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Simulations of excited state properties, such as spectral functions, are often computationally
expensive and therefore not suitable for high-throughput modeling. As a proof of principle, we
demonstrate that graph-based neural networks can be used to predict the x-ray absorption near-
edge structure spectra of molecules to quantitative accuracy. Specifically, the predicted spectra
reproduce nearly all prominent peaks, with 90% of the predicted peak locations within 1 eV of the
ground truth. Besides its own utility in spectral analysis and structure inference, our method can
be combined with structure search algorithms to enable high-throughput spectrum sampling of the
vast material configuration space, which opens up new pathways to material design and discovery.
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The last decade has witnessed exploding developments10

in artificial intelligence, specifically deep learning appli-11

cations, in many areas of our society [1], including image12

and speech recognition, language translation and drug13

discovery, just to name a few. In scientific research, deep14

learning methods allow researchers to establish rigor-15

ous, highly non-linear relations in high-dimensional data.16

This enormous potential has been demonstrated in, e.g.,17

solid state physic and materials science [2, 3], including18

the prediction of molecular [4, 5] and crystal [6] proper-19

ties, infrared [7] and optical excitations [8], phase transi-20

tions [9] and topological ordering [10] in model systems,21

in silico materials design [11] and force field develop-22

ment [12, 13].23

One high-impact area of machine learning (ML) appli-24

cations is predicting material properties. By leveraging25

large amounts of labeled data consisting of feature-target26

pairs, ML models, such as deep neural networks, are27

trained to map features to targets. The ML parameters28

are optimized by minimizing an objective loss criterion,29

and yields a locally optimal interpolating function [14].30

Trained ML models can make accurate predictions on un-31

known materials almost instantaneously, giving this ap-32

proach a huge advantage in terms of fidelity and efficiency33

in sampling the vast materials space as compared to ex-34

periment and conventional simulation methods. So far,35

existing ML predictions mostly focus on simple quanti-36

ties, such as the total energy, fundamental band gap and37

forces; it remains unclear whether ML models can predict38

complex quantities, such as spectral functions of real ma-39

terials, with high accuracy. Establishing such capability40

is in fact essential to both the physical understanding of41

fundamental processes and design of new materials. In42

this study, we demonstrate that ML models can predict43

x-ray absorption spectra of molecules with quantitative44

accuracy, capturing key spectral features, such as loca-45

tions and intensities of prominent peaks.46

X-ray absorption spectroscopy (XAS) is a robust,47

element-specific characterization technique widely used48

to probe the structural and electronic properties of ma-49

terials [15]. It measures the intensity loss of incident50

light through the sample caused by core electron exci-51

tations to unoccupied states [16]. In particular, the x-52

ray absorption near edge structure (XANES) encodes53

key information about the local chemical environment54

(LCE), e.g. the charge state, coordination number and55

local symmetry, of the absorbing sites [16–18]. Conse-56

quently, XANES is a premier method for studying struc-57

tural changes, charge transfer, and charge and magnetic58

ordering in condensed matter physics, chemistry and ma-59

terials science.60

To interpret XANES spectra, two classes of problems61

need to be addressed. In a forward problem, one sim-62

ulates XANES spectra from given atomic arrangements63

using electronic structure theory [16, 19–24]. In an in-64

verse problem, one infers key LCE characteristics from65

XANES spectra [25–27]. While the solution of the for-66

ward problem is limited by the accuracy of the theory and67

computational expense, it is generally more complicated68

to solve the inverse problem, which often suffers from a69

lack of information and can be ill-posed [28]. Standard70

approaches typically rely on either empirical fingerprints71

from experimental references of known crystal structures72

or verifying hypothetical models using forward simula-73

tion [29, 30].74

When using these standard approaches, major chal-75

lenges arise from material complexity associated with76

chemical composition (e.g., alloys and doped materi-77

als) and structure (e.g., surfaces, interfaces and defects),78

which makes it impractical to find corresponding refer-79

ence systems from experiment and incurs a high com-80

putational cost of simulating a large number of pos-81

sible configurations, with hundreds or even thousands82

of atoms in a single unit cell. Furthermore, emerg-83
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ing high-throughput XANES capabilities [31] poses new84

challenges for fast, even on-the-fly, solutions of the in-85

verse problem to provide time-resolved materials charac-86

teristics for in situ and operando studies. As a result,87

a highly accurate, high-throughput XANES simulation88

method could play a crucial role in tackling both forward89

and inverse problems, as it provides a practical means90

to navigate the material space in order to unravel the91

structure-spectrum relationship. When combined with92

high-throughput structure sampling methods, ML-based93

XANES models can be used for the fast screening of rel-94

evant structures.95

Recently, multiple efforts have been made to incor-96

porate data science tools in x-ray spectroscopy. Ex-97

emplary studies include database infrastructure devel-98

opment (e.g. the computational XANES database in99

the Materials Project [32–35]), building computational100

spectral fingerprints [36], screening local structural mo-101

tifs [37], predicting LCE attributes in nano clusters [25]102

and crystals [26, 27] from XANES spectra using ML mod-103

els. However, predicting XANES spectra directly from104

molecular structures using ML models has, to the best of105

our knowledge, not yet been attempted.106

As a proof-of-concept, we show that a graph-based107

deep learning architecture, a message passing neural108

network (MPNN) [38], can predict XANES spectra of109

molecules from their molecular structures to quantitative110

accuracy. Our training sets consist of O and N K-edge111

XANES spectra (simulated using the FEFF9 code [39])112

of molecules in the QM9 molecular database [40], which113

contains ∼ 134k small molecules with up to nine heavy114

atoms (C, N, O and F) each. The structures were op-115

timized using density functional theory with the same116

functional and numerical convergence criteria. This pro-117

cedure, together with the atom-restriction of the QM9118

database, ensures a consistent level of complexity from119

which a ML database can be constructed and tested. Al-120

though our model is trained on computationally inex-121

pensive FEFF data, it is straightforward to generalize this122

method to XANES spectra simulated at different levels123

of theory.124

The MPNN inputs (feature space) are derived from125

a subset of molecular structures in the QM9 database,126

henceforth referred to as the molecular structure space,127

M. Two separate databases are constructed by choosing128

molecules containing at least one O (MO, nO ≈ 113k)129

or at least one N atom (MN, nN ≈ 81k) each; note that130

MO∩MN 6= ∅, as many molecules contain both O and N131

atoms. The molecular geometry and chemical properties132

of each molecule are mapped to a graph (MA → GA,133

A ∈ {O,N}) by associating atoms with graph nodes134

and bonds with graph edges. Following Ref. 38, each135

gi ∈ GA (i the index of the molecule) consists of an ad-136

jacency matrix that completely characterizes the graph137

connectivity, a list of atom features (absorber, atom type,138

donor/acceptor status, and hybridization), and a list of139

bond features (bond type and length). A new feature,140

“absorber”, is introduced to distinguish the absorbing141

sites from the rest of the nodes. Each graph-embedded142

molecule in GA corresponds to a K-edge XANES spec-143

trum in the spectrum or target space, SA ∈ RnA×80,144

which is the average of the site-specific spectra of all ab-145

sorbing atoms, A, in that molecule, spline interpolated146

onto a grid of 80 discretized points and scaled to a max-147

imum intensity of 1. For each database DA = (GA, SA),148

the data is partitioned into training, validation and test-149

ing splits. The latter two contain 500 data points each,150

with the remainder used for training. The MPNN model151

is optimized using the mean absolute error (MAE) loss152

function between the prediction ŷi = MPNN(gi) and153

ground truth yi ∈ SA spectra. During training, the154

MPNN learns effective atomic properties, encoded in hid-155

den state vectors at every atom, and passes information156

through bonds via learned messages. The output com-157

puted from the hidden state vectors is the XANES spec-158

trum discretized on the energy grid as a length-80 vec-159

tor. Additional details regarding the graph embedding160

procedure, general implementation [41–43] and MPNN161

operation can be found in Ref. 38 and in the supporting162

information (SI) [44].163

Prior to the training, we systematically examine the164

distribution of the data. Following common chemical in-165

tuition, the data are labeled according to the functional166

group that the absorbing atom belongs to. In order to167

efficiently deconvolute contributions from different func-168

tional groups, we only present results on molecules with169

a single absorbing atom each; this subset is denoted as170

D′A = (G′A, S′A) ⊂ DA, and the distribution of common171

functional groups in D′A are shown in Fig. 1, where the172

most abundant compounds are ethers and alcohols in173

D′O, and tertiary (III◦) and secondary (II◦) amines in174

D′N. From averaged spectra (bold lines) in Fig. 1, distinct175

spectral contrast (e.g., number of prominent peaks, peak176

locations and heights) can be identified between differ-177

ent functional groups. In fact, several trends in the FEFF178

spectra qualitatively agree with experiment, such as the179

sharp pre-edge present in ketones (black) but absent in180

alcohols (red) [45], and the general two-peak feature of181

primary (I◦) amines (blue) [46].182

Although XANES is known as a local probe that is sen-183

sitive to the LCE of absorbing atoms, a systematic study184

of the degree of such correlation on a large database has185

not yet been performed. To investigate this structure-186

spectrum correlation, we perform principal component187

analysis (PCA) [47] on both the features and targets in188

DA, and visually examine the clustering patterns after189

the data in D′A is labeled by different chemical descrip-190

tors. To provide a baseline, we consider the total number191

of non-hydrogenic bonds in the molecule (NB), which is192

a generic, global property, supposedly having little rel-193

evance to the XANES spectra. Next we consider two194

LCE attributes: the total number of atoms bonded to195
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FIG. 1. Left: 100 oxygen (top) and nitrogen (bottom) random
sample spectra from each functional group in S′A; the averages
over all spectra in each functional group are shown in bold.
Right: the distribution of functional groups in D′A.

FIG. 2. PCA plots for both the TCC and spectra proxies
for the molecules in D′A labeled by NB, NA and FG. The
total number of non-hydrogenic bonds (NB, top) range from
1 (violet) to 13 (red). The total number of atoms bonded to
the absorbing atom (NA, center) takes on one of three values:
1, 2 or 3 (black, red and blue, respectively). The color legends
for the functional group of the absorbing atom (FG, bottom)
are the same as in Fig. 1.

the absorbing atom (NA) and the functional group of196

the absorbing atom (FG). While spectra on a discrete197

grid can be processed directly, molecular structures, with198

different number of atoms and connectivity, need to be199

pre-processed into a common numerical representation200

before clustering. Thus, the molecular fingerprint of each201

molecule inMA is calculated from its SMILES code using202

the RDKit library [48]. Then an arbitrarily large subset of203

104 molecules, M̃A ⊂ MA, is randomly selected to con-204

struct a molecular similarity matrix of Tanimoto correla-205

tion coefficients (TCCs) [49], TA ∈ [0, 1]NA×104 , from the206

molecular fingerprints such that TA,ij = TCC(mi,mj),207

where mi ∈ MA and mj ∈ M̃A. TCC(mi,mi) = 1208

defines perfect similarity. The TA matrix therefore pro-209

vides a uniform measure of structural similarity of every210

molecule inMA to each one of the 104 references, serving211

as a memory-efficient proxy to MA.212

Results of the PCA dimensionality reduction are pre-213

sented for both data sets and all three descriptor labels214

(NB, NA and FG) in Fig. 2. Specifically, after PCA is215

performed on unlabeled data, the data are colored in by216

their respective labels. While some degree of structure is217

manifest in NB, it is clear that the overall clustering is218

much inferior to both NA and FG, confirming that NB219

is largely irrelevant to XANES. On the other hand, both220

NA and FG exhibit significant clustering, with the latter,221

as expected, slightly more resolved; while NA can only222

distinguish up to 2 (3) bonds in the O (N) data sets,223

FGs reveal more structural details of the LCE, and en-224

code more precise information, such as atom and bond225

types. For NA and FG, clustering in the TCC-space is226

more difficult to resolve, as it is only a course-grained227

description of the molecule, missing detailed information228

about, e.g., molecular geometry, which will be captured229

by the MPNN. Despite this, visual inspection reveals230

significant structure, such as in Fig. 2(c), where alco-231

hols (red), ethers (blue) and amides (cyan) appear well-232

separated.233

Spectra PCA of FG in Figs. 2(f) and 2(l) can also be234

directly correlated with the sample spectra in Fig. 1. For235

instance, the shift in the main peak position between236

ketones/aldehydes/amides (black/purple/cyan) and al-237

cohols/ethers (red/blue) in S′O reflects the impact of238

a double versus a single bond on the XANES spectra.239

As a result, groups of these structurally different com-240

pounds are well-separated in the spectra PCA as shown241

in Fig. 2(f); even compounds with moderate spectral con-242

trast, e.g., between alcohols (red) and ethers (blue), are243

well-separated. Similar trends are observed in S′N, where,244

e.g., nitrile groups (black) show a distinct feature around245

425 eV, which clearly distinguishes itself from the other246

FGs, and, likely because of that, one observes a distinct247

black cluster in Fig. 2(l).248

The PCA suggests that the FG is a key descriptor of249

XANES. As the MPNN can fully capture the distinc-250

tion of FGs through node features, edge features and the251

connectivity matrix, we expect that an MPNN can learn252
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FIG. 3. Performance metrics for the MPNN evaluated on the
DA testing sets. Top: waterfall plots of sample spectra (la-
beled by their SMILES codes) of ground truth (black) and
predictions (dashed red), where prominent peaks (see text)
are indicated by triangles. One randomly selected sample
from every decile is sorted by MAE (first: best; last: worst).
Bottom: distribution of the absolute error of predicted peak
heights, ∆µ; insets show the comparison between the predic-
tion and ground truth in peak locations.

XANES spectra of molecules effectively. Randomly se-253

lected testing set results from the trained MPNN for both254

DO and DN are presented in Fig. 3 and ordered according255

to MAE, with the best decile at the top and worst decile256

at the bottom. It is worth noting that MPNN predictions257

not only reproduce the overall shape of the spectra, but,258

more importantly, predict peak locations and heights ac-259

curately. In the best decile, the MPNN predictions and260

ground truth spectra are nearly indistinguishable. Even261

in the worst decile, the main spectral features (e.g. three262

peaks between 530 and 550 eV in the oxygen K-edge and263

two peaks between 400 and 410 eV in nitrogen K-edge)264

are correctly reproduced with satisfactory relative peak265

heights.266

As shown in Table I, the MAE of the prediction is267

0.023 (0.024) for the oxygen (nitrogen) test set, which268

is an order of magnitude smaller than the spectral varia-269

tion defined by the mean absolute deviation of the oxygen270

(0.131) and nitrogen (0.123) test sets. To provide an ad-271

ditional quantification of the model’s accuracy, we select272

prominent peaks, defined by those with height above half273

the maximum height of the spectrum and separated by274

a minimum 12 grid points (≈ 6 eV) in energy. We find275

that the number of prominent peaks in 95% (90%) of pre-276

dicted spectra correspond with that of the ground truth277

for the oxygen (nitrogen) testing set. Peak locations and278

heights are predicted with average absolute difference of279

∆E = 0.49 (0.48) eV and ∆µ = 0.045 (0.041), respec-280

tively (see Table I). The predicted peak heights display281

a very narrow distribution around ∆µ = 0, as the total282

population in the tail region with ∆µ > 0.1 is only 7%283

(see Fig. 3, bottom). As shown at the insets, the vast ma-284

jority (∼90%) of the predicted peak locations fall within285

± 1 eV of the ground truth, with the coefficient of de-286

termination, R2 ≥ 0.96. The exceptional accuracy of287

the MPNN model results on predicting both peak loca-288

tion and intensity underscores its predictive power and289

its ability to capture essential spectral features.290

It is also important to understand the robustness of291

the network for practical applications; specifically, we292

examine how distorting or removing certain features im-293

pacts the model performance. To do so, we train separate294

MPNN models using “contaminated” features, where ei-295

ther (1) the bond length is randomized (RBL), or (2)296

the atom type is randomly chosen, and all other atomic297

features are removed (RAF). In addition, we investigate298

the impact of the locality in the MPNN prediction of299

XANES spectra of molecular systems. By default, the300

MPNN operates on the graph-embedding of the whole301

molecule, referred to as the core results. However, the302

significance of the FG as a sound proxy for the XANES303

spectra (see Fig. 2) suggests that local properties, such304

as the LCE, play a dominant role. Therefore, spatially305

truncated graphs are likely to be sufficient to predict the306

XANES spectra of molecules accurately. To quantify this307

effect, we impose different distance cutoffs (dc) from 2 to308

6 Å around the absorbing atoms, and train separate ML309

models using spatially truncated graphs.310

TABLE I. Performance metrics based on the MAE of the
spectra, ∆E and ∆µ.

A Data MAE ∆E (eV) ∆µ
O Core 0.023(1) 0.52(4) 0.044(2)

RBL 0.031(1) 0.55(3) 0.051(2)
RAF 0.041(2) 0.63(3) 0.068(3)
dc = 4 Å 0.023(1) 0.45(3) 0.040(2)
dc = 3 Å 0.025(1) 0.48(3) 0.040(2)
dc = 2 Å 0.095(4) 0.80(4) 0.179(6)

N Core 0.024(1) 0.47(3) 0.042(2)
RBL 0.029(1) 0.57(3) 0.049(2)
RAF 0.045(2) 0.70(4) 0.084(3)
dc = 4 Å 0.023(1) 0.43(3) 0.039(2)
dc = 3 Å 0.027(2) 0.47(3) 0.046(3)
dc = 2 Å 0.056(4) 0.66(4) 0.099(5)

Independent MPNN models were trained and tested311

on each database corresponding to either RBL, RAF312

and different dc values. As shown in Table I, random-313
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izing the bond length feature does not affect the perfor-314

mance of MPNN, as ∆E and ∆µ in RBL only worsen315

slightly. Atomic features have a larger impact than the316

bond length, as ∆E and ∆µ in RAF have a sizable in-317

crease from 0.52 (0.47) to 0.63 (0.70) eV and from 0.044318

(0.042) to 0.068 (0.084) in DO (DN). In fact, despite319

the seemingly large increase, ∆E is still well below 1320

eV, i.e., falling within 1-2 grid points, resulting in only a321

marginal impact on its practical utility. Percentage-wise,322

the change in ∆µ is comparable to ∆E for RAF. If we323

consider relative peak intensity instead of absolute peak324

intensity as measured by ∆µ, this difference becomes less325

significant.326

The analysis above leads to a seemingly counter-327

intuitive conclusion that key XANES features can be ob-328

tained with little knowledge about the atomic features329

and bond length, especially if one considers the impor-330

tance to know which atoms are the absorption sites. It331

turns out that this is not entirely surprising, since it332

has been shown that the distinct chemical information of333

atoms can be extracted by ML techniques from merely334

the chemical formula of the compound [50], i.e., specific335

atomic information can be learned through its environ-336

ment. In this case, the connectivity matrix likely com-337

pensates for a lack of atom-specific information, and sup-338

plies enough knowledge about the LCE to make accurate339

predictions. As for the effect of the locality, we found340

that the results are statistically indistinguishable from341

the core results when dc ≥ 4 Å, and breaks down at342

dc ≈ 2 Å, indicating that the MPNN architecture re-343

quires at least the first two coordination shells to make344

accurate predictions.345

In summary, we show that the functional group carries346

statistically significant information about the XANES347

spectra of molecules, and that by using a graph-based348

deep learning architecture, molecular XANES spectra349

can be effectively learned and predicted to quantitative350

accuracy. With proper generalization, this method can351

be used to provide a general purpose, high-throughput352

capability for predicting spectral information, which may353

not be limited to XANES, of a broad range of materials354

including molecules, crystals and interfaces.355
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