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Abstract 

Elastic instabilities can trigger dramatic microstructure transformations giving rise to unusual behavior in soft matter. 

Motivated by this phenomenon, we study instability-induced pattern formations in soft magnetoactive elastomer 

(MAE) composites deforming in the presence of a magnetic field. We show that identical MAE composites with 

periodically distributed particles can switch to a variety of new patterns with different periodicity upon developments 

of instabilities. The newly formed patterns and post-buckling behavior of the MAEs are dictated by the magnitude of 

the applied magnetic field. We identify the particular levels of magnetic fields that give rise to strictly doubled, or 

multiplied periodicity upon onset of instabilities in the periodic particulate soft MAE. Thus, the predicted phenomenon 

can be potentially used for designing new reconfigurable soft materials with tunable material microstructures remotely 

controlled by magnetic field. 

Keywords: Magnetoactive elastomers, instabilities, pattern formation, large deformation 
 

 
 

1. Introduction 

 
Soft active materials can undergo reversible shape transformations induced by external stimuli such as light [1], 

heat [2], electric [3] or magnetic field [4]. Magnetoactive elastomers (MAEs) – a class of soft active materials that 

respond to magnetic field excitation – have attracted significant attention due to their simple, remote and reversible 

principle of actuation. Potential applications include remotely controlled actuators [4, 5], variable-stiffness devices 

[6, 7], tunable vibration absorbers [8, 9, 10] and damping components [11, 12], noise barrier system [13, 14] and sensors 

[15] among others. MAEs are composite materials that consist of magnetizable particles embedded in a 
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soft matrix material. Typically, a polymeric matrix material in its liquid state prior to polymerization is mixed with 

magnetizable particles (of micro or even nano-size) [16]. The presence of the magnetic field results in the formation 

of chain-like structures aligned along the direction of the magnetic field applied during curing. Through this 

microstructure modification, different interactions between magnetizable particles are induced, thus, enabling 

tunability of the overall magneto-mechanical behavior of MAEs. Moreover, highly structured soft magnetoactive 

material can be designed to capitalize on local buckling or instability phenomenon triggering dramatic changes in 

material microstructures, and, thus reversible switches in material properties. 

Historically, instability phenomenon or buckling was considered as a limiting factor associated with failure. 

Recently, however, the instability phenomenon has been embraced for designing new materials with unusual 

properties, switchable microstructures, and functions. Elastic instabilities give rise to sudden changes in 

microstructures [17] that can be leveraged for designing materials with negative Poisson’s ratio behavior [18, 19, 20, 

21, 22], shape morphing abilities [23], tunable stiffness [24], controllable surface properties (adhesion and wettability) 

[25], tunable color [26] and phononic [27, 28, 29, 30] and photonic [31] switches. Moreover, buckling-induced 

microstructure transformations [17] are frequently observed in nature [32], and have been employed to enable new 

actuation mechanisms [33, 34] for soft robotics. These systems, however, require direct mechanical loading to induce 

the transformations and gain access to instability-induced unusual properties and behaviors. Here, we explore the 

phenomenon, when the energy is supplied remotely by the application of an external magnetic field. 

In this Letter, we specifically focus on the instability phenomenon and associated pattern transformations in soft 

magnetoactive materials undergoing large deformations in the presence of a magnetic field. To this end, we perform 

numerical analysis of the post-buckling behavior of a MAE with rigid magnetizable inclusions periodically 

distributed in a soft matrix. Long-wave or macroscopic instabilities [35, 36] can be predicted through the effective 

behavior of various homogenization schemes [37, 38, 36]. However, instabilities can develop at smaller length scales 

comparable with the characteristic length of the microstructure (see [39, 40] for the analogous case of dielectric 

elastomer laminates). Due to the complexity of MAE nonlinear behavior and composite architecture, there is very 

limited knowledge about instabilities in these soft active materials [41, 35, 42, 36], and even less is known about their 

post-instability behavior.  

In this study, we investigate the post-buckling behavior of periodic MAE composites with circular inclusions 
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periodically distributed in a soft matrix. Through our computations, we numerically realize the formation and 

evolution of new patterns in the post-buckling regime in the periodic MAE. We analyze the influence of the  

magnetic field on instability-induced new patterns. We find that under the excitation by the magnetic field of specific 

levels, the MAE experiences pre-designed reconfiguration of the microstructures, and formations of distinct strictly 

periodic patterns.  

Consider MAE composites with periodically distributed stiff magnetizable particles embedded in a soft matrix. 

A schematic illustration of a periodically structured MAE composite with a rectangular periodic unit cell with circular 

inclusions is shown in Fig. 1. Geometrically, the microstructure is characterized by the initial periodicity aspect ratio 

𝜂𝜂 = 𝑎𝑎 𝑏𝑏⁄ , the inclusion spacing ratio is 𝜉𝜉 = 𝑑𝑑 𝑏𝑏⁄ , and magnetizable inclusion volume fraction 𝑐𝑐 = 𝜋𝜋𝑑𝑑2 4𝑎𝑎𝑏𝑏⁄ , where 

𝑑𝑑 is the inclusion diameter. 

The equilibrium equation in the absence of body forces is 
 

𝑑𝑑𝑑𝑑𝑑𝑑 𝝈𝝈 = 0, (1) 
 

where 𝜎𝜎 is the total Cauchy stress (including elastic and magnetically-induced stresses) tensor with the symmetry 
 
𝝈𝝈𝑇𝑇 = 𝝈𝝈. The magnetostatic Maxwell equations in the absence of surface and free currents reduce to 

 
𝑑𝑑𝑑𝑑𝑑𝑑 𝐁𝐁 = 0    and    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐇𝐇 = 0, (2) 

 
where B is the magnetic field and H is the magnetic field intensity in the deformed configuration; these are related as 

 
𝐁𝐁 =  µ0(𝐇𝐇 + 𝐌𝐌), where M is the magnetization and µ0 is the free space permeability.  

 
The corresponding phase energy potentials are expressed in terms of elastic and magnetic parts 𝛹𝛹 = 𝛹𝛹(𝑒𝑒𝑒𝑒) +

Figure 1: Schematic representation of MAE composite with rectangular unit cells subjected to vertically applied magnetic field and horizontally applied 

pre-stress. Each unit cell comprising of soft matrix and centered magnetoactive inclusion. An example of representative volume element (RVE) 

containing 𝑁𝑁 = 3 unit cells (right).  
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𝛹𝛹(𝑚𝑚𝑚𝑚𝑚𝑚), in particular, an augmented neo-Hookean nonlinear materials model is employed [43] (see Supplementary 

Materials for details). For magnetizable particles, a Langevin form of the magnetic energy potential is used 
 

             𝜌𝜌Φ = µ0𝑚𝑚𝑠𝑠
2

3𝜒𝜒
�𝑐𝑐𝑙𝑙 �𝑠𝑠𝑑𝑑𝑙𝑙ℎ �3𝜒𝜒|𝐁𝐁|

µ0𝑚𝑚𝑠𝑠
�� − 𝑐𝑐𝑙𝑙 �3𝜒𝜒|𝐁𝐁|

µ0𝑚𝑚𝑠𝑠
��,                                      (3) 

 

where 𝜌𝜌 is the inclusion phase density. 

 
Figure 2: Numerically realized instability-induced periodic (b), (d), (f), (h) and non-periodic (c), (e), (g) patterns in soft MAE composites at 𝜖𝜖 =

50% [44] and various levels of 𝐵𝐵� = 0, 6.7, 10.3, 11.2, 12.1, 12.6, 12.8 (b)-(d). (a) – Undeformed state. The elements of strictly periodic patterns 

𝑁𝑁𝑝𝑝 = 2 (b); 𝑁𝑁𝑝𝑝 = 3 (d); 𝑁𝑁𝑝𝑝 = 4 (f); 𝑁𝑁𝑝𝑝 = 5 (h) are marked by green dashed rectangles and base elements of non-periodic 𝑁𝑁𝑏𝑏 = 2, 3 (c); 𝑁𝑁𝑏𝑏 = 3, 4 

(e); 𝑁𝑁𝑏𝑏 = 4, 5  (g) patterns are denoted by red dashed rectangles. 

To analyze the instability induced pattern formations and the behavior in the post-buckling regime, a nonlinear 

analysis has been performed through the finite element simulations. In our model, we assign the initial matrix shear 

modulus is 𝐺𝐺(𝑚𝑚) = 50 kPa, while the particles are assumed to be 1000 times stiffer with the shear modulus 

𝐺𝐺(𝑖𝑖)/𝐺𝐺(𝑚𝑚) = 103, thus, leading to nearly rigid behavior of the inclusions. The initial susceptibility and saturation 

magnetization of the particles are 𝜒𝜒 = 0.995 and ms = 0.77 T, respectively. Since magneto-elastic instabilities may 

lead to the formation of new periodicity, updated representative volume elements (RVE) were constructed containing 

various numbers of the original unit cell N. The material is subjected to a magnetic field applied in y-direction, and it 

is compressed in the same direction as shown in Fig. 1.  The applied compressive strain 𝜖𝜖𝑦𝑦 can be expressed in terms 

of horizontal stretch ratio 𝜆𝜆 as 𝜖𝜖 = 𝜖𝜖𝑦𝑦 = 1 − 𝜆𝜆−1, if the material is assumed to be incompressible. For later use, we 

introduce here the normalized magnetic field 𝐵𝐵� = 𝐵𝐵 �𝜇𝜇0𝐺𝐺(𝑚𝑚)⁄  [45] and the dimensionless stress component 𝜎𝜎�𝑦𝑦𝑦𝑦 =
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𝐵𝐵�2 2⁄ − 𝜎𝜎𝑦𝑦𝑦𝑦/𝐺𝐺(𝑚𝑚) [46]. Note that a magneto-mechanical loading path is defined in the two-dimensional space of 𝐵𝐵�  

and 𝜖𝜖 (see Fig. 3(b)). There is an infinite number of paths (combinations of 𝐵𝐵�  and 𝜖𝜖) leading to the identical buckling 

point in the two-dimensional space. The instability analysis is described in Supplementary Material. 

 We illustrate the formation of new periodic and quasi-periodic patterns due to instabilities in the periodic MAEs 

for various magnetic fields applied along the particle chain direction in Fig. 2. The examples are given for periodic 

MAEs with 𝜂𝜂 = 5 (see Fig. 1) and 𝜉𝜉 = 0.309. The compressive strain level was gradually increased up to 𝜖𝜖 = 50% 

while 𝐵𝐵�  was kept fixed. Upon achieving the critical strain corresponding to instabilities (𝜖𝜖𝑐𝑐 = 46.8% (b), 

46.9% (𝑐𝑐), 42.8% (𝑑𝑑), 43.2% (𝑒𝑒), 37.9% (𝑓𝑓), 35.3% (𝑔𝑔), 34.4% (ℎ)), particles co-operatively rearrange into new 

patterns. Fig. 2(b) shows that the soft composite deformed at 𝐵𝐵� = 0 switches into the new pattern characterized by 

particle pairing forming a new doubled periodicity. The application of a magnetic field leads to the formation of 

distinct patterns depending on the values of 𝐵𝐵� . Thus, for example, new patterns with increased periodicity Np = 3 (d), 

4 (f), and 5 (h) form [47], when the MAE is subjected to 𝐵𝐵� = 10.3 (d), 12.1 (f), and 12.8 (h). The corresponding 

normalized buckling stresses for periodic patterns are 𝜎𝜎�𝑦𝑦𝑦𝑦 = 0.8 (b),  0.869 (d), 0.863 (f) and 0.846 (h). We observe 

that the periodicity (or wavelength) of the patterns increases as 𝐵𝐵�  increases. Note that the increase in 𝐵𝐵�  leads to the 

evolution of the microstructure towards co-operative particles formation into wavy patterns (compare, for example, 

Fig. 2(b) and (h)). We observe that only narrow ranges of the specific levels of 𝐵𝐵�  give rise to the formation of the strictly 

periodic patterns. For the transition level of the magnetic field, the instability-induced patterns are characterized by 

formations of quasi-periodic patterns with irregularly repeating base elements. The size of the irregular, repeating 

patterns ranged from 2-, 3-, 4- or 5- particles, depending on the level of 𝐵𝐵� . Examples of such instability-induced 

irregular quasi-periodic patterns are shown in Fig. 2(c),(e),(g).  
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The dependence of 𝜖𝜖𝑐𝑐 on 𝐵𝐵�   is shown in Fig. 3. The circles correspond to the reported pattern formations, while the 

dashed curve connecting the points is given for indicating the trend of 𝜖𝜖𝑐𝑐 = 𝜖𝜖𝑐𝑐�𝐵𝐵�� dependence. The continuous curve 

represents the prediction for long-wave or macroscopic instabilities. This is calculated through the analysis of the 

effective (or homogenized) responses of the MAE composites; in particular, a criterion for loss of elliptic ity has been 

utilized [36]. Although the long-wave instability analysis predicts similar trends, we note that microscopic 

instabilities develop earlier – at lower 𝜖𝜖𝑐𝑐 as compared to the long-wave estimates. The difference in the corresponding 

values of 𝜖𝜖𝑐𝑐 is more significant in the weak magnetic field regime, whereas at high values of 𝐵𝐵� , these curves approach 

each other, and longwave analysis provides reasonable estimates for instabilities. Once the macroscopic instability regime 

is attained (for example, at high values of 𝐵𝐵� ) a rapid increase in the buckling wavelength is expected; this transition from 

micro- to macroscopic instabilities manifests in high ratios between the buckling wavelength and the microstructure 

characteristic size (single-particle unit cell).  

 

Figure 3: Dependence of critical strain on applied magnetic field level. The numerically detected critical buckling points are denoted by circles 

corresponding to the periodic patterns from Figs.2(b),(d),(f),(h) and the connecting dashed curve illustrates the trend of the dependence of critical 

strain on magnetic field. Continuous curve represents long-wave instability prediction.  
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Figure 4 shows the dependence of the critical magnetic field – required for the formation of the periodic patterns 

– on periodicity ratio 𝜂𝜂 for a fixed 𝜉𝜉 = 0.309. Continuous, dashed and dash-dotted curves correspond to the periodic  

patterns with 𝑁𝑁𝑝𝑝 = 3, 4 and 5, respectively. We observe that to induce the formation of the patterns with higher 

periodicities, high values of 𝐵𝐵�  are required. For small 𝜂𝜂, when the particle columns are relatively close, the critical 

magnetic field depends strongly on 𝜂𝜂; however, as the distance between the columns is increased, the dependence 

saturates and 𝐵𝐵�  asymptotically approaches the value corresponding to a single column MAE. The high sensitivity of 

particle periodicity to small changes in 𝜂𝜂, in the small 𝜂𝜂 regime, will likely inhibit uniform periodicity in the 

experimental system due to geometric defects introduced during fabrication. We note that strictly periodic structures 

form in the vicinity of the 𝑁𝑁𝑝𝑝 curves, however these regions are rather narrow and quasi-periodic patterns emerge for 

𝐵𝐵�  in the ranges between the curves and below the black continuous curve. 

 Finally, we probe the idea in an experimental set-up on a MAE composite sample. The sample is comprised of 

19 steel rods (with ~80% iron content) embedded in a silicon rubber matrix (𝐺𝐺(𝑚𝑚) = 107 kPa). The MAE sample is 

placed between the poles of an electromagnet, and then it is pre-strained in the presence of the magnetic field of 

various levels.  Note that, due to the experimental limitations, the magnetic field is applied perpendicularly to the pre-

strain direction. Details regarding the sample preparation and experiments are given in the Supplementary material. 

Figure 4: Dependence of the critical magnetic field required for formation of the periodic patterns on 𝜂𝜂 (𝜉𝜉 = 0.309). Continuous, dashed, and 

dash-dotted curves correspond to periodic patterns with 𝑁𝑁𝑝𝑝 = 3, 4  and 5, respectively. 
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Figure 5 shows the experimental (a and b) and numerical (c and d) post-buckling patterns in the MAE composite. In 

modeling, we use G(m) = 107 kPa for the matrix, and 𝜒𝜒 = 0.995 and 𝜇𝜇0𝑚𝑚𝑠𝑠 = 2 T for the rigid magnetizable particles. 

The composite is subjected to magnetic fields 𝐵𝐵 = 0 T (a and c) and 𝐵𝐵 = 1.8 T (b and d) and compressive strain levels 

32% (a and b) and 39% (c and d), respectively. The structure spacing ratio is 𝜉𝜉 = 0.68 corresponding to the periodic 

post-buckling pattern in the absence of a magnetic field. The experiments show that the post-buckling pattern is 

characterized by a higher amplitude when the magnetic field is applied (b) as compared to purely mechanical loading 

(a). Moreover, the application of the magnetic field transforms the post-buckling configuration of the particles. The 

non-periodic pattern (a) attains the periodic configuration (b) when the magnetic field is applied. The repeating base 

elements 𝑁𝑁𝑏𝑏 = 2 denoted by red rectangles are shown in Fig. 5(b). Figures 5(c) and (d) show the numerical simulations also 

capturing the magnetic-field-induced increase in the amplitude. The observed amplitude change is due to the fact that 

the composite buckles earlier when a magnetic field is applied perpendicularly to the column. Note that this behavior is similar to 

the case of the magnetic excitation applied along the column (see Fig. 3(a)). The numerical critical strains are higher for both 

𝐵𝐵 = 0 T (buckles at 𝜖𝜖𝑐𝑐𝑐𝑐 = 44%) and 𝐵𝐵 = 1.8 T (𝜖𝜖𝑐𝑐𝑐𝑐 = 39%) as compared to the experiments. The discrepancy between the 

numerical and experimental buckling strains can stem from various factors, such as initial geometrical imperfections in the tested 

samples, edge effects, and inelastic behavior of the soft matrix.  

In summary, we found instability-induced patterns – that are inadmissible in the absence of a magnetic field – in soft 

Figure 5: Magnetic field triggers instability-induced patterns in soft MAE composites. (a and b) – Experimentally observed patterns for the for the 

applied compressive strain level 32% and for the magnetic fields 𝐵𝐵 = 0 (a) and 𝐵𝐵 = 1.8 T (b), respectively. (c and d) – Numerically realized patterns for 

the applied compressive strain level 39% and for 𝐵𝐵 = 0 (c) and 𝐵𝐵 = 1.8 T (d), respectively. The magnetic field is applied perpendicularly to the 

inclusion column direction. 
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magneto-sensitive periodic systems of rigid magnetizable particles distributed periodically in a soft magnetically 

inactive matrix. We observed that the magnetizable particles rearrange in a cooperative manner into new 

configurations depending on the applied magnetic field. Moreover, under the action of certain magnetic fields, fully 

determined and strictly periodic structures are formed. The magnitudes of the required critical magnetic field are 

sensitive to a change in spacing between the inclusion columns: the effect is strong for smaller distances, but the 

dependence quickly saturates to the single column value as the spacing is increased. The corresponding critical strain 

was found to decrease with an increase in the magnetic field; interestingly, this trend is similar to the one predicted 

by long-wave magneto-mechanical stability analysis based on the effective behavior of the soft MAEs. Note that the 

buckling point is independent of the magneto-mechanical loading path. In the post-buckling regime, however, 

secondary bifurcations and associated distinct pattern transformations are possible for different loading paths. We 

hope that our results for instability-induced pattern formations will motivate further theoretical and experimental 

studies of the phenomenon. We note that the behavior of the systems is highly sensitive to imperfections, thus, posing 

challenges in fabrication of the highly structured materials. Potentially, the periodic MAE systems can be produced 

through various 3D printing techniques [4, 14, 48] across the length-scales. On the other hand, imperfections or defects 

can be tailored to achieve different microstructures with distinct properties. 

 These findings can open new ways for designing switchable behavior in soft matter with applications ranging 

from soft phononics and wave propagation manipulation to remotely controlled soft micro-actuators. For example, 

magnetically-induced instabilities can be used by trigger auxetic behavior, thus, allowing the material/robot to squeeze 

through a narrow space, and then regain the original shape and function. In addition, the local-microstructural 

transformations can be activated inhomogeneously such that global motions can be exerted on account of the 

inhomogeneously distributed local buckling. Remarkably, the application of a magnetic field can turn periodic 

microstructures into quasiperiodic ones. This could be used for designing systems with quasicrystal-like structures 

[49, 50, 51] that are not admissible mechanically. These switchable material systems may be of interest for developing 

metamaterials and the exploration of the wave propagation phenomenon.  Moreover, the ideas can be extended to 

broader classes of materials, including soft dielectric elastomers [52, 53] and materials with pre-designed 

incompatibilities through 3D-printing [54]. 

The research was partially supported by the Air Force Office of Scientific Research under the research tasks 
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