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 17 

Confirming the origin of Gilbert damping by experiment has remained a challenge for 18 

many decades, even for simple ferromagnetic metals. In this Letter, we experimentally 19 

identify Gilbert damping that increases with decreasing electronic scattering in epitaxial 20 

thin films of pure Fe. This observation of conductivity-like damping, which cannot be 21 

accounted for by classical eddy current loss, is in excellent quantitative agreement with 22 

theoretical predictions of Gilbert damping due to intraband scattering. Our results resolve 23 
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the longstanding question about a fundamental damping mechanism and offer hints for 24 

engineering low-loss magnetic metals for cryogenic spintronics and quantum devices.   25 

 26 

Damping determines how fast the magnetization relaxes towards the effective magnetic 27 

field and plays a central role in many aspects of magnetization dynamics [1,2]. The magnitude of 28 

viscous Gilbert damping governs the threshold current for spin-torque magnetic switching and 29 

auto-oscillations [3,4], mobility of magnetic domain walls [5,6], and decay lengths of diffusive 30 

spin waves and superfluid-like spin currents [7,8]. To enable spintronic technologies with low 31 

power dissipation, there is currently much interest in minimizing Gilbert damping in thin films of 32 

magnetic materials [9–19], especially ferromagnetic metals [20–32] that are compatible with 33 

conventional device fabrication schemes. Despite the fundamental and technological importance 34 

of Gilbert damping, its physical mechanisms in various magnetic materials have yet to be 35 

confirmed by experiment.   36 

Gilbert damping is generally attributed to spin-orbit coupling that ultimately dissipates 37 

the energy of the magnetic system to the lattice [1,2]. Kambersky’s torque correlation model [33] 38 

qualitatively captures the temperature dependence of damping in some experiments [34–37] by 39 

partitioning Gilbert damping into two mechanisms due to spin-orbit coupling, namely interband 40 

and intraband scattering mechanisms, each with a distinct dependence on the electronic 41 

momentum scattering time τe. For the interband scattering mechanism where magnetization 42 

dynamics can excite electron-hole pairs across different bands, the resulting Gilbert damping is 43 

“resistivity-like” as its magnitude scales with τe
-1, i.e., increased electronic scattering results in 44 

higher damping [38,39]. By contrast, the intraband scattering mechanism is typically understood 45 

through the breathing Fermi surface model [40], where electron-hole pairs are excited in the 46 
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same band, yielding “conductivity-like” Gilbert damping that scales with τe, i.e., reduced 47 

electronic scattering results in higher damping.  48 

Conductivity-like Gilbert damping was reported experimentally more than 40 years ago 49 

in bulk crystals of pure Ni and Co at low temperatures, but surprisingly not in pure Fe [34]. The 50 

apparent absence of conductivity-like damping in Fe has been at odds with many theoretical 51 

predictions that intraband scattering should dominate at low temperatures [41–47], although 52 

some theoretical studies have suggested that intraband scattering may be absent altogether in 53 

pure metals [48,49]. To date, no experimental work has conclusively addressed the role of 54 

intraband scattering in pure Fe1. There thus remains a significant gap in the fundamental 55 

understanding of damping in one of the simplest ferromagnetic metals.  Intrinsic conductivity-56 

like Gilbert damping in Fe is also technologically relevant, since minimizing damping in 57 

ferromagnetic metals at low temperatures is crucial for cryogenic superconducting spintronic 58 

memories [50,51] and quantum information transduction schemes [52,53].  59 

In this Letter, we experimentally demonstrate the presence of conductivity-like Gilbert 60 

damping due to intraband scattering in epitaxial thin films of body-centered-cubic (BCC) Fe. By 61 

combining broadband ferromagnetic resonance (FMR) measurements with characterization of 62 

structural and transport properties of these model-system thin films, we show that conductivity-63 

like Gilbert damping dominates at low temperatures in epitaxial Fe. These experimental results 64 

agree remarkably well with the magnitude of Gilbert damping derived from first-principles 65 

                                                            
1 Ref.  [45] includes experimental data that suggest the presence of conductivity-like Gilbert damping in an ultrathin 

Fe film, although no detailed information is given about the sample and the experimental results deviate 

considerably from the calculations. An earlier study by Rudd et al. also suggests an increase in Gilbert damping with 

decreasing temperature [36], but quantification of the Gilbert damping parameter in this experiment is difficult. 
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calculations [41,42,45], thereby providing evidence for intraband scattering as a key mechanism 66 

for Gilbert damping in pure BCC Fe. Our experiment thus resolves the longstanding question 67 

regarding the origin of damping in the prototypical ferromagnetic metal. Our results also confirm 68 

that – somewhat counterintuitively – disorder can partially suppress intrinsic damping at low 69 

temperatures in ferromagnetic metals, such that optimally disordered films may be well suited 70 

for cryogenic spintronic and quantum applications [50–53].   71 

Epitaxial BCC Fe thin films were sputter deposited on (001)-oriented MgAl2O4 (MAO) 72 

and MgO single crystal substrates. The choices of substrates were inspired by the recent 73 

experiment by Lee et al. [27], where epitaxial growth is enabled with the [100] axis of a BCC 74 

Fe-rich alloy oriented 45o with respect to the [100] axis of MAO or MgO. MAO with a lattice 75 

parameter of aMAO /ሺ2√2ሻ = 0.2858 nm exhibits a lattice mismatch of less than 0.4% with Fe (aFe 76 

≈ 0.287 nm), whereas the lattice mismatch between MgO (aMgO/√2 = 0.2978 nm) and Fe is of the 77 

order 4%. Here, we focus on 25-nm-thick Fe films that were grown simultaneously on MAO and 78 

MgO by confocal DC magnetron sputtering [54].  In the Supplemental Material [54], we report 79 

on additional films deposited by off-axis magnetron sputtering.  80 

We verified the crystalline quality of the epitaxial Fe films by X-ray diffraction, as shown 81 

in Fig. 1(a-c). Only (00X)-type peaks of the substrate and film are found in each 2θ-ω scan, 82 

consistent with the single-phase epitaxial growth of the Fe films. The 2θ-ω scans reveal a larger 83 

amplitude of film peak for MAO/Fe, suggesting higher crystalline quality than that of MgO/Fe. 84 

Pronounced Laue oscillations, indicative of atomically smooth film interfaces, are observed 85 

around the film peak of MAO/Fe, whereas they are absent for MgO/Fe. The high crystalline 86 

quality of MAO/Fe is also evidenced by its narrow film-peak rocking curve with a FWHM of 87 
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only 0.02o, comparable to the rocking curve FWHM of the substrate2. By contrast, the film-peak 88 

rocking curve of MgO/Fe has a FWHM of 1o, which indicates substantial mosaic spread in the 89 

film due to the large lattice mismatch with the MgO substrate. 90 

Results of 2θ-ω scans for different film thicknesses [54] suggest that the 25-nm-thick Fe 91 

film may be coherently strained to the MAO substrate, consistent with the smooth interfaces and 92 

minimal mosaic spread of MAO/Fe. By contrast, it is likely that 25-nm-thick Fe on MgO is 93 

relaxed to accommodate the large film-substrate lattice mismatch. Static magnetometry provides 94 

further evidence that Fe is strained on MAO and relaxed on MgO [54]. Since strained MAO/Fe 95 

and relaxed MgO/Fe exhibit distinct crystalline quality, as evidenced by an approximately 50 96 

times narrower rocking FWHM for MAO/Fe, we have two model systems that enable 97 

experimental investigation of the impact of structural disorder on Gilbert damping.   98 

The residual electrical resistivity also reflects the structural quality of metals. As shown 99 

in Fig. 1(d), the residual resistivity is 20% lower for MAO/Fe compared to MgO/Fe, which 100 

corroborates the lower defect density in MAO/Fe. The resistivity increases by nearly an order of 101 

magnitude with increasing temperature, reaching 1.1×10-7 Ω m for both samples at room 102 

temperature, consistent with behavior expected for pure metal thin films.  103 

We now examine how the difference in crystalline quality correlates with magnetic 104 

damping in MAO/Fe and MgO/Fe. Broadband FMR measurements were performed at room 105 

temperature up to 65 GHz with a custom spectrometer that employs a coplanar waveguide 106 

(center conductor width 0.4 mm) and an electromagnet (maximum field < 2 T). For each 107 

measurement at a fixed excitation frequency, an external bias magnetic field was swept parallel 108 

to the film plane along the [110] axis of Fe, unless otherwise noted. In the Supplemental 109 

                                                            
2 The angular resolution of the diffractometer is 0.0068o.  
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Material [54], we show similar results with the field applied along the [110] and [100] axes of 110 

Fe; Gilbert damping is essentially isotropic within the film plane for our epitaxial Fe films, in 111 

contrast to a recent report of anisotropic damping in ultrathin epitaxial Fe [29]. 112 

Figure 2 shows that the peak-to-peak FMR linewidth ΔHpp scales linearly with frequency 113 

f, enabling a precise determination of the measured Gilbert damping parameter ߙ௦ from the 114 

standard equation,  115 ߤ∆ܪ ൌ ܪ∆ߤ  ଶ√ଷ ఈೌೞఊᇱ ݂,    (1) 116 

where ΔH0 is the zero-frequency linewidth and ߛᇱ ൌ ߨ2/ߛ ൎ 29.5 GHz/T is the reduced 117 

gyromagnetic ratio. Despite the difference in crystalline quality, we find essentially the same 118 

measured Gilbert damping parameter of ߙ௦ ≈ 2.3×10-3 for MAO/Fe and MgO/Fe. We note 119 

that this value of ߙ௦ is comparable to the lowest damping parameters reported for epitaxial Fe 120 

at room temperature [21,22,24]. Our results indicate that Gilbert damping at room temperature is 121 

insensitive to the strain state or structural disorder in epitaxial Fe.3  122 

 The measured damping parameter ߙ௦ from in-plane FMR can generally include a 123 

contribution from non-Gilbert relaxation, namely two-magnon scattering driven by defects [65–124 

68]. However, two-magnon scattering is suppressed when the film is magnetized out-of-125 

plane [26,67]. To isolate any two-magnon scattering contribution to damping, we performed out-126 

of-plane FMR measurements under a sufficiently large magnetic field (>4 T) for complete 127 

saturation of the Fe film, using a custom W-band shorted waveguide combined with a 128 

                                                            
3 However, the crystallographic texture of Fe has significant impact on damping; for example, non-epitaxial Fe films 

deposited directly on amorphous SiO2 substrates exhibit an order of magnitude wider linewidths, due to much more 

pronounced non-Gilbert damping (e.g., two-magnon scattering), compared to (001)-oriented epitaxial Fe films.  
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superconducting magnet. As shown in Fig. 2, the out-of-plane and in-plane FMR data yield the 129 

same slope and hence ߙ௦ (Eq. 1) to within < 8%. This finding indicates that two-magnon 130 

scattering is negligible and that frequency-dependent magnetic relaxation is dominated by 131 

Gilbert damping in epitaxial Fe examined here.  132 

The insensitivity of Gilbert damping to disorder found in Fig. 2 can be explained by the 133 

dominance of the interband (resistivity-like) mechanism at room temperature, with phonon 134 

scattering dominating over defect scattering. Indeed, since MAO/Fe and MgO/Fe have the same 135 

room-temperature resistivity (Fig. 1(d)), any contributions to Gilbert damping from electronic 136 

scattering should be identical for both samples at room temperature. Moreover, according to our 137 

density functional theory calculations [54], the density of states of BCC Fe at the Fermi energy, 138 

D(EF), does not depend significantly on the strain state of the crystal. Therefore, in light of the 139 

recent reports that Gilbert damping is proportional to D(EF) [23,25,69], the different strain states 140 

of MAO/Fe and MgO/Fe are not expected to cause a significant difference in Gilbert damping.  141 

 However, since MAO/Fe and MgO/Fe exhibit distinct resistivities (electronic scattering 142 

times τe) at low temperatures, one might expect to observe distinct temperature dependence in 143 

Gilbert damping for these two samples. To this end, we performed variable-temperature FMR 144 

measurements using a coplanar-waveguide-based spectrometer (maximum frequency 40 GHz, 145 

field < 2 T) equipped with a closed-cycle cryostat4. Figure 3(a,b) shows that αmeas is enhanced 146 

for both samples at lower temperatures. Notably, this damping enhancement with decreasing 147 

temperature is significantly greater for MAO/Fe. Thus, at low temperatures, we find a 148 

                                                            
4 The W-band spectrometer for out-of-plane FMR (Fig. 2) could not be cooled below room temperature due to its 

large thermal mass, limiting us to in-plane FMR measurements at low temperatures.  
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conductivity-like damping increase that is evidently more pronounced in epitaxial Fe with less 149 

structural disorder.  150 

While this increased damping at low temperatures is reminiscent of intrinsic Gilbert 151 

damping from intraband scattering [40–47], we first consider other possible contributions. One 152 

possibility is two-magnon scattering [65–68], which we have ruled out at room temperature (Fig. 153 

2) but could be present in our low-temperature in-plane FMR measurements. From Fig. 3(a,b), 154 

the zero-frequency linewidth  ΔH0  (Eq. 1) – typically attributed to magnetic inhomogeneity – is 155 

shown to increase along with αmeas at low temperatures [54], which might point to the emergence 156 

of two-magnon scattering [67,68]. However, our mean-field model calculations (see 157 

Supplemental Material [54]) shows that ΔH0  correlates with αmeas due to interactions among 158 

different regions of the inhomogeneous film [70]. The increase of ΔH0 at low temperatures is 159 

therefore readily accounted for by increased Gilbert damping, rather than two-magnon scattering.  160 

We are also not aware of any mechanism that enhances two-magnon scattering with 161 

decreasing temperature, particularly given that the saturation magnetization (i.e., dipolar 162 

interactions) is constant across the measured temperature range [54]. Moreover, the isotropic in-163 

plane damping found in our study is inconsistent with typically anisotropic two-magnon 164 

scattering tied to the crystal symmetry of epitaxial films [65,66], and the film thickness in our 165 

study (e.g., 25 nm) rules out two-magnon scattering of interfacial origin [68]. As such, we 166 

conclude that two-magnon scattering does not play any essential role in our experimental 167 

observations.  168 

 Another possible contribution is dissipation due to classical eddy currents, which 169 

increases proportionally with the increasing conductivity ߪ at lower temperatures. We estimate 170 

the eddy current contribution to the measured Gilbert damping with [21,71]  171 
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ௗௗ௬ߙ ൌ ఙଵଶ  ிଶ,    (2) 172ݐ௦ܯଶߤߛ

where  ߤܯ௦ ൎ 2.0 T is the saturation magnetization and tF is the film thickness. We find that 173 

eddy current damping accounts for only ≈20% (≈30%) of the total measured damping of 174 

MAO/Fe (MgO/Fe) even at the lowest measured temperature (Fig. 3(c)). Furthermore, as shown 175 

in the Supplemental Material [54], thinner MAO/Fe films, e.g., tF = 11 nm, with negligible αeddy 176 

still exhibit a significant increase in damping with decreasing temperature. Our results thus 177 

indicate a substantial contribution to conductivity-like Gilbert damping that is not accounted for 178 

by classical eddy current damping.  179 

 For further discussion, we subtract the eddy-current damping from the measured damping 180 

to denote the Gilbert damping parameter attributed to intrinsic spin-orbit coupling as 181 ߙ௦ ൌ ௦ߙ  െ  ௗௗ௬. To correlate electronic transport and magnetic damping across the entire 182ߙ 

measured temperature range, we perform a phenomenological fit of the temperature dependence 183 

of Gilbert damping with [35]  184 ߙ௦ ൌ ܿ ఙሺ்ሻఙሺଷ ሻ  ݀ ఘሺ்ሻఘሺଷ ሻ,   (3) 185 

where the conductivity-like (intraband) and resistivity-like (interband) terms are scaled by 186 

adjustable parameters c and d, respectively. As shown in Fig. 4(a),(b), this simple 187 

phenomenological model using the experimental transport results (Fig. 1(d)) agrees remarkably 188 

well with the temperature dependence of Gilbert damping for both MAO/Fe and MgO/Fe.  189 

Our findings that Gilbert damping can be phenomenologically partitioned into two 190 

distinct contributions (Eq. 3) are in line with Kambersky’s torque correlation model. We 191 

compare our experimental results to first-principles calculations by Gilmore et al. [41,42] that 192 

relate electronic momentum scattering rate τe
-1 and Gilbert damping through Kambersky’s torque 193 

correlation model. We use the experimentally measured resistivity ρ (Fig. 1(d)) to convert the 194 
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temperature to τe
-1 by assuming the constant conversion factor ρτe = 1.30×10-21 Ω m s [42]. To 195 

account for the difference in electronic scattering time for the minority spin τ↓ and majority spin 196 

τ↑, we take the calculated curve from Gilmore et al. with τ↓/τ↑ = 4 [42], which is close to the 197 

ratio of D(EF) of the spin-split bands for BCC Fe, e.g., derived from our density functional 198 

theory calculations [54]. For explicit comparison with Refs. [41,42], the Gilbert damping 199 

parameter in Fig. 4(c) is converted to the magnetic relaxation rate ߣ ൌ  ௦. The 200ܯߤ௦ߙߛ 

calculated prediction is in excellent quantitative agreement with our experimental results for both 201 

strained MAO/Fe and relaxed MgO/Fe (Fig. 4(c)), providing additional experimental evidence 202 

that intraband scattering predominately contributes to Gilbert damping at low temperatures.   203 

 We also compare our experimental results to a more recent first-principles calculation 204 

study by Mankovsky et al., which utilizes the linear response formalism [45]. This approach 205 

does not rely on a phenomenological electronic scattering rate and instead allows for explicitly 206 

incorporating thermal effects and structural disorder. Figure 4(d) shows the calculated 207 

temperature dependence of the Gilbert damping parameter for BCC Fe with a small density of 208 

defects, i.e., 0.1% vacancies, adapted from Ref. [45]. We again find good quantitative agreement 209 

between the calculations and our experimental results for MAO/Fe. On the other hand, the 210 

Gilbert damping parameters at low temperatures for relaxed MgO/Fe are significantly below the 211 

calculated values. This is consistent with the reduction of intraband scattering due to enhanced 212 

electronic scattering (enhanced τe
-1) from defects in relaxed MgO/Fe.  213 

 Indeed, significant defect-mediated electronic scattering may explain the absence of 214 

conductivity-like Gilbert damping for crystalline Fe in prior experiments. For example, Ref. [34] 215 

reports an upper limit of only a two-fold increase of the estimated Gilbert damping parameter 216 

from T = 300 K to 4 K. This relatively small damping enhancement is similar to that for MgO/Fe 217 
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in our study (Fig. 4(b)), suggesting that intraband scattering may have been suppressed in Fe in 218 

Ref. [34] due to a similar degree of structural disorder to MgO/Fe. We therefore conclude that 219 

conductivity-like Gilbert damping from intraband scattering is highly sensitive to disorder in 220 

ferromagnetic metals.  221 

More generally, the presence of defects in all real metals – evidenced by finite residual 222 

resistivity – ensures that the Gilbert damping parameter is finite even in the zero-temperature 223 

limit. This circumvents the theoretical deficiency of Kambersky’s torque correlation model 224 

where Gilbert damping would diverge in a perfectly clean ferromagnetic metal at T  0 [48,49]. 225 

We also remark that a fully quantum mechanical many-body theory of magnetization dynamics 226 

yields finite Gilbert damping even in the clean, T = 0 limit [72].  227 

 In summary, we have demonstrated the dominance of conductivity-like Gilbert damping 228 

due to intraband scattering at low temperatures in high-quality epitaxial Fe. Our experimental 229 

results also validate the longstanding theoretical prediction of intraband scattering as an essential 230 

mechanism for Gilbert damping in pure ferromagnetic metals [41–47], thereby advancing the 231 

fundamental understanding of magnetic relaxation in real materials. Moreover, we have 232 

confirmed that, at low temperatures, a magnetic metal with imperfect crystallinity can exhibit 233 

lower Gilbert damping (spin decoherence) than its cleaner counterpart. This somewhat 234 

counterintuitive finding suggests that magnetic thin films with optimal structural or chemical 235 

disorder may be useful for cryogenic spintronic memories [50,51] and spin-wave-driven 236 

quantum information systems [52,53].   237 
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 448 

 449 

Figure 1. (a,b) 2θ-ω X-ray diffraction scans of MAO/Fe and MgO/Fe (a) over a wide angle range 450 

and (b) near the BCC Fe (002) film peak. (c) Rocking curve scans about the film peak. (d) 451 

Temperature dependence of resistivity plotted on a log-log scale.  452 

 453 

 454 

Figure 2. Frequency dependence of FMR linewidth ΔHpp for MAO/Fe and MgO/Fe at room 455 

temperature. Linewidths measured under in-plane field are shown as open symbols, whereas 456 

those measured under out-of-plane (OP) field are shown as filled symbols.  457 
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 458 

Figure 3. (a,b) Frequency dependence of FMR linewidth for MAO/Fe and MgO/Fe at (a) T = 100 459 

K and (b) T = 10 K. (c) Temperature dependence of measured Gilbert damping parameter αmeas 460 

and estimated eddy-current damping parameter αeddy. 461 
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  464 

Figure 4. (a,b) Temperature dependence of the spin-orbit-induced Gilbert damping parameter αso, 465 

fit phenomenologically with the experimentally measured resistivity for (a) MAO/Fe and (b) 466 

MgO/Fe. The dashed and dotted curves indicate the conductivity-like and resistivity-like 467 

contributions, respectively; the solid curve represents the fit curve for the total spin-orbit-induced 468 

Gilbert damping parameter. (c,d) Comparison of our experimental results with calculated Gilbert 469 

damping parameters by (c) Gilmore et al. [41,42] and (d) Mankovsky et al. [45]. 470 
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