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We theoretically investigate high-harmonic generation in hexagonal boron nitride with linearly
polarized laser pulses. We show that imperfect recollisions between electron-hole pairs in the crys-
tal give rise to an electron-hole-pair polarization energy that leads to a double-peak structure in
the subcycle emission profiles. An extended recollision model (ERM) is developed that allows for
such imperfect recollisions, as well as effects related to Berry connections, Berry curvatures, and
transition-dipole phases. The ERM illuminates the distinct spectrotemporal characteristics of har-
monics emitted parallel and perpendicularly to the laser polarization direction. Imperfect recollisions
are a general phenomenon and a manifestation of the spatially delocalized nature of the real-space
wave packet, they arise naturally in systems with large Berry curvatures, or in any system driven
by elliptically polarized light.

The last decade has seen the emergence of high-
harmonic generation (HHG) in solids [1–6] as a promis-
ing and compact ultrafast light source, as well as a po-
tential tool to reconstruct crystal band structures [7],
measure Berry curvatures [8, 9], and probe topological
phase transitions [10–12]. Complementing experimental
progress, theoretical studies have explored HHG in solids
either in terms of reciprocal-space dynamics within the
band structure [1, 5, 6, 13–23], which contains both intra-
and interband contributions, or in terms of real-space
particle-like dynamics in the crystal [2, 3, 14, 24–29].

The semi-classical recollision model, extended to solids
[14, 24] from the gas-phase three-step model of strong-
field interactions [30, 31], has provided an intuitive real-
space understanding of the interband contribution to
HHG in solids: in each laser half-cycle, an electron tun-
nels from the valence to the conduction band and leaves
behind a hole; the laser field spatially drives the electron
and hole according to their respective band-structure dis-
persions; when the electron and hole recollide, a high-
energy photon is emitted with energy corresponding to
the instantaneous band gap. At the recollision step, the
assumption has been that the electron and hole reen-
counter each other exactly at the same spatial position.
However, since Bloch waves are spatially delocalized, the
electron and hole wavepackets can spatially overlap even
when their centers do not [Fig. 1(a)], with the impli-
cation that an electron-hole-pair polarization energy at
recollision (eh-PER) will contribute to the emitted pho-
ton energy. Also, the original recollision model does not
discern between the parallel and perpendicularly polar-
ized currents, and the omission of ubiquitous solid-state
properties such as the Berry connection, Berry curva-
tures, and transition dipole phases (TDPs) are generally
not well-justified. For instance, a recent numerical work
[32] highlighted the importance of the TDPs on the gen-
eration of even-order harmonics in ZnO. It is thus de-
sirable to construct a framework that includes all these
afore-mentioned concepts.

In this Letter, we consider how imperfect recollisions
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FIG. 1. (a) An imperfect recollision in which the electron and
hole centers do not exactly overlap, leading to an electron-
hole-pair polarization energy upon recollision. In the ERM,
we also keep track of the phase accumulated along the tra-
jectories. (b) Band gap energy (in units of ω0 = 0.0285) of
monolayer h-BN with annotated points of interest. The gray
discs around M1 and M2 each has radius 0.1.

manifest themselves in the HHG process in solids, and
provide an extended recollision model (ERM) that nat-
urally includes this effect and other properties such as
the Berry connections and the TDPs. As a concrete ex-
ample, we study HHG in monolayer hexagonal boron ni-
tride (h-BN) driven by infrared pulses linearly polarized
in the crystal plane, and we compare the ERM results to
solutions of the semiconductor Bloch equations (SBEs)
[33, 34]. In addition to the recent intense interest in HHG
from two-dimensional materials [8, 28, 35–39], h-BN is in-
teresting due to its lack of an inversion center which leads
to non-zero Berry connections and TDPs. Also, pulse
propagation effects [40, 41] can be neglected in mono-
layer materials. We find that when the driving laser is
polarized along the Γ−K direction, the eh-PER manifests
itself in the time-frequency spectrograms of the parallel-
emitted odd-order harmonics as a double-peak structure.
Within the ERM this is explained as two sets of trajec-
tories launched each half-cycle, from different k-points in
the Brillouin zone (BZ). We show that the quantum inter-
ference between multiple k-point contributions gives rise
to different spectrotemporal characteristics of harmonic
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emission parallel or perpendicular to the laser polariza-
tion direction (LPD), when the Berry connections and
the TDPs are included. We find that the imperfect rec-
ollisions involve tens of a.u. separations at the time of
recollision, and that this is consistent with the size of the
delocalized quantum wave packet. The formulation of
the ERM and in particular the inclusion of the eh-PER
provides new insights into the HHG process in solids and
could potentially stimulate new experiments.

We start by solving the SBEs for monolayer h-BN with
inclusion of one valence and one conduction band, using a
dephasing time T2 = 5 fs. The band structure [Fig. 1(b)]
is obtained by the pseudopotential method of Ref. [42]
and is given in the Supplemental Material (SM) [43]. The
Berry connections and TDPs are calculated numerically
in the twisted parallel transport gauge [44], ensuring con-
tinuity and BZ-periodicity. For the laser parameters in
this paper, the HHG spectrum is converged with respect
to increasing the number of bands. The filled curves in
Figs. 2(a) and 2(b) show the high-harmonic spectrum of
monolayer h-BN driven by a 1600 nm, 29.4 fs laser pulse
with a peak intensity of 3.5 TW/cm

2
. Harmonics up to

25th order are generated, with purely odd (even) orders
generated parallel (perpendicular) to the LPD. The dot-
ted lines in Figs. 2(a) and 2(b) show that inclusion of only
the TDPs without the Berry connections would produce
erroneous spectra.

Figures 2(c) and 2(d) show the subcycle time-
frequency emission profiles (EPs) with parallel and per-
pendicular polarization, respectively, and illustrate a key
result of this paper: The parallel EP clearly exhibits a
broad, double-peaked structure, whereas the perpendic-
ular profile is single-peaked and much narrower, and in
fact exhibits a pronounced minimum at the position cor-
responding to the second peak in the parallel emission.

To get a clear physical understanding of the emission
dynamics observed in Fig. 2, we develop an extended ver-
sion of the recollision model for HHG in solids [14, 24].
We focus on the interband dynamics which strongly dom-
inates the emission above the band gap. Atomic units are
used throughout this work unless indicated otherwise. In
the two-band approximation and assuming a small pop-
ulation in the conduction band, the interband spectrum
is j(ω) =

∫∞
−∞ dteiωtj(t), where the current components

parallel and perpendicular (µ = ‖,⊥) to the LPD are

jµ(t) =
∑
k

Rk
µ

∫ t

Tκ(s)e−iSµ(k,t,s)ds+ c.c. (1)

with Tκ(s) = F (s)|dκ(s)
‖ | the transition matrix element,

Rk
µ = ωk

g |dkµ| the recombination dipole, ωk
g = Ek

c − Ek
v

the band gap, F(t) = F (t)ê‖ the electric field with ê‖
the LPD, dk = i

〈
ukc
∣∣∇k

∣∣ukv〉 the coupling matrix ele-
ments with ukm the periodic part of the Bloch function,
and κ(τ) = k − A(t) + A(τ) with A the vector poten-
tial satisfying −dA/dt = F. The accumulated phase in

FIG. 2. HHG spectra (a,b) and EPs (c,d) for LPD along
the Γ − K direction, and high harmonics polarized parallel
(a,c) and perpendicular (b,d) to the LPD. In (a) and (b), the
filled curve results from the full SBE calculation, the dotted
line neglects the Berry connections, and the dashed horizontal
line outlines the minimal band gap. In (c) and (d), the color
map is the quantum result; the lines and dots are semiclassical
results, with tunneling from different symmetry points in the
BZ [see Fig. 1(b)]. The red cross in (d) marks a minimum in
the color map.

Eq. (1) is (dephasing ignored)

Sµ(k, t, s) =

∫ t

s

[
ωκ(τ)
g + F(τ) ·∆Aκ(τ)

]
dτ

+ αk
µ − ακ(s)

‖

(2)

with ∆Ak = Ak
c − Ak

v where Ak
n = i

〈
ukn
∣∣∇k

∣∣ukn〉 are
the Berry connections, and αk

µ = arg(dkµ) the transition
dipole phases (TDPs). The saddle point conditions for
Sµ(k, t, s)− ωt are

ωκ(s)
g + F(s) ·Dκ(s)

‖ = 0, (3a)

∆Rµ ≡ ∆r−Dk
µ + Dκ(s)

‖ = 0, (3b)

ωk
g + F(t) ·

[
Dκ(s)
‖ + ∆r

]
= ω, (3c)

with Dk
µ ≡ ∆Ak−∇kα

k
µ and ∆r ≡

∫ t
s

[
v
κ(τ)
c − v

κ(τ)
v

]
dτ

where v
κ(τ)
n ≡ ∇kE

κ(τ)
n +F(τ)×Ω

κ(τ)
n is the velocity in-

cluding the Berry curvature Ωk
n ≡ ∇k ×Ak

n. Semiclassi-
cally, Eqs. (3a)-(3c) are interpreted in terms of the three
steps in the recollision model: at time s, an electron tun-
nels from the valence to the conduction band with crystal
momentum κ(s); the newly created electron-hole pair is
accelerated by the laser and recollides at time t with final
crystal momentum k and relative distance ∆r; at recol-
lision, a high-energy photon with energy ω is released.
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FIG. 3. Semiclassical recollision energies versus recollision
times (a) without and (b) with inclusion of the eh-PER F ·∆r
in Eq. (3c), for LPD along Γ−K. The different curves corre-
spond to different tunneling sites in the BZ [Fig. 1(b)]. The
vertical dotted lines mark the peaks of M1 and M2 recollision
energies. The inset in (b) shows the spatial spread corre-
sponding to the trajectory that tunnels at M1 with the high-
est recollision energy. The shaded curves in (c,d) show the
quantum interferences between the Ma

1 and Ma
2 emissions, for

the (c) parallel and (d) perpendicular directions (see text).
The recollision energies (right y-axis) for Ma

1 and Ma
2 trajec-

tories are redrawn in red dashed lines. In (d), the red cross
indicates the same interference minimum as in Fig. 2(d).

Our ERM [45] extends previous works by including (i)

laser-dressing of the bands with F ·Dκ(s)
‖ ; (ii) the Berry

curvature contribution to the velocity of the trajectories;
(iii) the eh-PER given by F ·∆r, due to the nonzero rec-
ollision distance ∆r 6= 0. In addition, we keep track of
the accumulated phase of each trajectory. For h-BN and
the field parameters used here, points (i) and (ii) are of
minor importance [46]. In all our ERM calculations, a
continuous-wave laser is employed, with tunneling times
s ∈ [−T, 0] where T is the period. Returning trajectories
with |∆Rµ| < R0 are assumed to have recollided, with
R0 ≡ 30 unless indicated otherwise.

Figures 2(c,d) show the semiclassical recollision ener-
gies for different initial crystal momenta κ(s) correspond-
ing to different symmetry points in the BZ [Fig. 1(b)].
The M1 and M2 points are seen here to be responsi-
ble for the emitted high-order harmonics with orders
& 16. This is consistent with the density of states di-
verging at the M points in h-BN [47] (van Hove singu-
larities [48]), and strong HHG emissions are expected at
such points [29, 49]. The recollision energy only peaks
once during each half-cycle (with each energy below the
maximum being emitted twice, resulting from a ”short”
and ”long” trajectory, respectively, similar to gas-phase
HHG), which differs from the double peak structure in
the quantum result of Fig. 2(c). In addition, the recolli-

sion energies for the perpendicular harmonics are almost
identical to those of the parallel case and do not repro-
duce the narrow SBE EP [Fig. 2(d)].

The imperfect recollisions, as we now demonstrate, are
responsible for the double-peak structure in Fig. 2(c). In-
deed, when we take into account eh-PER and all crystal
momenta in a disc of radius 0.1 around the M1 point
in the BZ [henceforth referred to as the M1 disc, see
Fig. 1(b)], we recover the double peak structure in the
semiclassical recollision model, shown in Fig. 3(b) by the
gray dots. The time-delay between the two emissions is
∼ 0.75 fs, with the first emission slightly higher in en-
ergy, in agreement with the quantum result of Fig. 2(c).
When the eh-PERs are neglected in Fig. 3(a), the M1

disc emits the highest-order harmonics at the same time,
and no double-peak structure is observed. To better un-
derstand the role of the eh-PERs, we choose to consider
two pairs of representative k-points on the periphery of
the M1 and M2 discs [red and blue circles in Fig. 1(b)].
As seen in Figs. 3(a) and 3(b), both the recollision times
and the recollision energies are modified when taking into
account the eh-PERs: Ma

1 and Ma
2 (Mb

1 and Mb
2) rec-

ollide later (earlier with higher energy) during the first
half-cycle, and earlier with higher energy (later) during
the second half-cycle. Henceforth, we will refer to the
two peaks during each half-cycle as early and late emis-
sions. In Figs. 3(a) and 3(b), we have only considered
the µ =‖ case; for µ =⊥, the result is similar, i.e. with
a double-peak structure in the semiclassical recollision
energies when including the eh-PER.

Note that our choice R0 = 30 is several times greater
than the h-BN lattice constant of 4.7, stressing the delo-
calized character of the spatial recollision process. When
decreasing R0, the maximum recollision times of the Ma

1

and Mb
1 curves in Fig. 3(b) become shorter, with the peak

structures, and thereby all “long” trajectories, disappear-
ing around R0 ∼ 20 (see SM). For the electron and hole
wave packets to spatially overlap at recollision time, the
good agreement between our semiclassical and quantum
results [Fig. 3(b) and Fig. 2(c)] thus suggests that the
quantum wave packet has a minimum spread of ∼ 30. We
have further estimated the quantum spatial spread by ex-
plicitly constructing a real-space wave packet during time
propagation, after placing a k-space wave packet on the
conduction band (using the Houston-state basis [50, 51])
with a k-width estimated by tunneling (see SM for more
details). For the trajectory that tunnels at the M1 point
and has the highest recollision energy, the spatial spread
σ of the corresponding wave packet is shown in the inset
of Fig. 3(b), where σ is seen to increase from 39 to 48
between tunnel and recollision. These σ values are fully
consistent with our choice of R0 and the previous dis-
cussion. The double-peak structure is also robust with
respect to the choice of T2, even up to 20 fs (see SM).
This is consistent with our previous comments: from the
time of tunneling, the electron and hole wave packets are
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driven apart spatially, allowing for recollision primarily
during the first optical cycle of the pulse.

If the recollision model predicts a double-peak struc-
ture for both the parallel and perpendicular EP, why do
we not see this in the quantum result of Fig. 2(d)? The
answer lies in the quantum phase information of the tra-
jectories. If two trajectories tunnel from two different
k-points in the BZ, P1 and P2, and have the same rec-
ollision energy at the same recollision time t, we can co-
herently add them as

IP1P2
µ (t) =

1

2

[
eS

P1
µ (t) + eS

P2
µ (t)

]
, (4)

with SP1
µ (t) and SP2

µ (t) the accumulated phases [Eq. (2)].

For the parallel harmonics in Fig. 3(c), |IM
a
1M

a
2

‖ (t)| = 1

for all t, indicating that the emission from Ma
1 and Ma

2

is completely in-phase. In contrast, for the perpendic-
ular case in Fig. 3(d), the late (early) emissions exhibit
clear destructive (constructive) interferences. In addi-
tion, the pronounced minimum in the perpendicular EP
in Fig. 2(d) is exactly reproduced by the interference
minimum in Fig. 3(d) shown by the red cross. Thus
with our ERM, we can even explain quantitative de-
tails in the EP. Note that the accumulated phase differ-
ence between parallel and perpendicular harmonics can
be traced back to the TDPs (αk

µ) in Eq. (2), stressing
their importance for HHG in solids. Similarly, within
our framework, the generation of purely odd (even) har-
monics in the parallel (perpendicular) directions shown
in Fig. 2(a) [Fig. 2(b)] is easily explained by consider-
ing interference between emissions originating in tunnel-
ing from the M1 and M2 sites (see SM). The condition
IM1M2

‖ (t) = −IM1M2

‖ (t+ T
2 ) ensures purely odd harmonics

along the LPD, while IM1M2

⊥ (t) = IM1M2

⊥ (t + T
2 ) ensures

purely even harmonics perpendicular to the LPD.
Finally, we discuss the general situations in which

imperfect recollisions should be important for HHG in
solids. Clearly, the eh-PER contribution to the harmonic
energy is ubiquitous in all solids where the electron and
hole do not exactly spatially recollide. Obvious exam-
ples include HHG in solids with elliptical drivers, and
systems with large Berry curvatures. For linear polar-
ization, the general rule is the following: suppose an
electron-hole-pair is created at a symmetry point S0 and
subsequently driven by a LPD along Γ− S, then the eh-
PER will be important when S 6= S0. This is illustrated
in Fig. 4, where for the Γ − K LPD, the excursions of
the electron-hole-pairs created at M1 and M2 in k-space,
κ(t) (teal arrows), are not along the group velocity vec-
tor fields ∇kE

k
n , yielding a nonzero eh-PER. Note that

since the the double-peaked EP originates in trajectories
with similar emission times, they are not expected to be
significantly altered by macroscopic effects such as phase
matching or intensity averaging [40, 52] [53]. In contrast,
when the LPD is Γ−M1, the k-space excursion (purple

FIG. 4. Relevance of the eh-PER for linearly polarized
drivers. The vector fields show the group velocities (without
the anomalous term involving the Berry curvature) ∇kE

k
n for

(a) the hole and (b) the electron. For clarity, the vector-field
size in (a) is scaled by 2 compared to (b). The teal (purple)
arrows sketch the excursion of the relevant electron-hole pairs
in k-space for a vector potential A(t) polarized along Γ − K
(Γ−M1). Inset: the EP and the semiclassical predictions, for
a driver with Γ−M1 polarization.

arrows) are along the group velocities, such that the elec-
tron and hole travel along a straight line in real space,
leading to perfect recollisions with ∆r = 0. Indeed, this
is confirmed by both our quantum and semiclassical cal-
culations in the inset of Fig. 4, where no double peak is
observed and all trajectories starting from a M1 disc in
the BZ have approximately the same emission times.

In conclusion, we have uncovered and characterized the
effects of imperfect recollisions for HHG in solids. In h-
BN, they manifest in the EPs as a double peak structure
only for the parallel-polarized harmonics. In the process,
we formulated an ERM for HHG in solids that captures
the effects of the eh-PER, as well as the implications of
the Berry connections and TDPs. We found that the
spatial width of the electron and hole wave packets can
be almost one order of magnitude larger than the lattice
constant, allowing for the imperfect recollisions. This
suggests that spatial decoherence, caused by imperfec-
tions or impurities in the crystal [25, 39, 54–56], may
play a role in the rapid temporal decoherence frequently
included in theoretical models to reproduce experimental
spectra [14, 17, 19, 41], and calls for more research into
the effect of spatial imperfections on HHG. Furthermore,
the agreement between our SBE results and the semi-
classical interpretation, supported by our wave packet
calculations, favors the picture of the coherent emission
of radiation for a (delocalized) electron recolliding with
its “own” correlated hole [2, 24], rather than recollision
with a “different” uncorrelated one [29].

We predict that eh-PER should be ubiquitous in a
large range of extreme nonlinear phenomena of current
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interest, such as HHG with elliptical drivers [1, 3, 4, 8, 27,
35, 57, 58] and systems with large Berry curvatures [59],
as well as high-order sideband generation [60–63]. The
identification of eh-PER and its effect on the harmonic
EPs, as well as the formulation of the ERM, provides
new insights into the HHG process in solids and could
potentially stimulate new experiments, as well as further
theoretical developments of a real-space picture of solid-
state HHG. The potential experimental measurement of
such subcycle emission dynamics could also give us in-
formation on where in the BZ the trajectories emanate,
thus probing the dynamical band structures. More gener-
ally, the characterization and understanding of harmonic
emission times and spectral phases are important for at-
tosecond metrology in solids [2, 5, 19, 21, 41].
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