearby tomography points [71]. The lo-
cation of the DQPT curve and the winding along it can
be verified by tracing the emergent dynamical vortices in
momentum space as done in Ref. [50]. For more details,
see Supplementary Materials [54].

This work is supported by AFOSR Grant No. FA9550-
16-1-0006 and NSF Grant No. PHY-1707484.
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