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Adiabatic pumping is characterized by a geometric contribution to the pumped charge, which can
be non-zero even in the absence of a bias. However, as the driving speed is increased, non-adiabatic
excitations gradually reduce the pumped charge, thereby limiting the maximal applicable driving
frequencies. To circumvent this problem, we here extend the concept of shortcuts to adiabaticity to
construct a control protocol which enables geometric pumping well beyond the adiabatic regime. Our
protocol allows for an increase, by more than an order of magnitude, in the driving frequencies, and
the method is also robust against moderate fluctuations of the control field. We provide a geometric
interpretation of the control protocol and analyze the thermodynamic cost of implementing it. Our
findings can be realized using current technology and potentially enable fast pumping of charge or
heat in quantum dots, as well as in other stochastic systems from physics, chemistry, and biology.

Introduction.— Adiabatic driving makes it possible to
pump charge or heat by slowly modulating two or more
system parameters periodically in time. Even without
an applied bias, the slow driving can induce a non-
vanishing pumped charge, which resembles the Berry
phase in quantum physics and is solely determined by
a closed contour in parameter space [1–5]. This geo-
metric description can be used to optimize the pumping
protocol [6] and may ensure a robust quantization of the
pumped charge [7–9]. Adiabatic pumps are important for
a wide range of phenomena [10–15], such as charge trans-
port in nano-structures [16], heat transfer in molecular
junctions [17], and Brownian motors [18–20]. Geometric
pumping is also of interest in relation to stochastic ther-
modynamics, because it breaks the symmetry that leads
to the steady-state fluctuation theorem [21–25].

For practical purposes, it would be useful to increase
the driving frequency to produce a large output current.
However, as the frequency is increased, non-adiabatic ex-
citations tend to decrease the pumped charge, which in
turn restricts the frequencies for which efficient charge
pumping can be achieved. This situation resembles prob-
lems in quantum control theory, where fast driving speeds
generally reduce both the fidelity and robustness of a
given operation [26, 27]. In this context, shortcuts to
adiabaticity have recently been developed [28, 29] to re-
alize adiabatic protocols in finite time. In particular, by
using counter-diabatic driving fields [28–35], a quantum
system can be guided to follow a given adiabatic trajec-
tory, and a desired operation can thereby be sped up.

In this Letter, we develop a control scheme to speed
up adiabatic pumping in classical stochastic systems. To
this end, we construct a shortcut protocol which enables
geometric pumping well beyond the adiabatic regime.
We identify the target state of the system in the near-
adiabatic regime and provide a systematic way of con-
structing the external control so that the system follows
this target state even in the non-adiabatic regime. We
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FIG. 1. Adiabatic pumping. (a) Adiabatic pumping can be
implemented in a quantum dot with time-dependent tunnel-
ing rates. (b) At low driving frequencies and without a bias,
the pumped charge can be expressed as an integral over the
vector potential A(Γ) along a closed contour C defined by the
time-dependent rates Γ = {Γ+

R ,Γ
+
L }. The pumped charge is

purely geometric, since it only depends on the contour C.

emphasize that our method differs from existing shortcut
protocols, such as the one for non-Hermitian systems [35],
since the required target state contains a non-adiabatic
correction. As a specific application, we consider charge
pumping through a quantum dot, Fig. 1, for which we
show that our method is robust against moderate fluc-
tuations of the control field. We provide a geometric
interpretation of the protocol and analyze the thermo-
dynamic cost of implementing it. Our shortcut to geo-
metric pumping can be realized with existing technology
and, since it is universal (it does not rely on the adiabatic
driving or on specific system properties), it may enable
fast pumping of charge or heat in many different systems
from physics, chemistry, and biology [3–12].
Charge pumping.— We consider the classical stochastic

dynamics of a system coupled to left and right reservoirs
described by a master equation of the form d

dt |P (t)〉 =
L(t) |P (t)〉. Here, the vector |P (t)〉 = (p0(t), p1(t), . . .)T

contains the probabilities for the system to be in state
i = 0, 1, 2, . . .. The system is subjected to a periodic
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external drive, and the dynamics can be described by
the rate matrix, L(t) = L(t+ τ), where τ = 2π/Ω is the
period of the drive. Below, we discuss adiabatic pumping
in a two-state system, because it is simple to analyse and
relevant to experiments. However, the approach that we
develop is more general, and it can be applied to systems
with many states. The two-state system is important as
it is equivalent to the orthodox model of a quantum dot
in the strong Coulomb blockade regime, for which p0(t)
and p1(t) would correspond to the probability of having
0 or 1 electrons on the dot. The rate matrix is now

L(t) =

(
−Γ+

L (t)− Γ+
R(t) Γ−L (t) + Γ−R(t)

Γ+
L (t) + Γ+

R(t) −Γ−L (t)− Γ−R(t)

)
, (1)

where Γ±α (t) are the time-dependent rates for an electron
to tunnel on (+) or off (−) the quantum dot via the left
or right reservoir, α = L,R. In this case, the pumped
charge per period into the right reservoir reads

〈n〉 =

∫ τ

0

dt
[
Γ−R(t)p1(t)− Γ+

R(t)p0(t)
]
, (2)

where the first term of the integrand is the average cur-
rent running from the dot into the right reservoir, and the
second term is the current in the opposite direction. To
introduce a more general notation, we define the matrices

J+(t) =

(
0 Γ−R(t)
0 0

)
and J−(t) =

(
0 0

Γ+
R(t) 0

)
, (3)

so that the pumped charge can be written as 〈n〉 =∫ τ
0

dt〈1|J(t)|P (t)〉, where J(t) = J+(t)− J−(t) describes
the current running into the right reservoir, and 〈1| =
(1, 1). This expression generalizes Eq. (2) to systems with
many states under an appropriate identification of J(t).

Adiabatic pumping.— To begin with, we consider
charge pumping for slow drivings. We thus rewrite
the master equation as (L(t) − d

dt ) |P (t)〉 = 0 to eval-
uate the periodic state perturbatively in the frequency,
|P (t)〉 = |π(t)〉+|δπ(t)〉+. . ., treating the time-derivative
− d

dt as a perturbation of the instantaneous stationary
state defined by L(t)|π(t)〉 = 0. Using standard pertur-
bation theory, we then find |δπ(t)〉 = R(t)|∂tπ(t)〉, where
R(t) is the generalized inverse of L(t) [44], the normal-
ization of |P (t)〉 implies that 〈1|δπ(t)〉 = 0, and we have
defined |∂tπ(t)〉 = d

dt |π(t)〉. Thus, we find for the near-
adiabatic state the expression

|Pad(t)〉 = |π(t)〉+R(t)|∂tπ(t)〉. (4)

Moreover, the pumped charge can be written as 〈n〉ad =
Ndyn + Ngeom, where Ndyn =

∫ τ
0

dt〈1|J(t)|π(t)〉 is the
period-averaged instantaneous current describing the dy-
namical steady-state contribution and

Ngeom =

∫ τ

0

dt〈1|J(t)R(t)|∂tπ(t)〉 =

∮
C

dΓ·A(Γ) (5)

is a purely geometrical contribution. To obtain Eq. (5),
we use that the time-dependence of J(t), R(t), and |π(t)〉
enters implicitly through the transition rates Γ±L,R(t).
Therefore, we can rewrite the integral over a period as
an integral along the closed contour C in the parameter
space Γ = (Γ+

R,Γ
+
L ,Γ

−
R ,Γ

−
L ). We have also introduced the

vector potential A(Γ) = 〈1|J [Γ(t)]R[Γ(t)] ∂∂Γ |π[Γ(t)]〉,
which is consistent with the classical analog of the Berry
phase introduced by Sinitsyn and Nemenman in the con-
text of full counting statistics [3–5]. Similar expressions
have been obtained for pumped currents [10–12] and en-
tropy production [14], however, Eq. (5) is limited to adia-
batic driving, and the geometric picture typically breaks
down at higher frequencies.

Shortcut to adiabatic pumping.— We now develop a
shortcut to geometric pumping beyond the adiabatic
regime. To this end, we consider an external control that
allows us to retain the target state (4) beyond the limit of
slow driving. In this case, the non-Hermitian extension of
the counterdiabatic technique cannot be used [35], since
the target state is not the instantaneous stationary state
|π(t)〉. Instead, in the spirit of Ref. [34], we note that
the time evolution of the uncontrolled rate matrix L(t)
generates non-adiabatic excitations, such that the state
cannot follow the target state (4). Specifically, for a short
time-step δt, we have |Pad(t)〉 → (1 + L(t)δt) |Pad(t)〉 =
|π(t+δt)〉+ |δπ(t)〉+O(δt2), since |∂tπ(t)〉 = L(t)|δπ(t)〉,
and this time-evolved state is different from the desired
target state, |Pad(t + δt)〉. To circumvent this problem
we construct an external control described by the matrix

Lcont(t) = |∂tδπ(t)〉〈1|, (6)

which suppresses non-adiabatic excitations, so that the
state of the system follows the desired target state as
|Pad(t)〉 → (1 + {L(t) + Lcont(t)}δt) |Pad(t)〉 = |Pad(t +
δt)〉 + O(δt2). Hence, with |Pad(0)〉 as the initial state,
the solution to the master equation using the rate matrix
L(t) + Lcont(t) is given by |P (t)〉 = |Pad(t)〉 for all t.
Importantly, the combined rate matrix L(t) + Lcont(t)
must be physically meaningful at all times; specifically,
all transition rates must remain non-negative.

If the control is implemented without modifying the
current operator J(t), we immediately find that the con-
trolled dynamics reproduces the dynamical and the geo-
metrical contribution to the pumped charge, i. e.,

〈n〉cont =

∫ τ

0

dt〈1|Jcont(t)|Pad(t)〉 = Ndyn +Ngeom, (7)

where Jcont(t) is the current operator with the con-
trol, and we have used Jcont(t) = J(t) to obtain the
last equality in Eq. (7). This condition is always sat-
isfied, if we implement the control solely on the left
side of the system. On the other hand, if the control
is implemented on both sides, the current operator gets
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FIG. 2. Transition rates and pumped charge. (a) The two time-dependent rates for the uncontrolled dynamics (full lines) and
the corresponding modified rates (dashed lines). (b) Average pumped charge as a function of the driving frequency for the
controlled and uncontrolled dynamics. The geometric description breaks down for the uncontrolled dynamics around Ω ' Γ0,
where the pumped charge gets significantly reduced. In contrast, for the controlled dynamics, the pumped charge is given by
the geometric contribution up until the breakdown frequency of around Ωc ' 32Γ0, where the modified transition rates become
negative. The error bars are obtained by adding 3% noise to the control field, showing that our protocol is robust against
moderate fluctuations. The parameters used here are A = 4, R = 1, ε = 0.5, with Ω/Γ0 = 25 in (a) and c = 0.03 in (b).

modified, Jcont(t) 6= J(t). However, Eq. (7) still holds
true, if we appropriately implement the control on both
sides of the system by modifying the transition rates in
L(t) = LL(t) + LR(t) as LL(t)→ LL(t) + (1− ε)Lcont(t)
and LR(t) → LR(t) + εLcont(t). Here, ε is a free param-
eter that determines on which side the control is mainly
implemented and LL(R)(t) describes transitions into the
left (right) reservoir. For ε = 0, the control is imple-
mented solely on the left side of the system, and Eq. (7)
is satisfied. For ε = 1, a similar argument implies that
the pumped charge per period from the left reservoir to
the system satisfies 〈n〉Lcont = Ndyn+Ngeom. By using the
conservation of the charge per period 〈n〉Lcont = 〈n〉cont,
Eq. (7) is again valid. For ε between 0 and 1, we take a
linear combination of the two limits to obtain Eq. (7).

In summary, we find that our control enables geometric
charge pumping beyond the limit of slow driving. The
explicit form of the control (6) and its consequences for
the charge pumping (7) are central results of this paper.
We stress that the construction of the control (6) does
not depend on the specific details of the system, including
the number of states, and it is therefore universal in this
sense. Moreover, while we here have focused on classical
stochastic systems, it is clear that our control technique
can also be applied to open quantum systems described
by Markovian generalized master equations.

Applications.— To illustrate our control technique, we
consider the two-state model in Eq. (1) with the time-
dependent rates, Γ+

L (t) = Γ0(A + R cos Ωt) and Γ+
R(t) =

Γ0(A + R sin Ωt), plotted with full lines in Fig. 2a, and
Γ−L = Γ−R = Γ0. The vector potential A(Γ) is shown in

Fig. 1b together with the closed contour C defined by the
rates. The dynamical contribution vanishes, Ndyn = 0,
while the geometrical term reads [3]

Ngeom =
2πR2

[4(A+ 1)2 − 2R2]
3/2

. (8)

In Fig. 2b we show the average pumped charge as a func-
tion of the driving frequency. At low frequencies, the
driving is adiabatic, and the geometric description of the
pumped charge is valid. However, as the frequency is in-
creased and approaches the bare tunneling rate Γ0, the
driving becomes non-adiabatic, and the pumped charge
becomes drastically reduced below the geometric value.

To counteract the reduction of the pumped charge, we
now implement our control. The control matrix (6) reads

Lcont(t) = γ(t)

(
−1 −1
1 1

)
, (9)

where γ(t) = ∂t[α(t)/Γ(t)] and α(t) = ∂t[Γ
−(t)/Γ(t)],

and we have defined Γ±(t) = Γ±L (t) + Γ±R(t) and Γ(t) =
Γ+(t) + Γ−(t). We have also used that |π(t)〉 =
(Γ−/Γ,Γ+/Γ)T and |δπ(t)〉 = (−α/Γ, α/Γ)T. The con-
trol can be implemented by simply modifying the tran-
sition rates as Γ±L (t)→ Γ±L (t)± (1− ε)γ(t) and Γ±R(t)→
Γ±R(t)± εγ(t), where ε can be between 0 and 1.

Figure 2a shows two of the modified rates (dashed
lines) for a fixed driving frequency, while the resulting
pumped charge is plotted as a function of the frequency
in panel b. Using the external control, we find that
the geometric value is maintained for frequencies that
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are more than an order of magnitude larger than the
breakdown frequency for the uncontrolled dynamics. At
very large frequencies, the modified transition rates be-
come negative and the control can no longer be imple-
mented. The breakdown frequency Ωc can be estimated

as Ωc = Γ0

{
2[1 +

√
2(1 +A)/R]

}3/2 ' 32Γ0 for A = 4
and R = 1, which agrees well with our numerical results.

The robustness of our protocol is important for prac-
tical realizations. To gauge the stability of our scheme,
we show in Fig. 2b the standard deviation of the pumped
charge, obtained by adding random Gaussian noise ξt to
the control field as γ(t) → (1 + cξt)γ(t), where c is the
noise strength and 〈ξt〉 = 0 and 〈ξtξt′〉 = δ(t − t′). The
smallness of the error bars demonstrates that our scheme
is stable against moderate fluctuations.

Geometric interpretation.— The control itself has an
interesting geometric interpretation. To see this, we de-
fine the distance between two states |p〉 and |q〉 with com-
ponents pi and qi as L(p, q) =

√∑
i |pi − qi|2. Now,

by considering the infinitesimal distance between two
neighboring states L(p(t + δt), p(t)) =

√
gtt[p(t)]δt +

O(δt2), we are led to define the metric as gtt[p(t)] =∑
i |∂tpi(t)|2 [36]. We then see that Lcont is related to

the geometry of the correction to the stationary state as

||Lcont||F =

√
N
∑
i

|∂tδπi(t)|2 =
√
Ngtt[δπ(t)], (10)

where N is the number of states of the system and

||A||F =
√∑

i,j |aij |2 is the Frobenius matrix norm. This

relation indicates that, if |δπ(t)〉 depends strongly on
time, a large intensity of the control is required to sup-
press the nonadiabatic excitations.

Equation (10) should be contrasted with the non-
Hermitian control field of Ref. [35], which is given as
Lcd(t) = |∂tπ(t)〉〈1|, and which is related to the geom-
etry of the stationary state as ||Lcd||F =

√
Ngtt[π(t)].

In this respect, our control matrix can be regarded as
a next-order non-adiabatic generalization of Lcd. For
the two-state case, we have

√
gtt[π(t)] =

√
2|α(t)| and√

gtt[δπ(t)] =
√

2|γ(t)|. A similar connection has been
discussed between the counterdiabatic Hamiltonian and
the Fubini-Study metric in quantum systems, which has
led to several speed-limits and trade-off relations [37–40].
Thus, we expect that similar universal relations may also
exist for the geometric pumping considered here.

Thermodynamic cost.— Finally, we compare the en-
tropy production for the controlled dynamics with its adi-
abatic counterpart. Since our system is interacting with
two reservoirs, a steady-state heat current (housekeeping
heat) can be generated even in the stationary state. We
therefore consider the Hatano-Sasa entropy production,
which is the entropy production of the reservoirs after
subtracting the entropy that is generated by the station-
ary dissipation. The Hatano-Sasa entropy production for

a stationary cycle is defined as [41]

ΣHS =

∫ τ

0

dt
∑
ji

Wjipi ln

(
pSSj
pSSi

)
≥ 0, (11)

where Wji is the j, i’th component of the rate matrix W
and pSSi is the i’th component of the corresponding in-
stantaneous stationary state.

For the uncontrolled dynamics, we have pi = πi + δπi
as expressed by Eq. (4), and with W = L and pSSi = πi,
we find that the entropy production vanishes, Σad =
0 [45]. By contrast, the control required to mimic the
near-adiabatic dynamics generates a finite amount of en-
tropy. For the two-state case, we have W01 = Γ− − γ,
W10 = Γ+ + γ, p0 = (Γ− − α)/Γ, and pSS0 = (Γ− − γ)/Γ.
The Hatano-Sasa entropy production then becomes

Σcont =

∫ τ

0

dt(α−γ) ln

(
1− γ/Γ−

1 + γ/Γ+

)
−
∫ τ

0

dtγ ln

(
Γ−

Γ+

)
.

(12)
The strength of the control, γ ∝ Ω2, vanishes at low
frequencies and we recover Σcont → Σad = 0. On the
other hand, at large frequencies, the control can no longer
be implemented and the entropy production diverges.
Hence, we interpret the entropy production in Eq. (12)
as the thermodynamic cost of implementing our control.
Conclusions.— We have developed a shortcut to ge-

ometric pumping in classical stochastic systems. Go-
ing beyond existing protocols for non-Hermitian sys-
tems, our shortcut makes it possible to recover the near-
adiabatic dynamics much beyond the adiabatic regime
and thereby maintain the geometrical description of the
pumped charge. The control protocol can be imple-
mented by modifying the transition rates of the uncon-
trolled system, and it is robust against moderate fluctua-
tions of the control field. Our work opens several promis-
ing avenues for further developments. Experimentally,
our control can be realized in systems from physics, chem-
istry, and biology. Theoretically, it would be interesting
to explore possible speed-limits and trade-off relations,
similarly to those that have been formulated for counter-
diabatic Hamiltonians in quantum systems. Extending
our ideas to adiabatic pumping in quantum systems con-
stitutes another interesting line of research [42].
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