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Active learning is a machine learning method aiming at optimal design for model training. At
variance with supervised learning, which labels all samples, active learning provides an improved
model by labeling samples with maximal uncertainty according to the estimation model. Here, we
propose the use of active learning for efficient quantum information retrieval, which is a crucial task
in the design of quantum experiments. Meanwhile, when dealing with large data output, we employ
active learning for the sake of classification with minimal cost in fidelity loss. Indeed, labeling only
5% samples, we achieve almost 90% rate estimation. The introduction of active learning methods
in the data analysis of quantum experiments will enhance applications of quantum technologies.

Introduction.— In the past decades, machine learning
has evolved from (un)supervised learning algorithms [1–
3], aiming at simple classification tasks, to deep learning
algorithms [4, 5] playing Go [6] and StarCraft II [7]. Su-
pervised learning can lead to well-trained classification
or prediction models by tuning them with labeled data.
However, most data are unlabeled in real world, thus the
cost of labeling can be critical in chemistry/biology ex-
periments, destructive testing in industry, among oth-
ers [8, 9]. At the same time, machine learning pro-
tocols have shown their capabilities to attain quantum
tasks and study properties of quantum systems [10–15].
These protocols have already been applied in the field
of quantum metrology, which is related to quantum in-
formation retrieval, making use of reinforcement learning
(RL) [16] to control certain aspects of the measurement
process [17, 18]. We can also find quantum versions of
RL in the scientific literature [19] for measurement con-
trol [20, 21]. The crucial problem of quantum informa-
tion retrieval is the design of an optimal plan that mini-
mizes the cost of measurements, while extracting the rel-
evant information for further tasks without well-defined
rewards. Active learning (AL) is based on the hypothe-
sis that a model trained on a small set of labeled sam-
ples can perform as well as one trained on a data set
where all samples are labeled [22, 23]. Therefore, this
framework fits well with the necessary requirement to
address the aforementioned crucial information problem.
In a nutshell, AL takes into account the cost of labeling,
i.e. fidelity loss caused by measurement. It analyzes the
most informative patterns (quantum states) in order to
propose the minimal number of labels (measurements)
which guarantee the maximal knowledge gain. There are
recent works suggesting applications of AL to quantum
information [24], employing a definition of AL which is

different to ours, assisting experimental design like other
machine learning algorithms [25, 26]. An opposite ap-
proach is proposed in Ref. [27], which aims at accelerat-
ing classical AL by quantum computation.

In this Letter, we propose a framework for making
decisions about the optimal experimental design for bi-
nary classification with AL algorithms. For achieving this
task, estimation models are updated in each iteration af-
ter labeling the qubit with the maximum uncertainty by
means of weak measurements. These allow for the ex-
traction of partial information while perturbing qubits
slightly, implying cost reduction in the sense of fidelity
loss. In our numerical simulations, we have observed
that, by labeling only 5% samples, we attain almost 90%
rate estimation for the task. We consider that the intro-
duction of AL algorithms into experimental design could
lead to improved applications in quantum technologies.

Active Learning.— Let be a set of labeled samples
X = {xi, yi}li=1, where the inputs xi ∈ X , being X de-
fined in Cd, and for the sake of simplicity we consider a
classification problem where the output is given by the
corresponding class, yi ∈ {1, . . . , C} for a C-class prob-
lem. To complete the definition of the AL framework, we
also need a set of unlabeled samples U = {xi}l+ui=l+1 ∈ X ,
being u � l, i.e., the pool of candidates to be labeled
is in principle much larger than those samples already
labeled. AL usually works following an iterative proce-
dure so that samples are labeled sequentially to improve
the model performance. This is done by adding the most
informative sample in each iteration up to a point where
adding more labels do not benefit the model and, hence,
the model can work on a semisupervised fashion using
only the labeled samples. The obvious question is which
are the most informative samples that should be selected.
The usual approach is to consider that samples with max-
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imal information are those for which the model displays
maximal uncertainty about the outcome. Therefore, la-
beling these sample provides a considerable added value
to the learning process. There are different approaches
to evaluate the uncertainty in order to sort the samples
in U and make a decision about which candidate should
be part of the training set. The two most widely used
strategies are Uncertainty sampling (USamp) and Query-
by-committee (QBC) [28]. USamp uses a single model for
selecting samples with maximal uncertainty according to
the estimator, and updates the model [29]. QBC employs
several models to select for labeling the samples with the
lowest consensus measured by voting entropy [30].

For the simplest USamp, assuming a probabilistic bi-
nary classification model, the strategy queries the sample
whose conditional probability of being positive is nearest
0.5. When three or more classes are present, the crite-
rion is to take the sample whose prediction is the least
confidence

xLC = argmax
x

(1− Pθ(ŷ|x)), (1)

ŷ = argmax
y

(Pθ(y|x)),

with ŷ the most probable class according to model θ.
Beyond this criterion, there are other approaches like
margin sampling [31], entropy-based USamp [32], which
differs in probability densities (see supplementary mate-
rial). We only introduce the least confidence sampling
since these three approaches are the same when dealing
with binary classification. Meanwhile, voting entropy for
QBC, which considers the most informative sample, is
defined by

xVE = argmax
x

(
−
∑
i

V (yi)

C
log

V (yi)

C

)
, (2)

where yi refers to all possible labelings, V (yi) is the num-
ber of votes received by the label from the members of
the committee, and C is the committee size. Alternative
QBC approaches are also described in supplementary ma-
terial.

Weak measurement.— An extension of von Neumann
measurement was proposed to extract information from
a quantum system without destroying its quantumness,
which is called weak measurement [33–36]. In our frame-
work, the protocol of weak measurement consists of two
steps: coupling the quantum system to an ancilla qubit
for obtaining a new system, then followed by a projective
measurement on the ancilla qubit. Let us suppose that
the ancilla qubit’s Gaussian wave function reads as

|Φ〉 =

∫
1

(2πσ2)
1
4

exp

(
− q2

4σ2

)
|q〉dq, (3)

where σ is the standard deviation of the qubit’s position,
q̂ is the position operator of the qubit that q̂|q〉 = q|q〉.

Accordingly, there exists the conjugate momentum oper-
ator p̂ that satisfies the commutation relation [q̂, p̂] = i~.
The ancilla qubit is coupled to the system following an
interaction Hamiltonian

HI(t) = g(t)p̂⊗ Â, (4)

where g(t) is a time-dependent coupling strength, Â is the
operator of the quantity we aim to measure with eigen-
vectors |aj〉 satisfying Â|aj〉 = aj |aj〉. We require the
momentum of the ancilla qubit to be sufficiently small,
which leads a small uncertainty in momentum and a
large one in its position q. The time-dependent coupling
strength now satisfies∫ t0

0

g(t)dt = 1, (5)

Therefore, the strength of the measurement is no longer
governed by a coupling constant. Now the initial
quantum state of the quantum system is |Φ〉 ⊗ |Ψ〉,
which evolves under the interaction Hamiltonian by
exp(−i

∫ t
0
HI(t

′)dt′) (~ = 1). One can see that within
t0, the interaction Hamiltonian takes q̂ to q̂+ aj on each
of the entangled wave functions of the detector and eigen-
vector of quantity to be measured |Ψ〉 ⊗ |aj〉,

q̂(t0)− q̂(0) =

∫ t0

0

dt
∂q̂

∂t
= i

∫ t0

0

[HI , q̂]dt = aj . (6)

The evolution of the wave function can be written as

exp(−ip̂⊗ Â)|Φ(q)〉 ⊗ |Ψ〉 =

cos α2 |Φ(q − a1)〉 ⊗ |a1〉+ sin α
2 |Φ(q − a2)〉 ⊗ |a2〉. (7)

In this way, we can obtain Â of the qubit by mea-
suring the ancilla’s position q with an arbitrary uncer-
tainty, since weak measurement protocol requires σ �
maxj(aj). The probability distribution of the ancilla’s
position gives

P (q) = (2πσ2)−
1
2

[
cos2 α2 exp

(
− (q−a1)2

2σ2

)
+ sin2 α

2 exp
(
− (q−a2)2

2σ2

)]
. (8)

If we perform a weak measurement on the Z direction of
the qubit, Â = σ̂z, which leads to |a1〉 = |0〉, |a2〉 = |1〉,
and a1, a2 = ±1, the probability P (q) can be approxi-
mated by

P (q) ≈ 1

(2πσ2)
1
2

exp

[
− (q − cosα)2

2σ2

]
. (9)

A normalized wave function of the system after a quan-
tum measurement on the ancilla is

|Ψf 〉 ∝
1

(2πσ2)
1
4

{
cos

α

2
exp

[
− (q0 − 1)2

4σ2

]
|0〉

+ sin
α

2
exp

[
− (q0 + 1)2

4σ2

]
|1〉
}
, (10)
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where q0 is the measurement feedback of the ancilla posi-
tion. The wave function |Ψf 〉 is close to the initial wave
function |Ψ〉 if σ is large enough, i.e., the qubit is not
destroyed but slightly perturbed. Although the weak
measurement protects the qubit from collapsing, less in-
formation is extracted from the system than that from
a direct measurement due to the uncertainty, which also
increases the error of labeling. This trade-off is inevitable
when we only have one qubit of |Ψ〉, but the error rate of
labeling can be reduced if we introduce extra resources.
For instance, if there are n qubits prepared in the same
state |Ψ〉 as an ensemble, the uncertainty of 〈Â〉 can be
reduced by 1/

√
n.

Numerical simulations.— Here, we exemplify AL to
a binary classification problem for quantum information
retrieval. In Fig. 1(a), Alice prepares a quantum state in
a lattice of 21 × 21 = 441 qubits, which can be mapped
to a spin system with transformation |0〉 → | ↑〉 and
|1〉 → | ↓〉. Information for classification can be encoded
in σ̂z, e.g. 〈σ̂z〉 > 0 for class 0 and 〈σ̂z〉 < 0 for class 1.
n copies of the quantum system with qubits correctly la-
beled by Alice, which we call oracles, are sent to Bob
for classification. Suppose Bob knows that the quantum
system can be modeled linearly, the first trial is train-
ing a support vector machine (SVM) by USamp with
two oracles of different labels [see Fig. 1(b)]. We label
a candidate x, selected among other unlabeled samples
based on its uncertainty, i.e. its effective distance to the
current hyperplane. A more complex AL protocol based
on QBC is shown in Fig. 1(c), comprising a committee
made up of four models: SVM, coarse Gaussian SVM,
fine decision tree, and linear discriminant. Hence, Bob
inquires about more oracles since the committee needs
more information for minimal modeling. After a first
round of evaluating the disagreement by voting entropy,
candidate is selected according to the same rule as in
USamp among other samples with maximal committee
disagreement. Different from classical labeling, we have
a high error rate when we label a sample by weak mea-
surement, since the protocol requires an inaccurate an-
cilla with large σ. In Fig. 1(d), we plot the weak value
of each qubit after performing weak measurements on
the quantum system. One should average weak values of
n copies for obtaining meaningful information to reduce
uncertainty, allowing us to correctly label each sample.

Now we present a more quantitative study by defining
the cost of labeling in quantum measurement by fidelity
loss. Once we fix the number of samples to be labeled or
the fidelity threshold, different sampling strategies and
measurement methods can be fairly compared. Here we
evaluate the performance of every classification model by
their rate estimation since the classes are balanced. One
may use other figure-of-merits, e.g. AUC or ROC when
they are unbalanced. In Fig. 2, we compare USamp and
QBC, which are the two most widely accepted strate-
gies, against random sampling. The experiment starts
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FIG. 1. (a) The quantum state in a lattice of 21 × 21 = 441
qubits, prepared by Alice for binary classification. The value
of 〈σ̂z〉 = cosα ∈ [−1, 1] is plotted in the colormap from blue
(-1) to red (1). (b) USamp protocol. Thick black dashed line
represents the initial SVM that divides the lattice into two
parts, using standardized support vectors of two oracles pro-
vided by Alice (circled by red and blue). Thin dash-dotted
lines with colors from black to green illustrate the update of
the model, where candidates which are selected according to
USamp strategy are circled in the same color. Qubits with
the minimal fidelities among their n copies are identified by
Gaussian weak measurements with σ = 10 and n = 500. We
have covered their initial states by smaller circles in different
color, depending on the outcome. Thick green dotted line
represents the SVM after labeling 20 samples via weak mea-
surements. (c) QBC protocol. We present the evolution of the
SVM as one model in our committee, where other parameters
are unchanged. (d) Weak values of all qubits after performing
weak measurements only once on the quantum state. These
weak values contain little information which is hardly useful
for classification, which requires n copies of the quantum state
for obtaining statistically meaningful information.

with 3 labeled samples for USamp and 5 for QBC. Re-
sult indicates that with an adequate choice of committee,
QBC can be more efficient than USamp since its correct
rate is higher under different number of labeled samples.
We also notice the anomaly that, under small n, QBC
outperforms other methods with fewer labeled samples.
This is because the training set consists of four correctly
labeled oracles from Alice and samples labeled by Bob,
which can be incorrectly labeled with a high probabil-
ity when n is small. This phenomenon becomes trifling
when n is sufficient large, as depicted in Fig. 2(d)], i.e.
almost every sample is faultlessly labeled. In Fig. 3, we
compare strong and weak measurement in AL with US-
amp under different fidelity thresholds. We measure each
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FIG. 2. Mean correct rates of classification model (SVM)
with random sampling (red dots), USamp (blue triangles) and
QBC (green diamonds) as different sampling strategies. Error
bars denote confidence intervals of 0.95. Each qubit is sam-
pled over an ensemble of (a) 5, (b) 50, (c) 100, and (d) 500
qubits. Other parameters agree with those in Fig. 1.

sample for updating our model until the fidelity of the
system reaches the threshold. Weak measurements allow
us to label more samples than strong measurement. For
the calculation of fidelity loss, we multiply the state fi-
delity by the minimal fidelity of each labeled qubit for
its n copies after measurements. Meanwhile, a smaller
n might also enlarge the training set because a large fi-
delity loss is less likely to happen. This situation refers
to a tradeoff between information increment due to more
samples and higher accuracy per sample in AL.

Conclusion and outlook.— We have introduced AL
protocols for retrieving quantum information with op-
timal experimental design. Moreover, we have exem-
plified with a complete binary classification task by ex-
tracting information from qubits through weak measure-
ments. Furthermore, we have compared selection strate-
gies using USamp, QBC and random sampling, as well
as labeling techniques employing weak and strong mea-
surements. For the former, the results of our numerical
simulations have shown that, with only 5% of labeled
samples, we have achieved almost 90% rate estimation.
We have observed that weak measurement strategy out-
performed strong measurement. Our framework includes
the concept of trade-off and dynamical prediction, where
its efficiency could be related to a generative model [37].
A straightforward extension of this work will be solving
multi-class classification problem on qudits, where other
approaches for USamp such as margin sampling or en-
tropy based sampling are no longer equivalent to least
confidence. Another potential candidate platform for
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FIG. 3. Mean correct rates of classification model (SVM) with
USamp. Each qubit is labeled by strong measurement (red
dots) and weak measurement (blue triangles). Parameters
remain the same as in previous figures.

applications is quantum memristors [38–40], since they
are based on the weak measurement protocol that allows
feedback for controlling its coupling to the environment.
An AL-enhanced quantum memristor could be a more
efficient building block for quantum simulations of non-
Markovian systems or neuromorphic quantum computa-
tion.
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