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Quantum statistics of vortices from a dual theory of the XY ferromagnet
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We extend the well-known mapping between the easy-plane ferromagnet and electrostatics in d = 2
spatial dimensions to dynamical and quantum phenomena in a d = 2 + 1 spacetime. Ferromagnetic
vortices behave like quantum particles with an electric charge equal to the vortex number and a
magnetic flux equal to the transverse spin of the vortex core. Vortices with half-integer core spin
exhibit fermionic statistics.

Dualities are versatile tools in a theorist’s chest. They
generate exact results when other methods fail and pro-
vide unexpected insights. The Kramers-Wannier dual-
ity [1] connects partition functions of the low and high-
temperatures states of the Ising ferromagnet in d = 2,
allowing an exact determination of the critical tempera-
ture. The mapping between the XY (easy-plane) ferro-
magnet and electrostatics in d = 2 [2] provided intuition
about the interactions of magnetic vortices and under-
pinned the theory of the Kosterlitz-Thouless phase tran-
sition. Dualities between ferromagnets and gauge models
in d = 3 served as a window into the properties of gauge
theories and helped understand the nature of quark con-
finement [3].

In the analogy between the XY ferromagnet and elec-
trostatics in d = 2, vortices behave as electric charges.
The definition of the vortex number n as the increment
of magnetization’s azimuthal angle φ along the bound-
ary of some region Ω,

∫
∂Ω
dr ·∇φ = 2πn, can be recast as

Gauss’s law for the electric charge Q,
∫
∂Ω
ds · E = 2πQ,

if we identify the vortex number with the electric charge,
Q = n, and the spatial gradients of the angle with com-
ponents of an electric field, Ei = εij∂jφ. Here Roman
indices i = 1, 2 refer to spatial directions and εij is the
Levi-Civita symbol in d = 2.

This duality has been extended to dynamical and
quantum phenomena, which take place in a spacetime
with d = 2 + 1. The addition of the time dimension pro-
motes electrostatics to electrodynamics, vortices become
quantum particles with Bose statistics, and the XY ferro-
magnet is mapped to a superconductor interacting with
an electromagnetic field [4, 5].

In this Letter, we revisit the duality between the XY
ferromagnet and electrodynamics in d = 2 + 1. In a
realistic ferromagnet, the XY model with just two spin
components represents a low-energy, long-wavelength
limit of the Heisenberg ferromagnet with an easy-plane
anisotropy. Although magnetization lies in the easy plane
almost everywhere, it turns toward the hard axis at vor-
tex cores, Fig. 1. Despite its small radius (typically a
few nanometers [6, 7]), the core plays a major role in the
dynamics of a vortex. In particular, it is responsible for
the gyroscopic (Magnus) force acting on a moving vortex
[8–10]. This is a rare example where high-energy physics
(here the existence of a vortex core) crucially impacts

FIG. 1. Vortices in a thin film of permalloy. Numerical sim-
ulation in OOMMF [11]. Color encodes m3: positive (red),
zero (white), and negative (blue). At a vortex core, magne-
tization leaves the easy plane and approaches the hard axis,
m→ (0, 0, p), where p = ±1 defines the polarity of the vortex.

low-energy dynamics.

The newly derived duality establishes an interesting
connection between quantum statistics of vortices and
the spin of the vortex core S3 along the hard axis. In
the dual description, vortices acquire not only the elec-
tric charge Q = n but also a magnetic flux Φ = S3.
Wilczek [12, 13] showed that in d = 2 + 1 the quantum
statistics of particles carrying both an electric charge Q
and a magnetic flux Φ is altered by the Aharonov-Bohm
phase. Generally, bosons turn into anyons with the braid-
ing phase ϑ = 2πQΦ. For magnetic vortices, this yields

ϑ = 2πnS3. (1)

Simple vortices with n = ±1 and half-integer spin S3 are
therefore fermions. An even more exotic, anyon statistics
is expected for vortices with a non-integer 2S3.

Micromagnetics, the continuum theory of the easy-
plane ferromagnet, operates with a unit-vector magne-
tization field

m = (m1,m2,m3) = (sin θ cosφ, sin θ sinφ, cos θ). (2)

The simplest model without long-range dipolar interac-
tions has the Lagrangian density

L(θ, φ) = S(cos θ − p)∂tφ− U(θ, φ). (3)
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The first term in the Lagrangian comes from the spin
Berry phase and is responsible for the precessional dy-
namics of magnetization; S is the spin density. The
number p = ±1 reflects a gauge choice and determines
the location of a singularity of the spin wavefunction at
cos θ = −p = ∓1 [14]. Either choice of p would work
if the spins stayed in the easy plane. However, a vortex
configuration inevitably has a location where the spin ori-
entation approaches one the poles, Fig. 1. To avoid the
singularity, we have to make a specific choice of parame-
ter p [15] by equating it to the vortex polarity, defined as
the value of the out-of-plane magnetization at the center
of the vortex core, m3 = ±1 [16].

Neglecting long-range effects of the dipolar interaction,
the potential energy has the area density

U(θ, φ) =
A
2

[(∇θ)2 + sin2 θ(∇φ)2] +
K
2

cos2 θ. (4)

Here A is the strength of Heisenberg exchange and K
is the easy-plane anisotropy. The natural unit of length
λ =

√
A/K sets the size of a vortex core; the natural

unit of time is τ = |S|/K. The Lagrangian (3) with the
energy density (4) represents a full (high-energy) theory
of magnetization dynamics.

In low-energy states, the magnetization field lies in
the easy plane. The out-of-plane magnetization m3 =
cos θ � 1 is suppressed and can be viewed as a hard
mode. In the spirit of the gradient expansion, we may
neglect the (∇θ)2 term. With this simplification, the
Lagrangian contains no gradients of the field θ and its
(classical) equation of motion reads

K cos θ = S∂tφ. (5)

In static equilibrium, ∂tφ = 0 and thus cos θ = 0, the
magnetization resides strictly in the easy plane. Slow
dynamics of the azimuthal angle φ is accompanied by a
small tilt of magnetization out of the easy plane. The
polar angle is thus a slave of the azimuthal angle. Inte-
grating out θ from the action yields a low-energy theory
with just one field φ and an effective Lagrangian

L(φ) = −pS∂tφ+
ρ

2
(∂tφ)2 − A

2
(∇φ)2, (6)

where ρ = S2/K quantifies the inertia of the azimuthal
angle.

It is convenient to write the Lagrangian in a Lorentz-
covariant form with the Minkowski metric ηµν =
diag(+1,−1,−1) and in natural units,

L(φ) = σ̄µ∂µφ+
e2

2
∂µφ∂

µφ, σ̄µ = −pe2δµ0 . (7)

The dimensionless coupling constant e2 ≡ |S|A/K � 1
is roughly the net out-of-plane spin S3 of a vortex core.

The low-energy Lagrangian (6) has a global symmetry
of rotations in the easy plane, φ 7→ φ + const. The con-
served global quantity is the hard-axis spin component

S3. The associated local conservation law, ∂µσ
µ = 0, is

the continuity equation for the spin current defined as

σµ ≡ ∂L
∂(∂µφ)

− σ̄µ = e2∂µφ. (8)

Here we have separated a uniform background spin cur-
rent σ̄, whose only nonvanishing component σ̄0 = −pS
is a background spin density, from the dynamical part σ.
Although the linear term σ̄µ∂µφ in the Lagrangian (7)
does not influence the classical equation of motion,

∂µ∂
µφ = 0, (9)

it has a topological character and plays an important
role in the dynamics of vortices, as we discuss below.
Eq. (9) describes spin waves with a linear dispersion,
ω = k.

Next we derive the dual theory of electrodynamics by
starting with the effective low-energy model (7). Al-
though this duality is well known in field theory (see Tong
[17] for a pedagogical review), we will use the occasion
to illustrate the underlying ideas that will be useful for
obtaining the dual description of the full model (3).

The duality can be revealed most efficiently in the lan-
guage of differential forms. In d = 2 + 1 the electromag-
netic field is represented by a 2-form F = 1

2Fµνdx
µ∧dxν

and the electric current by a 1-form J = Jµdx
µ [18].

Maxwell’s equations and current conservation read

d *F = 2π *J, dF = 0, d *J = 0. (10a)

Here d is the exterior derivative and * is the Hodge dual.
In the theory of the XY ferromagnet, the spin and vortex
currents are represented by 1-forms σ and j. The relation
between them, and the conservation of the two currents
read (in the low-energy limit)

dσ = 2πe2 *j, d *σ = 0, d *j = 0. (10b)

Comparing Eqs. (10) shows that the vortex current j
maps to the electric current J and the spin current σ to
the Hodge dual of the electromagnetic field *F .

We unpack this analogy in the more familiar language
of tensors and components, beginning with a list of in-
gredients expected in a theory of electrodynamics:

Gauge field. An electromagnetic field should satisfy
local constraints (Bianchi identities) in the form of the
homogeneous Maxwell equations. These constraints are
resolved by expressing the electromagnetic field as the
curl of a gauge field, Fµν = ∂µAν − ∂νAµ. The Bianchi
identity in d = 2 + 1 reads

∂µ *Fµ = 0, *Fµ ≡ 1

2
εµνρFνρ, (11)

where εµνρ is the Levi-Civita symbol in d = 2 + 1. Here
*F is the Hodge dual of the electromagnetic field F [18,
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19]. It corresponds to a conserved current for a global
U(1)J symmetry, referred to as topological U(1), which
exist for Maxwell theories in d = 2+1. The theory admits
monopole defect operators charged under U(1)J .

The global symmetry in the ferromagnetic model is the
symmetry of spin rotations in the xy plane. We identify
the generator of this symmetry with that of the U(1)J
of the Maxwell theory, and thus the current σµ maps to
*Fµ as follows:

*Fµ ≡ −σµ = −e2∂µφ, *F̄µ ≡ −σ̄µ. (12)

Here quantities with a bar represent uniform background
parts of the respective fields. The minus signs in Eq. (12)
reflect the convention that a positive vortex number cor-
responds to a positive electric charge.

With the physical units restored, the electric and mag-
netic fields are

Ei = Aεij∂jφ, B = ρ∂tφ, B̄ = −pS. (13)

As in d = 2 [2], the electric field comes from spatial
gradients of φ, whereas the temporal gradient gives rise to
the magnetic field. The background magnetic field B̄ =
−pS represents an effect well known in vortex dynamics.
A particle with electric charge Q moving with velocity ẋi

should experience the Lorentz force Fi = 2πQB̄εij ẋ
j [20].

With Q = n and B̄ = −pS, this exactly reproduces the
gyroscopic force Fi = −2πnpSεij ẋj acting on a moving
vortex [8, 9, 15].

Electromagnetic waves. A hallmark of Maxwell’s the-
ory is the existence of transverse electromagnetic waves
with a linear dispersion, ω = k. Spin waves in the XY
ferromagnet (9) seem like a good candidate. There is just
one spin-wave mode for each wavevector, in accordance
with a single transverse polarization expected for elec-
tromagnetic waves in d = 2 + 1. The transverse nature
of the electric field in a spin wave can be checked with
the aid of Eq. (13): ∂iE

i = A(∂x∂y − ∂y∂x)φ = 0 in the
absence of vortices.

Coupling of the field and current. To find a conserved
matter current satisfying the continuity equation, ∂µj

µ =
0, we turn to vortices. They are indestructible and can
only be annihilated in pairs. In their presence, derivatives
of φ are singular, ∂x∂yφ − ∂y∂xφ = 2πρ. This definition
of vortex density ρ generalizes to a vortex current jµ in
d = 2 + 1:

εµνρ∂ν∂ρφ = 2πjµ. (14)

With the help of the duality relation (12), this identity
takes the form of the inhomogeneous Maxwell equations,

∂µF
µν = 2πe2Jν , (15)

with the electric current J equal to the vortex current
j. The dual theory can be obtained from the Lagrangian

of Maxwell’s electrodynamics with a matter current J
coupled to both the dynamical and background gauge
fields A and Ā:

L(J,A) = −2π(Aµ + Āµ)Jµ − FµνF
µν

4e2
. (16)

Duality via an auxiliary field. We now derive the dual
theory (16) from the low-energy Lagrangian (7) in a stan-
dard formal way [17], through the introduction of an aux-
iliary vector field with components *Fµ. The Lagrangian
of the two fields φ and *F is chosen to be

L(φ, *F ) = −(*Fµ + *F̄µ)∂µφ−
*Fµ *Fµ

2e2
. (17)

This choice assures that minimization of the action with
respect to *F yields the conjectured relation (12). In-
tegrating out the auxiliary field *F would lead to our
effective theory (7). Instead, we will keep the auxiliary
field *F and integrate out the angle field φ.

However, prior to that, we need to separate a singular
vortex part of the field φ from spin waves as it is done
in d = 2 [2]. In the presence of vortices, φ is not a
single-valued function of the spacetime coordinates and
∂µφ is not, strictly speaking, a gradient. We separate
this quantity into two parts, ∂µφ = aµ + ∂µϕ. The new
gauge field a is defined by vortex world-lines,

εµνρ∂νaρ = 2πjµ. (18)

The single-valued field ϕ represents spin waves in the
original theory and generates gauge transformations for
the vortex gauge field a.

Integrating out the single-valued part of the field ϕ
produces the Bianchi identity for F (11). Upon resolving
it in the expected way, *Fµ = εµνρ∂νAρ, we obtain the
Lagrangian for a gauge field A and the vortex current j
parametrized by the vortex gauge field a:

L(j, A) = −εµνρaµ∂ν(Aρ + Āρ)−
FµνF

µν

4e2
. (19)

Note that the first term in Eq. (19) is aµσ
µ, indicating

that the role of the electric charge for the gauge field a
is played by the spin S3, whereas the electric charge for
A is the vortex number n.

Finally, we convert the first term in Eq. (19) via in-
tegration by parts and use the relation between a and
j (18) to obtain the conjectured Lagrangian of the dual
theory (16).

As already mentioned, the low-energy theory (7) and
its well-known dual (16) break down at vortex cores. We
now turn to the full model (3) and derive its hitherto un-
known dual theory (22), our main technical achievement
underpinning the new conceptual result (1).



4

We can readily construct the electromagnetic fields fol-
lowing the familiar route. The Lagrangian (3) and po-
tential energy (4) retain the global rotational symmetry.
The spin current σµ has the following components:

σ0 = S cos θ, σ̄0 = −pS, σi = −A sin2 θ ∂iφ. (20)

The dynamical temporal component σ0 is the density of
spin along the hard axis. Identification of the spin current
with the electromagnetic field along the lines of Eqs. (12)
and (13) yields

Ei = A sin2 θ εij∂jφ, B = S cos θ, B̄ = −pS. (21)

The low-energy result (13) is recovered if we set sin θ = 1
and use the low-energy equation of motion (5).

For completeness, we give the Lagrangian of the dual
gauge theory, in natural units:

L(J,A) = −2π(Aµ+Āµ)Jµ+
1

2e2

(
E ·E− (∇B)2

1− (B/B̄)2
−B2

)
.

(22)
The Lorentz-covariant form (16) is recovered in the limit
when the dynamical magnetic field is weak and varies
slowly in space, ∇B � B � B̄.

Up to this point, our theory of the XY ferromagnet in
d = 2+1, recast as electrodynamics, has faithfully repro-
duced what is already known. The electrostatic analogy
goes back to 1974 [2]; the dynamical similarity with elec-
tric charges in a background magnetic field is also not
new [21–23]. Does this duality provide any new insights,
not obvious from the original theory?

One interesting feature that, as far as we know, has not
been previously pointed out is the presence of a magnetic
field B = S cos θ localized at a vortex core, where cos θ 6=
0. The net magnetic flux of a vortex,

Φ =

∫
d2xB =

∫
d2xS cos θ = S3, (23)

is equal to the net spin S3 of the vortex core. We thus find
that a vortex behaves like a particle with both an electric
charge Q = n and a magnetic flux Φ = S3. The attach-
ment of a well-localized magnetic flux does not influence
the classical dynamics of a charged particle. However,
it has important consequences at the quantum level be-
cause of the Aharonov-Bohm phase experienced by an
electric charge moving around a magnetic flux. Wilczek
[12, 13] pointed out that particles carrying both an elec-
tric charge q and magnetic flux Φ in d = 2+1, increment
their statistical angle ϑ (0 for bosons and π for fermions)
by 2πQΦ (in our units [20]). Viewed as a quantum par-
ticle, a vortex in a ferromagnet is ordinarily considered
to be a boson [5]. The idea that a vortex carries both an
electric charge Q = n and a magnetic flux Φ = S3 means
that its statistical angle is ϑ = 2πnS3. Common single

vortices (n = ±1) can exhibit the fermion statistics if
their spin S3 is half-integer.

Are there vortices with a half-integer spin S3? We do
not know for sure. It is relatively easy to determine the
spin of a vortex in a classical model such as the one de-
fined by Eq. (4). The vortex core is well defined and its
net spin is of the order of e2 = |S|A/K � 1. However,
this classical answer varies continuously with the param-
eters of the model and is not quantized.

The problem needs to be solved at the quantum level.
Aside from technical difficulties, we encounter a concep-
tual problem. The transverse spin S3 is a conserved quan-
tity by virtue of the O(2) rotational symmetry. How-
ever, in an ordered ferromagnet this symmetry is spon-
taneously broken. Therefore, the ground state of an or-
dered magnet is generally a superposition of (infinitely)
many states with different values of S3,

|ψ〉 =
∑
S3

CS3
|S3〉, (24)

and S3 is not even a well-defined quantity. Fortunately,
quantum statistics is determined not so much by the sta-
tistical angle ϑ but by its exponential eiϑ = e2πinS3 . Be-
cause physical states are invariant under 2π rotations,
the superposition (24) may only contain values of S3 dif-
fering by integers, e.g., 1/2, 3/2, 5/2, . . . or 0, 1, 2, . . . .
The number e2πinS3 is the same for all such S3, so the
quantum statistics of vortices is well defined even if S3 is
not.

We speculate that vortices with a half-integer spin
could be found in single-layer ferromagnets. With two
layers, the total spin would presumably double and give
the trivial bosonic statistics. For the same reason, mag-
netic atoms with half-integer spin look more promising
than ones with integer spin.

The attachment of fluxes to charges is absent in the
naive dual theory (16). One could attempt to fix this
deficiency by adding a Chern-Simons (CS) term, LCS =
πk εµνρAµ∂νAρ [24, 25]. Doing so would not affect the
classical dynamics [17] and attach magnetic flux Φ = Q/k
to an electric charge Q. However, this one-to-one cor-
respondence between the charge and flux is too restric-
tive for our model. A magnetic vortex with “electric
charge” Q = n can have both positive and negative trans-
verse “magnetic flux” Φ = S3, depending on the polarity
p = ±1 of the core. This Z2 degree of freedom is miss-
ing in the standard scenario of flux attachment via a CS
term, thus requiring a more sophisticated approach.

Vortices in ferromagnets have been extensively studied,
both experimentally and theoretically. In practically all
of these studies, vortices have been treated as classical
objects. Only recently have theorists begun to ponder
their unusual quantum properties. For example, Ivanov
and co-workers [26, 27] considered the quantum mechan-
ics of a single vortex in an atomic lattice with spins of
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length S. The single-vortex energy spectrum consists of
2S bands reminiscent of electron bands in a solid. Sim-
ilar results for skyrmion energy bands were obtained by
Takashima et al. [28]. Noncommutativity of momentum
components for vortices and skyrmions was pointed out
by Watanabe and Murayama [29]; the same applies to
their coordinates [30].

In this Letter, we have shown that magnetic vor-
tices, viewed as quantum particles, may exhibit nontrivial
quantum statistics: vortices with a half-integer core spin
S3 are expected to be fermions. Even more exotic anyon
statistics is expected for vortices with a non-integer 2S3.
The existence of vortices with non-integer 2S3, also con-
jectured independently by Ivanov [31], would be a tanta-
lizing possibility. However, Feldman [32] has pointed out
that anyon statistics can probably be ruled out for vor-
tices on account of the spin–statistics theorem [12, 33],
which sets eiϑ = e−2πiS3 . This result is compatible with
Eq. (1) for n = 1 only if 2S3 is an integer.

We hope that our work will stimulate further interest
in quantum mechanics of vortices and other magnetic
solitons.
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