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The kicked rotor system is a textbook example of how classical and quantum dynamics can
drastically differ. The energy of a classical particle confined to a ring and kicked periodically
will increase linearly in time whereas in the quantum version the energy saturates after a finite
number of kicks. The quantum system undergoes Anderson localization in angular-momentum
space. Conventional wisdom says that in a many-particle system with short-range interactions the
localization will be destroyed due to the coupling of widely separated momentum states. Here
we provide evidence that for an interacting one-dimensional Bose gas, the Lieb-Liniger model, the
dynamical localization can persist at least for an unexpectedly long time.

Introduction. — Everyday experience tells us that in-
jecting energy into a closed system causes it to heat up.
It follows therefore that doing this repeatedly will cause
the system to heat to infinite temperature. Remarkably
this intuition does not necessarily carry over to quantum
systems. Recently there has been a large amount of work
concerning the prevention of runaway heating in period-
ically driven closed quantum systems with much of the
focus centered on achieving this via the addition of disor-
der to the system [1–4]. A far simpler and more intriguing
example is provided by the quantum kicked rotor. In this
elementary quantum system a single particle is subjected
to a periodic, instantaneous kicking potential, but other-
wise propagates freely. After an initial period of increase
the energy is seen to saturate, no more energy from the
kick can be absorbed, and heating is stopped. This be-
havior stands in contrast to the corresponding classical
system, in which the energy grows without bound, lin-
early in time. First discovered numerically [5–7], this en-
ergy saturation was later elucidated by the construction
of a mapping between the angular-momentum dynam-
ics of the quantum kicked rotor and the dynamics in a
lattice model with quasi-disordered potential similar to
the Anderson model [8]. This mapping shows that the
wavefunction becomes exponentially localized in angular-
momentum space and leads to the phenomenon being
dubbed dynamical localization [9, 10]. Subsequently,
dynamical localization was observed in clouds of dilute
ultra-cold atoms [11–13].

A natural question to ask is whether dynamical local-
ization can survive in the presence of interactions. This
has been investigated in several studies where interac-
tions have been introduced through a more complicated
kick which couples the particles [14, 15] or by includ-
ing interparticle interactions between the kicks [16–26].
These latter scenarios are of particular interest as inter-
particle interactions can be readily tuned in ultracold-
atom experiments [27]. Using mean-field theory it was
shown that after some long time, which is non-linear in

the interaction strength, the kinetic energy of the system
grows in a sub-diffusive manner, and localization is de-
stroyed [18, 23]. Degradation of localization in the pres-
ence of interactions has also been shown experimentally
in a system of two coupled rotors [28]. A lack of heat-
ing is also witnessed in other driven interacting quantum
systems [29–36].

In one dimension perturbative techniques such as
mean-field theory break down. Systems are strongly cor-
related as a matter of course, excitations are collective
and often cannot be adiabatically connected to the those
of free models [37, 38]. The description of a kicked in-
teracting Bose gas using mean-field theory is no longer
appropriate. Fortunately there exists an array of non-
perturbative methods which can be applied to the prob-
lem in one dimension. Here we investigate many-body
dynamical localization in an interacting one-dimensional
system using a variety of non-perturbative techniques:
Fermi-Bose mapping, linear and non-linear Luttinger-
Liquid theory, and generalized hydrodynamics [39, 40].
We provide evidence that in the presence of interactions
one-dimensional systems can dynamically localize at least
for a very long time, which is many orders of magnitude
longer than the time scales currently reachable in exper-
iments. This dynamical localization occurs in the space
of many-body eigenstates which results in a saturation of
the energy and the width of the exponentially decaying
quasi-particle occupation function after a finite number
of kicks.
Model. — The system we study consists of an interact-

ing 1D Bose gas which is subjected to a periodic kicking
potential. The Hamiltonian which describes this model is
a natural extension of the standard single-particle system
to the many-body case:

H = HLL +

∞∑
j=−∞

δ(t− jT )HK. (1)

The first term is the Lieb-Liniger Hamiltonian [41, 42]
which provides an excellent description of a 1D cold-atom
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gas [43, 44],

HLL=

∫
dx b†(x)

[
− ∂2

x

2m

]
b(x) + c b†(x)b(x)b†(x)b(x). (2)

Here b†(x) and b(x) are creation and annihilation opera-
tors, [b(x), b†(y)] = δ(x−y), describing bosons of mass m
which interact with point-like density-density interaction
of strength c ≥ 0 and we have set ~ = 1. The model is in-
tegrable and its equilibrium and out-of-equilibrium prop-
erties have been extensively studied [45–49]. The eigen-
states can be constructed exactly using Bethe Ansatz and
are characterised by a set of single-particle momenta, kj ,
j = 1, . . .N , where N is the number of particles. The
second term in Eq. (1) describes the kick which couples
to the boson density:

HK =

∫
dxV cos (qx)b†(x)b(x), (3)

where V is the kicking strength, T is the kicking period,
and q is the wave-vector of the kicking potential. A po-
tential of this form is achieved experimentally by means
of a Bragg pulse. Note that while the unperturbed HLL

in Eq. (2) is integrable, the kicking breaks this and H in
Eq. (1) is not integrable.

The kicked system follows a two-step time evolution
which separates into evolution between the kicks via
e−iHLLT and over the kicks via e−iHK . This can be
expressed in terms of a single HF known as the Flo-
quet Hamiltonian, governing evolution over one period:
e−iHF = e−iHLLT e−iHK . Our goal is to determine the
energy of the system after N kicks,

E(t) = 〈Ψ0| eiHFNHLLe
−iHFN |Ψ0〉 , (4)

t = NT , for some initial state |Ψ0〉. Throughout the
paper we take the system to be initially in its ground
state.

Tonks-Girardeau limit. — Aside from the trivial c = 0
limit which recovers the single-particle model, one can
examine the opposite case of c→∞ known as the the
Tonks-Girardeau (TG) gas [50, 51]. Through Fermi-Bose
mapping (FB) the wave-functions of the TG gas take
the form of a Slater determinant. This mapping remains
valid even in the presence of time-dependent one-body
potentials [52, 53]. As a result, we may write the solution
of the time-dependent Schrödinger equation as

|Ψ0(t)〉 =

∫
dNxAdet [φm(xk, t)]

N∏
l=1

b†(xl) |0〉 , (5)

whereA =
∏

1≤i<j≤N sgn(xj−xk) is an anti-symmetriser
which makes sure the wave-function remains symmet-
ric, and φn(xk, t) are a set of orthogonal solutions of
the single-particle Schrödinger equation i∂tφn(x, t) =[
−∂2

x/2m+
∑
δ(t− jT )V cos (qx)

]
φn(x, t). The energy

of this state is given by the sum of the single-particle en-
ergies, E(t) =

∑N
n=1

∫
φ∗n(x,NT )

[
−∂2

x/2m
]
φn(x,NT ).

Since each of the single-particle wave-functions ex-
hibits dynamical localization with the energy remaining
bounded, the total energy of the TG gas will be bounded
as well. This proves dynamical localization in the limit-
ing case of a very strongly repulsive Bose gas.

If the system is initially in the ground state all single-
particle momentum states are filled between the Fermi
points |kj | ≤ kF , and kicking causes particles to change
their momenta by multiples of q. Therefore if q ≥ kF ,
particles cannot avoid changing their momenta as a result
of the kick. On the other hand if q = 2π/L then Pauli
blocking will come into play and inhibit the hopping of
particles in momentum space. Thus by changing between
small and large values of q we can tune between many-
body and single-particle physics. Moreover, for any c 6=
0, eigenstates of HLL obey the Pauli exclusion principle,
i.e. ki 6= kj ,∀i 6= j [54], so we expect small q to be
the most interesting from the perspective of many-body
physics.
Low energy behavior. — Having established localiza-

tion at both ends of the range of values for the cou-
pling constant, we turn to a discussion of the system
at low energy but for arbitrary c. The low-energy be-
havior of many one-dimensional systems, including the
Lieb-Liniger model, is described by the Luttinger-liquid
theory [55]. The Hamiltonian of this effective theory can
be written in terms of either bosonic or fermionic fields
and for later convenience we choose the latter [56]:

HLutt =

∫
dx

∑
σ=±

: ψ†σ(x)iσvF∂xψσ(x) :

+g

∫
dx :ρ+(x) ::ρ−(x) : . (6)

Here ψ†σ(x) and ψσ(x) describe right- (+) and left- (−)
moving interacting fermions and : . . . : denotes normal
ordering. The fermions also have density-density inter-
actions with strength g which is dependent on c. In
this language the total density is the sum of left- and
right-moving densities, ρ(x) = ρ+(x) + ρ−(x), where
ρσ(x) = ψ†σ(x)ψσ(x), whilst the current is given by the
difference J(x) = ρ+(x) − ρ−(x). The kicking term,
HK =

∫
dxV cos (qx)ρ(x), therefore separates into terms

acting on the left and right movers.
It is possible to bring HLutt to a quadratic form using

the unitary transformation U = eΩ, where

Ω =
∑
k

π tanh−1(g/2πvF )

Lk
[ρ̃+,−kρ̃−,k − ρ̃−,−kρ̃+,k] (7)

and ρ̃σ,k is the Fourier transform of ρσ(x) [57]. Denot-
ing the transformed operators by a wedge, ψ̌σ = U†ψσU ,
we obtain the mapping of the Hamiltonian and the kick
to: HLutt =

∫
dx
∑
σ=± : ψ̌†σ(x)iσvs∂xψ̌σ(x) : and

HK = V
√
K
∫

dx cos (qx)ρ̌(x) where vs is the speed of
sound in the system and K is the Luttinger-liquid param-
eter which depends on m and c of the original model. In
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general the relation between c,m and K, vs must be de-
termined numerically however it is known that for strong
repulsive interaction K ≈ (1 + 4ρ0/mc) with ρ0 being
the average density of the gas, while at weak coupling we
have K ≈ π

√
ρ0/mc [58]. Thus K ∈ [1,∞] whilst vs is

known through the relation Kvs = vF . Note that the ef-
fect of the interactions is to modify the kicking strength,
V →

√
KV . The effective kicking strength is larger in

the interacting system.
The Luttinger liquid description of the kicked Bose gas

relies on the system being initially close to the ground
state and remaining close to it throughout the kicking
process : ∆E(t) = E(t)−E(0)� EF . If as a result of the
kicking the energy was to increase beyond the purview
of the Luttinger-liquid theory, then this would signal a
breakdown of our low-energy description, but would not
necessarily signal delocalization. We show now that, in
fact, for a range of parameters the kicked Luttinger liquid
exhibits periodic oscillations of the energy, and the low-
energy description remains valid.

By resumming the Baker-Campbell-Hausdorff formula
it is possible to determine the Floquet Hamiltonian for
the kicked Luttinger liquid exactly. It is given by [59]

HF = HLuttT + αKHK + αJHJ + κ, (8)

with αK = sin (vsqT )/vsqT , αJ = [1− cos (vsqT )] /vsqT ,
and HJ = V

√
K
∫

dx sin (qx)J̌(x). κ is an unimportant
constant. The Floquet Hamiltonian contains the original
unmodified HLutt as well as terms which couple to both
the density and current of the system. Eigenstates of HF

therefore display variations of the density and current on
scales ∼ q. Taking the zero-temperature ground state as
|Ψ0〉, we find that the change in energy is periodic:

∆E(t) =
KV 2L

vsπT 2

[
sin2

(
vsq
2 T

)
vsqT

][
sin2

(
vsq
2 t
)

vsqT

]
, (9)

with L being the system size.
This result can be compared with known results for

other kicked models which can also be solved exactly
[60]. Therein, quantum-kicked-rotor-like systems with
linear dispersion are shown to exhibit bounded dynam-
ics due to integrability of the associated classical model
rather than dynamical localization. We emphasize here
the distinction between those cases and Eq. (9). At fi-
nite density and low temperature the bare particles of the
LL model are completely dissolved by the strong corre-
lations in the system. The low-energy physics is dictated
by collective excitations which can alternately be viewed
as sound waves of the Luttinger Liquid or low-momentum
quasi-particle-quasi-hole (p-h) excitations near the Fermi
surface of the LL model which have linear dispersion
ε(k) = vs|k|. The kicking term creates and destroys p-h
excitations only at momenta ±q which contribute to the
periodic oscillation of the energy. Thus in the present
case the linear dispersion emerges due to the strongly

correlated nature of the system and the self consistency
of the approach is guaranteed by the fact that the system
is localized.
Non-linear theory. — To go beyond this low-energy

approximation we should include effects of the curva-
ture of the band. This can be readily achieved by work-
ing with the fermionic form of the Luttinger liquid [61].
Adding −

∑
σ

∫
ψ†σ(x)

[
∂2
x/2m

]
ψσ(x) to Eq. (6) and per-

forming the same unitary transformation U , we arrive at
the following Hamiltonian for the non-linear Luttinger
liquid [57]:

HnL =
∑
σ=±

∫
dx : ψ̌†σ(x)

[
−iσvs∂x −

∂2
x

2m∗

]
ψ̌σ(x) : . (10)

We see that the Hamiltonian remains quadratic and the
main effect of the interactions is to cause the mass to
be renormalised to 1/m∗ = vs/K∂µ(vs

√
K), where µ is

the chemical potential [62]. In this description, irrelevant
terms which are quartic in the fermions and are higher
order in 1/m∗ have been dropped [57, 61]. We should
stress that despite the quadratic nature, Eq. (10) con-
tains the effects of the interaction to all orders as well as
the band curvature to the leading order. This approach
is the opposite to that of the mean-field theory, where the
band curvature is treated exactly and the interactions –
perturbatively. For models with short-range interactions
– like those in the Lieb-Liniger model, Eq. (2), – this
method is sufficient to capture the physics beyond the
linear regime [61].

The kicking term is unaffected by this new dispersion
and so we can describe the gas in terms of HnL at larger
values of V, q provided that the kicking does not take the
system outside of the regime of a non-linear Luttinger liq-
uid. Once again this is avoided by virtue of the fact that
the system dynamically localizes. To see this we note
that the full Hamiltonian, including the kick is now no
longer integrable as was the case for the linear Luttinger
liquid, however it is a quadratic fermionic Hamiltonian.
Similar to the TG case, its time dependent many-body
wavefunctions are Slater determinants of single wavefunc-
tions which dynamically localize. Hence the non-linear
theory also localizes.
Numerical analysis. — In order to study the behav-

ior of the system beyond the region of applicability of
the analytics, we investigate the kicked Lieb-Liniger gas
numerically, doing so by making use of the integrabil-
ity of HLL. The spectrum of the Lieb-Liniger model, as
in many other integrable models, consists of long-lived
quasi-particles. In the thermodynamic limit and if the
variation of the particle density is slow, the system is
completely described by the local occupation function of
these quasi-particles, n(x, λ, t). Here x is the position
in space and λ is the quasi-particle momentum. Gen-
eralized hydrodynamics (GHD) is a recently developed
theory which describes the evolution of n(x, λ, t) at large
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FIG. 1. Main plot. Upper solid blue curve: variance
of the momentum density n(λ, t) in the kicked Lieb-Liniger
gas as a function of time relative to the initial variance:
var[n(λ, t)] − var[n(λ, 0)]. It saturates with time, signaling
at least transient dynamical localization in sharp contrast to
the classical diffusion (heating) under kicking. Lower dotted
red curve: scaled variance of n̄(p, t). Insets: the same data
for var[n(λ, t)] − var[n(λ, 0)] as a function of time at shorter
time scales, which are more relevant to experiments[11–13].
Parameters: V = 0.5, q = 4π/L, γ = 10, N = 200. At low
enough kicking strength, both variances are well saturated, as
we demonstrate in the supplemental material [63].

length scales [39, 40]. Between the kicks the evolution of
the gas is determined by the GHD equation:

[∂t + veff [n] ∂x]n(x, λ, t) = 0, (11)

where veff[n](x, λ, t) is the effective velocity of the quasi-
particle excitations of the model which depends upon n
itself. With a dressed function fdr(λ) defined with re-
spect to a bare function f(λ) as a solution of fdr(λ) =
f(λ)+

∫
dµ
2πϕ(λ−µ)n(x, µ, t)fdr(µ) with ϕ(x) = 2c/(c2 +

x2), the effective velocity is given by

veff(λ) = [ε′(λ)]
dr
/ [p′(λ)]

dr
, (12)

where ε(λ) = λ2/2m and p(λ) = λ are the bare energy
and momentum of the quasi-particles, and the prime in-
dicates the derivative with respect to λ. In both the
TG and non-interacting limits, this equation becomes
exact [64], and n(x, λ, t) reduces to the Wigner func-
tion [65].

To determine the full evolution, we need to compute
the effect of the kicks on n(x, λ, t). For slowly varying
potential, which is an applicability condition of GHD, the
kicking term couples to the quasi-particles in the same
way as to the bare particles described by b†(x), b(x) [66].
Hence, over a kick at time t we have [67]:

ñ(x, z, t+)=e2iV sin( qz
2 ) sin(qx)ñ(x, z, t−), (13)

where ñ(x, z, t) is the Fourier transform of n(x, λ, t) with
respect to λ.

Using Eqs. (11) and (13) we can determine the
total quasi-particle occupation function, n(λ, t) =

FIG. 2. Main plot: decimal logarithms of the momentum den-
sities at the end of the evolution. For n̄(p), all odd momen-
tum components are zero, because we start with the uniform-
density initial state and q = 2 (in units of 2π/L). Only
even components of n̄(p) are plotted therefore. Parameters:
V = 0.5, q = 4π/L, γ = 10, N = 200. Inset: normalized
momentum density n(λ)/(2π) in the linear scale. The Fermi
momentum at our parameter choice is λF = 100.

∫
dxn(x, λ, t), and the energy E(t) =

∫
dλ
2π ε

dr(λ)n(λ, t)
of the gas. We also introduce the common measure
of localization, the variance of the occupation function,
var[n(λ, t)] (see, e.g., Refs. [60, 68]), where for conve-
nience, we include additional factors into the conven-

tional definition: var[f(ζ, t)] =
∫
dζ
2π

ζ2

2mf(ζ, t). Sat-
uration of the variance indicates exponential localiza-
tion in λ space. All the quantities in our calculations
are dimensionless and sometimes implicitly expressed
in units of m, L/2π, and T . The evolution between
the kicks can be evaluated via a finite-difference scheme
n(x, λ, t + δt) = n(x − veff[n(x, λ, t)]δt, λ, t) [69], where
we choose T/δt = 1000. At each time step veff is
reevaluated via Eq. (12), and the shift is performed in
the Fourier space by explicitly calculating the integral
n(x, λ, t + δt) =

∫
dpeip{x−veff[n(x,λ,t)]δt}n̄(p, λ, t), where

n̄(p, λ, t) is the Fourier transform of n(x, λ, t) with re-
spect to x. This scheme works well at short times, but
due to its very high numerical complexity, for practical
purposes we employ a different approach – a linearized
approximation to Eq. (11) [70]. In this approximation
we calculate veff[〈n〉] after a kick using a spatially aver-
aged 〈n(λ, t)〉 =

∫
dxn(x, λ, t)/L which is then used to

propagate the solution over an entire duration of the free
evolution at once. This is easily carried out in Fourier
space via: n̄(p, λ, t+T ) = e−ipveff[〈n〉]T n̄(p, λ, t). The next
kick is then applied via Eq. (13), veff[〈n〉] is determined
anew, and the process is repeated. This approximation
becomes exact in the TG case and agrees well with the
finite difference scheme at short times [63].

We choose a small value of the kicking-potential wave-
vector q = 4π/L and take V = 0.5. In this case, the
corresponding single-particle classical system is in the
mixed regular-chaotic regime with the unbounded chaotic
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sea. The critical value of the kicking strength where
the regular-to-chaotic transition occurs is (qL/2π)2Vcr ≈
0.97 [71, 72].

Fig. 1 shows the momentum variance of the Lieb-
Liniger gas under kicking for γ = N/(mcL) = 10,
which can be readily achieved experimentally [73, 74].
At short times, the energy grows quickly, but later, it
saturates and becomes bounded due to dynamical local-
ization. At the same time, n(λ, t), which is initially the
Fermi-Dirac Π-shaped function with the Fermi momen-
tum λF = 100 – with our choice of N = 200, – acquires
exponential tails (see Fig. 2) and stops spreading any
further after the saturation of energy is reached. Fig. 2
also shows the Fourier transform of the spatial density
n̄(p, t = 1.5 × 105) =

∫
dλ
2π n̄(p, λ, t = 1.5 × 105) that

decays exponentially, as well, but its width keeps grow-
ing with time, as opposed to the width of n(λ, t) – see
Fig. 1. We were unable to reach its saturation at these
parameters, so its continued growth eventually leads to a
breakdown of the numerical method and the applicability
of GHD. Prior to this, however, no delocalization is seen
for a very long time. At low enough kicking strength,
however, both variances are well saturated. We show
that behavior at the kicking strength V = 0.15 in the
supplemental material [63].

Before concluding we wish to emphasize that our re-
sults show that a kicked interacting 1D bose gas can ex-
hibit dynamical localisation over certain timescales and
provided the system is initiated close to its ground state.
Such conditions can be met within cold atom gas sys-
tems. This however does not rule out the possibility of
delocalization at longer time scales or beyond the appli-
cability of our methods e.g. high temperature or larger
kicking strength.
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