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We analyze the non-equilibrium shape fluctuations of giant unilamellar vesicles encapsulating
motile bacteria. Owing to bacteria–membrane collisions, we experimentally observe a significant
increase in the magnitude of membrane fluctuations at low wave numbers, compared to the well-
known thermal fluctuation spectrum. We interrogate these results by numerically simulating mem-
brane height fluctuations via a modified Langevin equation, which includes bacteria–membrane
contact forces. Taking advantage of the length and time scale separation of these contact forces
and thermal noise, we further corroborate our results with an approximate theoretical solution to
the dynamical membrane equations. Our theory and simulations demonstrate excellent agreement
with non-equilibrium fluctuations observed in experiments. Moreover, our theory reveals that the
fluctuation–dissipation theorem is not broken by the bacteria; rather, membrane fluctuations can
be decomposed into thermal and active components.

Biological lipid membranes make up the boundary of
the cell, and act as a dynamic barrier between the cell’s
internal contents and extracellular environment. Such
membranes are acted upon by a variety of so-called ac-
tive forces—including those from transmembrane protein
pumps [1, 2] and the underlying cytoskeleton [3, 4]. There
have been considerable experimental [5, 6] and theoret-
ical [7–19] efforts to show how active forces from trans-
membrane proteins and the cytoskeleton cause mem-
brane fluctuations to deviate from the well-known equi-
librium result, with a particular emphasis on the mem-
branes of red blood cells [20–25]. More recently, there
has been growing interest in analyzing the behavior of
self-propelled active colloids enclosed within membrane
vesicles [26–30], as such systems can serve as a useful
minimal model of the cell.

In this Letter, we experimentally and theoretically
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FIG. 1. Giant unilamellar vesicle (GUV) containing motile
Bacillus subtilis PY79. The schematic shows how the three-
dimensional system (a) is imaged at a single equatorial cross-
section (b) to generate the experimental images in (c)–(f).
The dashed blue outline in (c) shows the undeformed spher-
ical shape of the membrane when bacteria are non-motile,
while (d)–(f) show how motile bacteria (dotted red outlines)
generate large membrane deformations at different times.

study the membrane shape fluctuations induced by
motile bacteria enclosed within giant unilamellar vesicles
(GUVs). A schematic of our experimental system, as well
as fluorescence microscopy images involving motile and
nonmotile bacteria, are shown in Fig. 1; see also Vids.
S1–S5 in the Supplemental Material (SM) [31]. We ob-
serve motile, micron-sized bacteria pushing against their
elastic membrane container and causing large deforma-
tions until they reorient after ∼0.5 seconds and swim in
another direction. As shown by the filled brown (passive)
and open black (active) circles in Fig. 2, as well as Fig.
1 of the SM [31], the bacteria cause a significant change
in the distribution of membrane deflections and the cor-
responding fluctuation spectrum. Due to the separation
in length and time scales of bacteria–membrane contact
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FIG. 2. Membrane height fluctuations, 〈|ĥ(kx)|2〉, for passive
(brown, blue) and active (black, red) vesicles, as a function
of the mode m = kxR0. Results are shown from experiments
(circles), numerical simulations (triangles, see Eq. 3), and an-
alytical theory (lines, see Eq. 6). Both simulations and theory
show excellent agreement with experiments, in the absence of
any fitting parameters.
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and equilibrium fluctuations, our active fluctuation spec-
trum only deviates from its passive counterpart at small
wave numbers. Figure 2 also presents our main quan-
titative result, as we find excellent agreement between
experiments (circles), simulations (triangles), and ana-
lytical theory (curves). We now provide a brief summary
of the experimental protocol used to construct the ‘active
vesicles’ of Fig. 1 before describing the simulations and
analytical theory used to generate Fig. 2.

Experiments.—A modified electroformation protocol
[32, 33] was used to encapsulate Bacillus subtilis PY79
inside GUVs. A 4 mg/mL stock solution of 99.5% 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 0.5%
L-α-phosphatidylethanolamine-N-lissamine rhodamine B
sulfonyl (Egg Liss Rhod PE) dissolved in chloroform was
spin-coated onto indium tin oxide (ITO) coated glass
slides with surface resistivity of ∼ 50–100 Ω/sq. Luria
broth nutrient medium was placed between the ITO
slides with a spacer and connected to a wavefunction
generator. After 75–90 minutes of a square wave with
1 Vpp at 10 Hz, a small volume of a dense suspension
of an overnight culture of PY79 was added between the
ITO slides and set aside in the absence of voltage for 10–
15 minutes with the lipid-coated ITO slide facing down.
Finally, we applied 20 minutes of a square wave with 0.3
Vpp at 2 Hz. The suspension was imaged on an inverted
widefield fluorescence microscope at 30◦C.

Prior to electroformation, the bacteria are not highly
motile, as the overnight culture is in a stationary growth
phase. During electroformation, however, B. subtilis is
introduced into the chamber with fresh nutrient medium;
the bacteria become motile after ∼ 30 min [34]. Imme-
diately after electroformation, we identify and image a
vesicle containing several nonmotile bacteria to measure
the undeformed vesicle radius and the membrane height
fluctuations—which correspond to those of a vesicle with-
out bacteria, and which we refer to as a ‘passive vesicle’
(see Fig. 1c). Once the bacteria become motile, we mea-
sure the membrane fluctuations of the same vesicle [35].
In this way, we are able to directly compare passive and
active membrane fluctuations of a single vesicle both vi-
sually (Fig. 1c–f and Vids. S1–S5 in the SM [31]) and in
Fourier space (Fig. 2, filled brown and open black cir-
cles). We analyze the membrane fluctuation spectra of
passive and active vesicles using standard methods [36–
38], in which we have removed the m = 1 mode due to
experimental difficulties in locating the center of the vesi-
cle [39]. We note that experimental data at large wave
numbers level off due to limitations in the camera reso-
lution, whereas our simulations (described subsequently)
capture the full spectrum. Moreover, as we are exper-
imentally capturing fluctuations at only a single cross-
section of the membrane vesicle (see Fig. 1), when com-
puting the Fourier spectrum we are implicitly averaging
over one of the two independent Fourier modes [36].

Development of the theory.—We have so far ex-

perimentally demonstrated how active particles, in this
case B. subtilis, cause dramatic changes to the fluctuation
spectrum of the surrounding lipid membrane. However,
the physics underlying such interactions remains unclear.
In particular, while other works have considered active
forces arising from transmembrane proteins [7–16] or sim-
ulated active particles in vesicles [26–29], there is no the-
oretical description of our experimental results. Thus,
to better understand our experimental system, we both
theoretically and numerically model membrane fluctua-
tions in the presence of active particles. Both of these
developments rely on the so-called Monge parametriza-
tion of the membrane [40], which treats the membrane
as a nearly flat plane with small height perturbations,
to avoid the complex equations describing a perturbed
spherical membrane [41]. Despite this rather severe sim-
plification, the agreement between our experiments, sim-
ulations, and theory in the absence of any fitting param-
eters indicates our simple model captures the essential
physics of particle–membrane contact.

In thermal equilibrium, the height fluctuations of a
nearly planar membrane described by a Helfrich [42–44]
Hamiltonian H = 1

2

∫
κ(∇2h)2 + λ(∇h)2 dxdy are given

by 〈|ĥ(k)|2〉pas = k
B
T/(κk4 + λk2), where k = (kx, ky)

is the wave vector conjugate to position x = (x, y), kBT
is the thermal energy, κ is the membrane bending mod-
ulus, and λ is the surface tension (κ and λ are assumed
to be constant). In our experiments, however, the vesi-
cles are only imaged at a single cross section (Fig. 1).
Thus, to compare experiments and theory, we average
the theoretical fluctuation spectrum over ky modes to

find 〈|ĥ(kx)|2〉pas = (k−1x − (k 2
x + λ/κ)−1/2) · kBT/(2λ);

details are provided in the SM [31]. As shown in Fig.
2, passive experimental data (brown circles) agree with

the theoretical prediction, 〈|ĥ(kx)|2〉pas, for the choice
κ = 14.3 kBT and λ = 4 · 10−3 pN/nm (blue curve).
We fixed these parameters in all of our active membrane
calculations, and additionally found our numerical and
theoretical active results are insensitive to our choice of
κ and λ [31].

Equilibrium techniques cannot describe active vesicle
fluctuations due to the presence of non-conservative con-
tact forces, so we turn to a dynamical membrane descrip-
tion. The Langevin equation governing membrane shape
changes is given by [12, 17, 45]

∂h(x, t)

∂t
= η(x, t) +

∫
dx′

[
Λ(x− x′) ptot(x′, t)

]
, (1)

where h is the membrane height, η is Gaussian white
noise satisfying the fluctuation–dissipation theorem,
Λ(x − x′) := (8πµ|x − x′|)−1 is the ez ⊗ ez component
of the Oseen tensor for a Newtonian fluid with viscos-
ity µ, and −ptotez is the total force per area exerted on
the membrane by the surrounding fluid. In this case,
ptot = pint + pact, where the internal membrane force per
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FIG. 3. Temporal nature of the bacteria–vesicle collisions.
(a) Magnitude of the radial deflection of the vesicle at a sin-
gle location, in a single experiment, as a function of time. The
trapezoid shape is characteristic of a bacteria pushing against
the membrane for reorientation time τR; smaller peaks indi-
cate a bacteria sliding along the membrane surface. (b) Nu-
merical approximation of a head-on collision’s temporal com-
ponent, called φ(t; tj). The modified step function is centered
at the collision time tj .

area pint := −δH/δh = −κ∇4h + λ∇2h, and pact is the
force per area due to active particles (see SM [31] for
details).

To approximate pact, we model the bacteria as self-
propelled particles of half-width a which randomly col-
lide with the membrane vesicle. For Nc total collisions
between the various bacteria and the membrane, where
the jth collision occurs at location xj and time tj , the
active force per area on the membrane at location x and
time t is given by

pact(x, t) =

Nc∑

j=1

p̄ φ(t; tj) exp
{
− (x− xj)

2

2a2

}
. (2)

In Eq. (2), p̄ is the maximum pressure the bacteria exerts
on the membrane, which we estimate to be equal to the
pressure exerted by a membrane on a spherical particle
of radius a, p̄ ≈ 2λ/a. Furthermore, as shown in Fig.
3, φ(t; tj) is a modified step function centered at time
tj which captures the temporal nature of the collision.
In choosing φ, we approximated a bacterium as initially
traveling at velocity U0 towards the membrane, coming to
rest due to elastic membrane forces, and remaining there
for reorientation time τ

R
before swimming back into the

interior of the vesicle. Finally, the exponential term in
Eq. (2) is a simple model of the finite size of the particle,
which spreads the contact force over a portion of the
membrane and is amenable to numerical computation.

At this point, we highlight that all details of the
bacteria–membrane interactions are modeled through p̄,
φ(t; tj), and the exponential spreading of the contact
force, such that Eq. (2) contains the main difference be-
tween the present work and other theoretical develop-
ments of active membranes [7–19]. In particular, when
active forces arise from membrane–protein interactions,
there is no length or time scale separation between ac-
tive and thermal forces. As a result, the non-equilibrium
fluctuation spectrum can often be obtained by renormal-
izing the temperature [5–9, 12, 18]. In our case, how-
ever, bacteria–membrane interactions are much slower

than equilibrium fluctuations, as captured by φ, and are
spread over much larger distances, as captured by the
Gaussian in Eq. (2). Note that in our model, for simplic-
ity we neglect the complex hydrodynamic interactions
between bacteria and membrane, as well as any perme-
ability effects from fluid passing through the membrane.
As experimental investigations found a rapidly decaying
flow field for bacteria close to surfaces [46], we simply
choose to capture all bacteria–membrane interactions in
the active pressure term pact.
Numerical solution.—Using standard techniques

[12, 17, 45], we take the Fourier transform of Eq. (1)
and recognize the Fourier modes are independent. For
each wave vector k = (m,n)/R0, where m,n ∈ Z and
R0 is the unperturbed vesicle radius, the corresponding
evolution equation is given by [31]

∂ĥ(k, t)

∂t
= −ω(k) ĥ(k, t) + η̂(k, t) + LΛ̂(k) p̂act(k, t) .

(3)
In Eq. (3), ω(k) := (κk3 + λk)/(4µ) is the relaxation
frequency of mode k, L = 2πR0 is the length of the
planar membrane patch, Λ̂(k) = (4µkL)−1 is the Fourier
transform of Λ(x), and p̂act(k, t) is the Fourier transform
of the active force per area (2). The last term in Eq. (3)
is given by

LΛ̂(k) p̂act =

Nc∑

j=1

a2 p̄

4µkR0
φ(t; tj) exp

{
− ixj ·k−

a2 k2

2

}
.

(4)
We discretize the height evolution equation (3) as

shown in the SM [31] and compute ĥ(k, t) for all k, from
which we calculate the height fluctuations. After inte-
grating over ky, we plot our simulation results as the
triangles in Fig. 2 for the passive (filled blue) and active
(open red) cases. Passive results were calculated by set-
ting p̂act = 0 in Eq. (3). While such techniques are known
to attain the passive fluctuation spectrum [12, 17, 45], we
see excellent agreement between active experiments and
simulations as well [47]. Furthermore, there are no fit-
ting parameters in our development: κ and λ are found
from the membrane fluctuations before bacteria become
motile, the viscosity µ of the fluid is known, R0 = 4µm
is the undeformed vesicle radius, the bacteria have a re-
orientation time τ

R
≈ 0.5 sec, and a = 0.25µm is half the

average width of a bacterium.
Analytical solution.—To develop an analytical ex-

pression for the active membrane fluctuation spectrum,
we first consider Eqs. (3) and (4) for a vesicle contain-
ing a single active particle. By approximating φ(t; tj)
as being either 0 or 1 (see Fig. 3b), the membrane is
either fully separated from (φ = 0) or fully in contact
with (φ = 1) the bacterium. When there is no contact,
the membrane feels thermal perturbations, such that its
height fluctuations are given by the passive result. If
there is contact (denoted with a subscript ‘c’), the mem-
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brane again feels thermal perturbations, but this time
oscillates about some nonzero value—which we denote
h̄(k). In this case, as the time scales of the two pro-
cesses are separated and the thermal background is inde-
pendent of the active forces, the height fluctuations are
given by 〈|ĥ(k)|2〉c = 〈|ĥ(k)|2〉pas + |h̄(k)|2. We assume
a single bacterium spends reorientation time τ

R
in con-

tact with the membrane, then travels for time τT in the
interior of the vesicle, and repeats. Thus, for a single
particle, 〈|ĥ(k)|2〉 = 〈|ĥ(k)|2〉pas + |h̄(k)|2 τ

R
/(τ

R
+ τ

T
).

When there are Np particles in the vesicle, we assume
they are non-interacting, such that the membrane height
fluctuations are given by

〈|ĥ(k)|2〉 =
k

B
T

κk4 + λk2
+

Np τR
τR + τT

|h̄(k)|2 . (5)

Thus, by determining |h̄(k)|2, we determine the mem-
brane fluctuation spectrum of a bacteria-containing lipid
membrane vesicle.

To calculate h̄(k), we average Eq. (3) in time for the
case of a single bacterium, when there is contact (φ = 1).
The time derivative and thermal noise terms average to
zero, and h̄(k) is the average value of ĥ(k, t). Thus, by
solving for h̄(k) and substituting into Eq. (5), we obtain

〈|ĥ(k)|2〉 =
kBT

κk4 + λk2
+

Np τR
τ
T

+ τ
R

(
a2 p̄/R0

κk4 + λk2

)2
e−a

2k2

.

(6)

Equation (6) is our main theoretical result. As shown
by the dotted red curve in Fig. 2, Eq. (6) demonstrates
excellent agreement with the experiments and active
simulations—again without any fitting parameters. Here,
the membrane contains Np ≈ 7 bacteria, and we estimate
τ
T
≈ 2R0/U0 ≈ 0.5 sec as the time for a bacterium to

travel the vesicle diameter, moving at speed U0 ≈ 15
µm/sec. We believe our simulations and theory consis-
tently over-predict experimental results because we ne-
glect bacteria–bacteria collisions within the vesicle. In-
cluding such collisions would decrease the number of
bacteria–membrane collisions Nc in simulations (4), and
reduce the proportion of time bacteria are in contact with
the membrane in our analytical result (6), both of which
would slightly decrease the magnitude of active height
fluctuations predicted by theory and simulation.

To test the robustness of our theoretical model, we
analyze two additional active vesicles, which are dif-
ferent sizes and contain different numbers of bacteria.
As shown in the SM [31], our theory and simulations
again demonstrate excellent agreement with experiments
when R0 ≈ 8 µm and Np ≈ 10, and good agreement
when R0 ≈ 15 µm and Np ≈ 20. In the latter case
with many bacteria, there are often times when multi-
ple bacteria contact a local portion of the membrane in
quick succession—thus violating our assumption of in-
dependent bacterial collisions. Such behavior, which is

well-known in the study of active particles near surfaces
[48, 49], effectively converts longer wavelength fluctu-
ations into shorter wavelength ones, and qualitatively
changes the shape of the active fluctuation spectrum.
We recognize one measure of particle–particle effects
at the vesicle boundary is the dimensionless parameter
Np τR/(τT + τ

R
) appearing in Eq. (6). In cases where the

agreement between experiments and theory is excellent,
we calculate Np τR/(τT + τR) ≈ 3.4 for the vesicle in Fig.
2 and Np τR/(τT + τ

R
) ≈ 3.2 for the 10-particle vesicle

in the SM [31]. In the case where particle–particle cor-
relations become significant at the membrane, however,
Np τR/(τT + τ

R
) ≈ 4.0—which seems to approach the up-

per limit of our theory’s validity. Thus, we conclude that
our theory and simulations are valid in the low-particle
regime when Np τR/(τT + τ

R
) . 4.

Conclusions.—Equation (6) concludes our theoret-
ical and numerical efforts. With an analytical expres-
sion for the membrane fluctuation spectrum which closely
matches experiments, we make several observations re-
garding the physics of lipid membrane systems driven by
active contact forces. First, Eqs. (5) and (6) show the
fluctuation–dissipation theorem is not broken. Instead,
thermal noise continues to excite all height modes, while
active forces dominate small modes. Intuitively, active
contact forces only excite long wavelength modes due to
the finite size of a single bacterium, and the distribution
of the contact force over a large area. In fact, the ex-
ponential contact term in Eq. (6) is the main difference
between the present work and those concerned with ac-
tive fluctuations of transmembrane proteins [8, 10, 16]:
by setting the protein timescale to be large in the latter,
one recovers an expression similar to Eq. (6)—however
without the exponential term. Additionally, our analyt-
ical result (6) demonstrates the active fluctuation spec-
trum does not follow a power-law behavior at low k, and
for this reason we do not provide a scaling relation in
the active region of Fig. 2. Importantly, our theory and
simulations took advantage of the time and length scale
separation between active contact and equilibrium forces,
and as a result we were able to capture the essential mem-
brane physics using simple techniques. We note that our
theoretical prediction is robust to variations in bacterial
and membrane properties, as demonstrated by our sen-
sitivity analysis in the SM [31].

We end this Letter by providing two avenues for future
directions. First, our experimental method can be easily
adapted to encapsulate different types of active particles.
As one example, we synthesized active Janus particles as
in Ref. [50], encapsulated them in lipid membrane vesicles
using similar experimental methods, and induced them
to propel with 0.5–2.0% hydrogen peroxide (see Vids. S6
and S7 in the SM [31]). Janus particles may also be
synthesized with a thin layer of ferromagnetic material
embedded underneath the final catalytic layer [51], such
that by encapsulating them in a vesicle, one would ob-
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FIG. 4. Experimental images of motile B. subtilis contained
within a GUV with low bending modulus κ and surface ten-
sion λ. When the vesicle is soft, the bacteria generate long
membrane tubes upon collision (red arrows). Other than
membrane bending stiffness and surface tension, experimental
conditions are identical to those of Fig. 1.

tain a fully synthetic, stimuli-responsive lipid membrane
vesicle.

In addition to changing the active constituents of a
membrane vesicle, one could also investigate vesicles with
different membrane properties. In particular, electrofor-
mation results in vesicles with a wide range of physical
parameters, from which vesicles with specific properties
can be selected. Figure 4, for example, shows a vesi-
cle with low bending modulus κ and surface tension λ
which contains ≈12 motile B. subtilis bacteria (see Vid.
S8 in the SM [31]). For this set of material parame-
ters, the elastic membrane restoring force cannot bal-
ance propulsive bacterial forces, and the bacteria form
long, protruding tubes. These membrane tubes, which
can be tens of microns in length, persist until the bac-
teria reorient and swim back towards the vesicle center.
Bacteria–membrane systems such as those shown in Fig.
4 may be useful as a synthetic model of an infected mam-
malian cell: several human pathogens, including Listeria
and Shigella, are known to undergo actin-based motil-
ity, deform the cell membrane to form membrane tubes,
and tunnel into neighboring host cells [52, 53]. Large
membrane shape changes beyond the linear limit have
also recently been observed in simulations and experi-
ments [29, 30, 54]; in some cases where Np τR/(τT + τ

R
)

was large, a spherical-to-prolate vesicle shape change was
observed. To model such highly nonlinear deformations,
the full membrane equations [55] and advanced numerical
methods [56] are required.
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Lett. 92, 018102 (2004).
[23] N. S. Gov and S. A. Safran, Biophys. J. 88, 1859 (2005).
[24] N. S. Gov, Phys. Rev. E 75, 011921 (2007).
[25] H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S.

Gov, C. Sykes, J.-F. Joanny, G. Gompper, and T. Betz,
Nature Physics 12, 513 (2016).

[26] M. Paoluzzi, R. Di Leonardo, M. C. Marchetti, and
L. Angelani, Sci. Rep. 6, 34146 (2016).

[27] J. Chen, Y. Hua, Y. Jiang, X. Zhou, and L. Zhang, Sci.
Rep. 7, 15006 (2017).

[28] C. Wang, Y.-K. Guo, W.-D. Tian, and K. Chen, J.
Chem. Phys. 150, 044907 (2019).

[29] Y. Li and P. R. ten Wolde, Phys. Rev. Lett. 123, 148003
(2019).

[30] H. R. Vutukuri, M. Hoore, C. Abaurrea-Velasco, L. van

mailto:stakatori@ucsb.edu
mailto:amaresh.sahu@berkeley.edu
https://doi.org/10.1016/S0006-3495(96)79805-3
https://doi.org/10.1016/S0006-3495(96)79805-3
https://dx.doi.org/10.1021/la700666p
https://dx.doi.org/10.1103/PhysRevLett.80.1786
https://dx.doi.org/10.1103/PhysRevLett.80.1786
https://doi.org/10.1016/j.cell.2015.11.057
https://doi.org/10.1016/j.cell.2015.11.057
https://doi.org/10.1103/PhysRevLett.82.4356
https://doi.org/10.1103/PhysRevE.64.021908
https://doi.org/10.1103/PhysRevLett.92.168101
https://doi.org/10.1103/PhysRevLett.93.268104
https://doi.org/10.1103/PhysRevE.73.061914
https://doi.org/10.1063/1.2166383
https://doi.org/10.1063/1.2166383
https://doi.org/10.1103/PhysRevE.85.031913
https://doi.org/10.1103/PhysRevE.85.031913
http://dx.doi.org/10.1007/978-3-030-00630-3_21
https://dx.doi.org/10.1209/epl/i1996-00340-1
https://dx.doi.org/10.1209/epl/i1996-00340-1
https://doi.org/10.1103/PhysRevLett.84.3494
https://doi.org/10.1103/PhysRevLett.84.3494
https://dx.doi.org/10.1209/epl/i2004-10494-8
https://dx.doi.org/10.1209/epl/i2004-10494-8
http://dx.doi.org/ 10.1103/PhysRevLett.106.238103
http://dx.doi.org/ 10.1103/PhysRevLett.106.238103
http://dx.doi.org/10.1103/PhysRevLett.93.256001
http://dx.doi.org/10.1103/PhysRevLett.93.256001
https://doi.org/10.1529/biophysj.105.062224
https://doi.org/10.1016/j.bpj.2015.02.027
https://doi.org/10.1016/j.bpj.2015.02.027
https://doi.org/10.1051/jphys:0197500360110103500
https://doi.org/10.1051/jphys:0197500360110103500
https://dx.doi.org/10.1103/PhysRevLett.90.228101
https://dx.doi.org/10.1103/PhysRevLett.90.228101
https://dx.doi.org/10.1103/PhysRevLett.92.018102
https://dx.doi.org/10.1103/PhysRevLett.92.018102
https://doi.org/10.1529/biophysj.104.045328
https://doi.org/10.1103/PhysRevE.75.011921
https://doi.org/10.1038/nphys3621
http://dx.doi.org/10.1038/srep34146
https://doi.org/10.1038/s41598-017-15095-0
https://doi.org/10.1038/s41598-017-15095-0
https://doi.org/10.1063/1.5078694
https://doi.org/10.1063/1.5078694
http://dx.doi.org/10.1103/PhysRevLett.123.148003
http://dx.doi.org/10.1103/PhysRevLett.123.148003


6

Buren, A. Dutto, T. Auth, D. A. Fedosov, G. Gompper,
and J. Vermant, (2019), arXiv:1911.02381.

[31] See Supplemental Material (SM), which includes experi-
mental videos of passive and active membranes fluctuat-
ing, as well as a description of experimental and numer-
ical protocols. The SM additionally cites Refs. [57–60].

[32] M. I. Angelova and D. S. Dimitrov, Faraday Discuss.
Chem. Soc. 81, 303 (1986).

[33] K. Kuribayashi, G. Tresset, P. Coquet, H. Fujita, and
S. Takeuchi, Meas. Sci. Tech. 17, 3121 (2006).

[34] Another possibility is that electroformation temporarily
weakens the bacteria, and it takes them time to recover.

[35] Bacterial division occurs on a time scale of ∼30–60 min,
and so does not affect our measurements.
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