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Optical absorption measurements characterize a wide variety of systems from atomic gases to in-vivo diag-
nostics of living organisms. Here we study the potential of non-classical techniques to reduce statistical noise
below the shot-noise limit in absorption measurements with concomitant phase shifts imparted by a sample.
We consider both cases where there is a known relationship between absorption and a phase shift, and where
this relationship is unknown. For each case we derive the fundamental limit and provide a practical strategy to
reduce statistical noise. Furthermore, we find an intuitive correspondence between measurements of absorption
and of lossy phase shifts, which both show the same analytical form for precision enhancement for bright states.
Our results demonstrate that non-classical techniques can aid real-world tasks with present-day laboratory tech-
niques.

The precision of optically measuring an object is limited by
fundamental fluctuations in the optical field due to the quan-
tum nature of light [1]. When using laser light as an opti-
cal probe, the limit of this statistical noise is the shot-noise
limit which can be reduced by increasing probe intensity or
enhancing interaction with the sample. However, some sys-
tems are incompatible with increased intensities, for example
if light causes undesired technical effects [2, 3] or the sample
to deform [4, 5]. If high-intensity light cannot be used then
shot-noise will limit the achievable precision [2, 3, 6].

Whilst of a fundamental origin, shot-noise is not the ulti-
mate quantum limit — non-classical probes can be used to
exceed the shot-noise limit [7]. Many previous theoretical
and experimental studies have investigated potential benefits
of using non-classical states for phase estimation in the pres-
ence of loss [8–14], and for loss estimation [5, 10, 15–21].
In addition, a number of studies have investigated quantum
bounds for multiparameter estimation including unitary [22–
24] and non-unitary [25–27] channels.

At a fundamental level, changes in absorption over a nar-
row spectral range must be accompanied by changes in refrac-
tive index (and hence phase shifts), governed by the Kramers-
Kronig relations [28]. It is therefore important to consider
how the estimation capabilities of any strategy are affected
by correlation between these two variables. Here we ad-
dress this and seek a unified understanding of optimal quan-
tum strategies for measuring a single parameter which drives
both absorption and phase of a single optical mode. We con-
sider estimating an unknown parameter χ, which governs both
phase θ(χ) ∈ [0, 2π) and loss 1−η(χ) ∈ [0, 1] imparted by a
channel Λχ which we call correlated phase and loss estima-
tion (CPLE). Formally, Λχ is defined by its action on a basis

of coherent states |α〉 Λ7→ |√ηeiθα〉. Lossy-phase estimation
(∂χη= 0 where ∂• ≡ ∂

∂• ) and loss estimation (∂χθ= 0) [16–
18] are special cases of CPLE.

We first find the fundamental upper bound on the precision

achievable with CPLE, quantified using the quantum Fisher
information (QFI) per input photon. We investigate the satura-
bility of this bound using squeezed coherent states, which can
readily be generated experimentally [29]. We also consider
direct absorption estimation (DAE), where η(χ) is to be esti-
mated but its relationship to θ(χ) is not known and therefore
the information contained in the phase cannot be accessed. By
explicitly considering large displacements, Eq.(11), we find
that the quantum advantage for both DAE and CPLE have
the same analytical form and dependence on the input state
squeezing parameter r and total channel transmission η. We
conclude by investigating multi-pass strategies for CPLE and
DAE, and by investigating the advantage attainable in all cases
by current experimental capabilities.

Fundamental limit for CPLE — We use the established
Fisher information (FI) formalism to provide bounds on pre-
cision for estimating an unknown parameter χ encoded within
a quantum state %χ:

1

Var(χ)

1
≤ FχM(%χ)

2
≤ Fχ(%χ).

Inequality 1 is the Crámer–Rao bound (CRB) [30] and re-
lates the variance of unbiased estimates Var(χ) to the FI
FχM(%χ) =

∑
i p(i|χ) [∂χlog p(i|χ)]

2. The FI is a function
of the probabilities p(i|χ)=tr(mi%χ), given by the measure-
ment of %χ, with a positive-operator valued measure (POVM)
M = {mi} and

∑
imi = 1. Inequality 2 is the quantum

CRB [31] which relates FχM(%χ) to its maximum value Fχ
(the QFI) which is found by optimizing over all POVMs [32].
F serves as a measurement basis independent evaluation of
the information that %χ contains on χ. When χ is encoded
onto a pure probe state by unitary Uχ|ψ〉= |ψχ〉 the QFI be-
comes 4

(
‖|∂χψχ〉‖2−|〈ψχ|∂χψχ〉|2

)
where |∂•ψ〉 ≡ ∂•|ψ〉

and ‖ • ‖ is the 2-norm.
Loss enacts a non-unitary evolution. Ref. [13] showed that
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for such a non-unitary map Λχ acting on a pure state |ψ〉,

F [Λχ(|ψ〉)] = min
Uχ

(
F [Uχ|ψ〉S |0〉E ]

)
, (1)

where Uχ is a unitary dilation of the channel, acting on a larger
Hilbert space containing system mode S and environment
mode E, and satisfying Λχ(•) = trE

[
Uχ(•S ⊗ |0〉〈0|E)U†χ

]
.

For lossy-phase estimation Uχ can be chosen such that
F [Uχ|ψ〉S |0〉E ] provides informative bounds on the achiev-
able precision dependent only on the mean number of probe
photons 〈n̂〉in ≡ 〈ψ|n̂S |ψ〉 [13].

Seeking an upper bound on the precision for CPLE we
choose a unitary dilation of S, with a single free environ-
mental parameter ς which dictates the phase imparted onto
E. This dilation takes the form Uχ,ς = U2(θ, ς)U1(η) where
U1(η) and U2(θ, ς) enact system loss (1−η) and phase θ of U
respectively. These unitaries are given by U1 =exp[iĤ1ξ(η)],
Ĥ1 = i

2 (â†S âE − â†E âS), ξ(η) = arccos(2η− 1) and U2 =

exp[iĤ2(ς)θ], Ĥ2(ς)= n̂S+ςn̂E . We verify that Uχ is a dila-
tion of Λχ in Supplementary Material A [33]. In Supplemen-
tary Material B [33] we show that for |Ψχ,ς〉 ≡ Uχ,ς |ψ〉S |0〉E :

Fχ(|Ψχ,ς〉) = (∂χθ)
24
(
‖|∂θΨχ,ς〉‖2 − |〈Ψχ,ς |∂θΨχ,ς〉|2

)
+ (∂χη)24

(
‖ |∂ηΨχ,ς〉‖2 − |〈Ψχ,ς |∂ηΨχ,ς〉|2

)
.

(2)

For any probe state, the second term in Eq. (2) is given by:

(∂χη)24
(
‖|∂ηΨχ,ς〉‖2 − |〈Ψχ,ς |∂ηΨχ,ς〉|2

)
=

(∂χη)2〈n̂〉in
η(1− η)

,

which is independent of ς [33]. Therefore, the optimal ς is
given by minimization of ‖|∂θΨχ,ς〉‖2−|〈Ψχ,ς |∂θΨχ,ς〉|2, in
accordance with Eq. (1). This same expression was minimized
in Ref. [13] and hence has the same optimal value:

ςopt =1−Varin(n̂)
/

[(1−η) Varin(n̂)+η〈n̂〉in] , (3)

with Varin(n̂) = 〈ψ|n̂2
S |ψ〉−(〈n̂〉in)2. Therefore the limit we

have found for CPLE is simply the sum of the limits on QFI
for phase estimation (first term) and loss estimation (second
term) [21]. Inserting ςopt (Eq. (3)) into Eq. (2) yields:

Fχ(%χ) ≤ (∂χθ)
2

[
4η〈n̂〉in Varin(n̂)

(1− η) Varin(n̂) + η〈n̂〉in

]
+ (∂χη)2 〈n̂〉in

η(1− η)

≤ 〈n̂〉in
4η2(∂χθ)

2 + (∂χη)2

η(1− η)
=: Qχ.

(4)

where the last expression depends only on 〈n̂〉in. Qχ denotes
the maximum information available on χ for any quantum
probe and measurement, and therefore the bound we aim to
saturate.

Probe states for CPLE — Having found the fundamental
limit for CPLE, we next seek an effective strategy for exper-
imentally achieving this bound using single-mode Gaussian

states and homodyne measurements. These were shown to be
optimal for lossy-phase estimation in the large photon number
limit [34].

Gaussian states are specified by a displacement vector d
comprised of means, di = 〈x̂i〉, and a matrix Γ comprised
of covariances, Γij = 1

2 〈x̂ix̂j + x̂j x̂i〉 − 〈x̂i〉〈x̂j〉, of the
quadrature operators x̂1 = 1

2 (â†+ â) and x̂2 = 1
2 i(â†− â)

[35, 36]. Homodyne measurement of a single-mode state
provides a measurement of the x̂1 quadrature [37]. An ar-
bitrary single-mode pure Gaussian state can be defined by the
squeezing Ŝ(r, φ) = exp[ 1

2r(e−iφâ2−eiφâ†2)], displacement
D̂(α) = exp[α(â†− â)], and rotation R̂(ϕ) = exp(iâ†âϕ)
operators acting on vacuum: |ψG〉 = R̂(ϕ)D̂(α)Ŝ(r, φ)|0〉
where all arguments are real and the mean number of pho-
tons within the state is: 〈n̂〉 = α2 + sinh2(r). The ac-
tions of squeezing, displacement, rotation (phase shift) and
loss modify d and Γ [38]. |ψG〉 will be transformed by Λχ

to %̃ = Λχ(|ψG〉) with d̃ = R(ϕ+ θ)

(
α
√
η

0

)
and Γ̃ =

R(ϕ+φ/2+θ)
1

4

(
ηe−2r+1−η 0

0 ηe2r+1−η

)
R>(ϕ+φ/2+θ),

where R(•) =

(
cos • − sin •
sin • cos •

)
is the rotation matrix [37].

Throughout the following, tildes over variables refer to prop-
erties of the state after Λχ has been applied. d and Γ of |ψG〉
can be observed by setting η=1 and θ=0 in d̃ and Γ̃.

The QFI of a single-mode Gaussian state %̃ is [39]:

Fχ(%̃) =
tr[(Γ̃−1∂χΓ̃)2]

2(1 + P̃ 2)
+

2(∂χP̃ )2

1− P̃ 4
+ (∂χd̃)>Γ̃−1(∂χd̃),

(5)
where P̃ = tr(%̃2) is the purity. Directly optimising the QFI
of a Gaussian state for lossy-phase estimation provides sub-
optimal use with homodyne measurement [40]. Because of
this, we optimize information related to the parameter depen-
dence on displacement vector d̃, in the third term of Eq. (5).
For lossy-phase estimation it was shown that this information
is accessible through homodyne detection and thus we seek to
maximise this term by varying the probe |ψG〉.

To do this, the squeezing angle φ should be set such that
∂χd̃ is parallel to the direction of minimum uncertainty in the
output state i.e. aligned with the eigenvector of Γ̃ with small-
est eigenvalue Ṽmin = [e−2rη+(1−η)]/4. A state satisfying
this condition is plotted in Fig.1. In this case, the information
contained in displacement vector D is given by

D :=(∂χd̃)>Γ̃−1(∂χd̃)=‖∂χd̃‖2
/
Ṽmin. (6)

The output can be measured using homodyne detection to pro-
duce a signal which has a FI of D+(∂χṼmin)2/(2Ṽ 2

min) [30],
which shows that D is a quantity which can be accessed with
a practical measurement. Using an adaptive feedback strategy
(e.g. [41]), the squeezing and homodyne angles can be set ar-
bitrarily close to their optimal values. ∂χd̃ = (∂χθ)∂θd̃ +

(∂χη)∂ηd̃ where the two terms are always orthogonal, there-
fore:
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Λ

FIG. 1: Phase-space representation of the transformation of ini-
tial state % to %̃: after passing through the channel Λ with transmis-
sion η and a phase shift of θ. % is squeezed in the optimal direction
aligned with ∂χd̃. The red curve is the homodyne signal when the
phase of the local-oscillator is optimized for the measurement.

‖∂χd̃‖2 = ‖(∂χθ)∂θd̃‖2 + ‖(∂χη)∂ηd̃‖2

= α2[4η2(∂χθ)
2 + (∂χη)2]/4η,

where α is the coherent amplitude of the input state (Fig. 1)
and (∂χθ)

2 and (∂χη)2 appear in the same proportions as in
Qχ (Eq. (4)). It can be observed from Eq. (5) that the QFI
achieved with an unsqueezed coherent state as probe is

D
∣∣
r=0

= 〈n̂〉in[4η2(∂χθ)
2 + (∂χη)2]/η := Sχ, (7)

which limits the best precision achievable using classical
probes with a single pass through Λχ — the standard quan-
tum limit (SQL).

Combining Ṽmin and Eq. (6) we find

D = (〈n̂〉in − nsq)
4η2(∂χθ)

2 + (∂χη)2

η [e−2rη + (1− η)]
. (8)

where α2 = 〈n̂〉in − nsq has been used and nsq = sinh2(r) is
the number of photons contributing to the squeezing of the in-
put state. As 〈n̂〉in grows, D/〈n̂〉in will converge to the quan-
tum limit we have found in Eq. (4) i.e. lim〈n̂〉in→∞D/〈n̂〉in =
Qχ/〈n̂〉in if two conditions are satisfied: First, nsq needs to be
a vanishing proportion of the total number of probe photons
lim〈n̂〉in→∞ nsq/〈n̂〉in =0. Second, nsq needs to be unbounded
with increasing 〈n̂〉in, which will ensure e−2r vanishes. In
Supplementary Material C [33] we describe a state with finite,
and arbitrary, 〈n̂〉in for which Fχ(%)=Qχ, demonstratingQχ
is a saturable upper bound (though not of genuine practical
utility).

Therefore, we have found that there is no trade-off in the in-
formation encoded on a state by the phase and loss of a chan-
nel. This is in contrast to the task of estimating phase and
loss when there is no correlation [42] which displays a neces-
sary trade-off in the precision to which each parameter could
be estimated. Our results also contrast with those reported in
Ref. [43], which assume total energy of a probe state including
any reference or ancilla (which does not expose the sample)
as the resource. With this assumption it was found for the low
photon-number regime that there is a trade-off in the sensi-
tivity of the probe state to either loss or phase. Our choice
of resource (the total optical power incident on the sample) is

relevant when the sample is delicate. The total optical power
in a probe often constitutes a small fraction of the total energy
needed for example to generate the quantum probe.

For finite 〈n̂〉in, D can be optimised by choosing the best
value of nsq. The optimal amount of squeezing is derived in
the Supplementary Material D [33] to be

nsq =

(√
1− 4(η − 1)η〈n̂〉in − 1

)2

4(1− η)
(√

1− 4(η − 1)η〈n̂〉in − η
) , (9)

which results in

D = Qχ
2(η − 1)〈n̂〉in +

√
1− 4(η − 1)η〈n̂〉in − 1

2(η − 1)〈n̂〉in
.

In Fig. 2a the optimal D for a selection of different values of
〈n̂〉in is plotted over η ∈ (0, 1). The range of 〈n̂〉in = 10i, i ∈
{0, 1, ..., 8} scale to large numbers but corresponds to low en-
ergy e.g. 108 photons at λ= 500 nm equates to 4 ×10−11 J.
The plot shows that Gaussian states with modest energies can
provide large precision gains for CPLE.

Probe states for DAE — We now turn to DAEs, which refer
to measurements of absorption which do not exploit informa-
tion about any phase imparted by a sample. Previously, a limit
on QFI was found for transmission estimation where no phase
is imparted by the sample i.e. θ = 0 [17], and Fock states
were identified as optimal for this [18]. This bound applies
equally for DAE since Fock states are invariant under phase
shifts. Since θ is uncorrelated with η and unknown, it can-
not increase the QFI associated with η [31], and therefore the
limit on QFI for DAE is Q

∣∣
∂χθ=0, ∂χη=1

:= Qη . Similarly

Sχ
∣∣
∂χθ=0, ∂χη=1

:= Sη , is the SQL for DAE [18]. However
when a Gaussian probe is used, DAE is inequivalent to CPLE
with ∂χθ = 0 since the probe state will be transformed by
any phase shift present. For instance, the strategy for CPLE
described above using Gaussian states does not work for DAE
as the correct homodyne measurement setting depends on the
phase imparted by the sample — we therefore seek an alter-
native strategy.

Intensity measurements are unaffected by the phase of the
detected light, and therefore provide a way to decouple the ef-
fects of sample absorption and any phase shift. To find useful
strategies for DAE, we consider the statistical information N
contained measurement of the mean intensity which will be
detected 〈n̂〉out =η〈n̂〉in, which can be found most simply us-
ing standard error propagation:

N := 1/Var(η) = (∂η〈n̂〉out)
2 /

Varout(n̂)

= (〈n̂〉in)2
/ [
η2 Varin(n̂) + η(1− η)〈n̂〉in

]
,

(10)

which applies for arbitrary states. Considering only the mean
intensity ensures complex measurement and estimation pro-
cedures are not needed and N plays a role analogous to FI.

Loss reduces the amplitude of a Gaussian state, and so
a natural probe state to consider for DAE is an amplitude-
squeezed Gaussian state, |ψG〉

∣∣
φ=0

. Note that for this state
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FIG. 2: Comparing strategies for CPLE and DAE with their respective quantum limits: Within each plot the red dashed line shows
the SQL and all plots are normalised to the quantum limit Qχ or Qη . Plots a) and b) display the amount of statistical information D and N
encoded onto the displacement vector (mean number of photons) of a squeezed coherent state for CPLE and DAE respectively. The inset shows
that even for very low absorption these states approach the quantum limit for modest energies. Statistical information plotted for varying input
mean photon number operating with the optimal squeezing value presented in a) Eq. (9) and b) Supplementary Material E [33]. c) Amount of
statistical information D (N ) encoded onto the displacement vector of a squeezed coherent state for CPLE (DAE) when α is large. We note
that for a)-c), inset figures display the same y-axis scale as the main plots, whilst having an x-axis scale as labelled at the top of the plot.

Varin(n̂) = 2 tr2 Γ− 3
4 + (〈n̂〉in − nsq)e−2r [44] and tr2 Γ =

O(n2
sq). Asymptotic optimality lim〈n̂〉in→∞N/〈n̂〉in =

Qη/〈n̂〉in can be achieved if nsq is unbounded (to ensure e−2r

vanishes) and also a vanishing proportion of
√
〈n̂〉in. This

ensures that the photon number variance of the input state
contributes negligibly to the denominator of expression on the
second line of Eq. (10). Also shown in Eq. (10) is that in or-
der to maximize N , the photon number variance of the input
should be minimised for a given 〈n̂〉in independently of η. In
Fig. 2b the optimal N for different values of 〈n̂〉in is plotted
over η∈(0, 1). (see Supplementary Material E [33] for the op-
timization). This plot shows that Gaussian states with modest
energies can provide large precision gains for DAE.

Multi-pass strategies — Rather than using non-classical
states, it is sometimes possible to increase precision beyond
the SQL by sending a classical (coherent state) optical probe
through the sample multiple times [34] or by optimising ex-
perimental parameters [45]. Recently it was shown that,
for lossy-phase estimation, multi-pass strategies could obtain
60% of the quantum limit on FI for a given number of photons
incident upon the sample over all passes and for any values of
the phase shift and loss. In Supplementary Material F [33]
we extend this result and show that multi-pass strategies pro-
vide exactly the same benefits for CPLE and DAE as they do
for lossy-phase estimation. This exact correspondence holds
even when lossy components are used to perform the multi-
pass strategy.

Practical application — At present the highest amount of
optical squeezing measured is 15 dB [46] (nsq = 7.4). By
explicitly considering large α we can quantify the quantum
advantage, ∆, squeezing brings to both CPLE and DAE:

∆ = lim
α→∞

N
/
Sη = lim

α→∞
D
/
Sχ =

1

e−2rη + (1− η)
, (11)

observing that the enhancement provided for both DAE and
CPLE is the same and for a fixed sample transmission η de-
pends only on the input squeezing parameter r. The precision

gains which squeezing brings to probe states with large α is
plotted in Fig. 2.c.

For CPLE, Eq. (11) encouragingly indicates that a small
amount of squeezing can substantially increase the precision
of a measurement. Generating and detecting Fock states is
a non-trivial task and as such only low photon number Fock
states have been generated [47, 48]; these states may prove
useful for the measurement of samples which are damaged by
very few photons. The Gaussian probe state we have stud-
ied can be created by the displacement of a squeezed vacuum
state to contain much larger amounts of power [49], benefiting
absorption measurements far beyond the few photon regime.

We highlight Ref. [6] which reported absorption measure-
ments with 10 µW of incident laser light (1013 photons per
second) at 633 nm to detect the presence of single molecules.
Using a balanced photodetector the effective intensity fluctua-
tions in the laser light were reduced to the shot-noise limit.
Using Eq. (11) and taking η to be 0.95, 15 dB of squeez-
ing [50] in this experiment would reduce the contribution to
the mean-squared error (MSE) from fundamental fluctuations
by a factor of 12.5. This is 79% of the advantage provided
by using 1013 photons per second in ideal Fock states. This
would allow an increase in precision whilst maintaining inci-
dent optical power, for example at a level just below the pho-
tobleaching threshold. Strategies using squeezed light in gen-
eral can offer improvements due to other limitations. Exam-
ples include Refs. [51, 52] which introduce a squeezed light
source to tackle the competing interferometric noise contribu-
tions from shot and back-action noise in gravitational wave
astronomy.

As well as reducing the MSE, an alternative benefit for this
quantum strategy is that the same precision can be achieved
with a factor of 12.5 reduction in input intensity. This can
provide an opportunity to increase the frame rate of the sen-
sor, allowing faster dynamics to be observed [53]. In general,
squeezing strategies should target systems that are shot-noise
limited [54] and seek an increase in precision in the range that



5

quantum states of light can provide [55].

Conclusion — Our results further indicate that for estimat-
ing parameters of linear optical transformations with non-unit
transmissivity, the information encoded in the coarse-grained
properties of a state, such as the mean intensity or mean
quadrature value, is very close to the fundamental limit on
the information encoded on an entire state [14, 34]. We antic-
ipate the quantum limit on CPLE and our Gaussian state strat-
egy can be generalized to multiparameter estimation prob-
lems [56] and perhaps even to precision estimation of general-
linear mode transformations.
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K. Banaszek, and I. A. Walmsley, “Experimental quantum-
enhanced estimation of a lossy phase shift,” Nature Photon.,
vol. 4, no. 6, pp. 357–360, 2010.

[11] N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner,
and I. A. Walmsley, “Real-world quantum sensors: evaluat-
ing resources for precision measurement,” Phys. Rev. Lett.,
vol. 107, no. 11, p. 113603, 2011.

[12] H. Cable and G. A. Durkin, “Parameter estimation with entan-
gled photons produced by parametric down-conversion,” Phys.
Rev. Lett., vol. 105, no. 1, p. 013603, 2010.

[13] B. M. Escher, R. L. de Matos Filho, and L. Davidovich,
“General framework for estimating the ultimate precision limit
in noisy quantum-enhanced metrology,” Nature Phys., vol. 7,
no. 5, pp. 406–411, 2011.
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mental generation of multi-photon fock states,” Opt. Express.,

vol. 21, no. 5, pp. 5309–5317, 2013.
[48] K. R. Motes, R. L. Mann, J. P. Olson, N. M. Studer, E. A. Berg-

eron, A. Gilchrist, J. P. Dowling, D. W. Berry, and P. P. Rohde,
“Efficient recycling strategies for preparing large fock states
from single-photon sources: Applications to quantum metrol-
ogy,” Physical Review A, vol. 94, no. 1, p. 012344, 2016.

[49] K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, and
J. Mlynek, “Bright squeezed-light generation by a continuous-
wave semimonolithic parametric amplifier,” Opt. Lett., vol. 21,
no. 17, pp. 1396–1398, 1996.

[50] This level of measured squeezing, reported in in [46], is the
current experimental record. This value shows what is pos-
sible, despite experimental practicalities such as detector ef-
ficiency and mode overlap. . In [46], the total experimental
efficiency achieved was 97.5%. Conversion to decibels from
the squeezing parameter r in Eq. (11) can be performed using
dB = 10 log10(e−2r).

[51] F. Acernese, M. Agathos, L. Aiello, A. Allocca, A. Amato,
S. Ansoldi, S. Antier, M. Arène, N. Arnaud, S. Ascenzi, et al.,
“Increasing the astrophysical reach of the advanced virgo de-
tector via the application of squeezed vacuum states of light,”
Physical Review Letters, vol. 123, no. 23, p. 231108, 2019.

[52] M. Tse, H. Yu, N. Kijbunchoo, A. Fernandez-Galiana, P. Dupej,
L. Barsotti, C. Blair, D. Brown, S. Dwyer, A. Effler,
et al., “Quantum-enhanced advanced ligo detectors in the era
of gravitational-wave astronomy,” Physical Review Letters,
vol. 123, no. 23, p. 231107, 2019.

[53] M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A.
Bachor, and W. P. Bowen, “Biological measurement beyond the
quantum limit,” Nature Photonics, vol. 7, no. 3, p. 229, 2013.

[54] D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke,
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