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We elucidate the mechanism by which a Mott insulator transforms into a non-Fermi liquid metal upon
increasing disorder at half filling. By correlating maps of the local density of states, the local magnetiza-
tion and the local bond conductivity, we find a collapse of the Mott gap toward a V-shape pseudogapped
density of states that occurs concomitantly with the decrease of magnetism around the highly disordered
sites but an increase of bond conductivity. These metallic regions percolate to form an emergent non-
Fermi liquid phase with a conductivity that increases with temperature. Bond conductivity measured
via local microwave impedance combined with charge and spin local spectroscopies are ideal tools to
corroborate our predictions.

Introduction.—The metal-to-insulator transition (MIT)
driven by increasing disorder and the effect of Coulomb
interactions on this transition has been a problem of fun-
damental interest. It is well known that disorder can cre-
ate a transition from a metallic to an insulating state in
both 2D and 3D due to localization effects. In the ab-
sence of interactions, all states are localized in one and
two dimensions for arbitrarily small potential disorder,
while in three-dimensions the MIT occurs at a finite crit-
ical disorder strength [1, 2]. In the presence of Coulomb
interactions, perturbative calculations show an enhance-
ment of localization in all dimensions [3]. However, the
idea that disorder can create an insulator-to-metal tran-
sition (IMT) is relatively new. The first hint of an IMT in
two dimensions due to long-range Coulomb interactions
came from the renormalization group (RG) analysis by
Finkel’stein [4, 5, 6] which showed that the critical in-
dices for the correlation length and time scales become
frequency-dependent and the RG flows take the system
to a strong coupling fixed point. This was followed by
an RG analysis of a two-parameter theory for long-range
Coulomb interactions and disorder in the limit of large
number of valleys that found a quantum critical point
for the IMT in two dimensions. This theory was suc-
cessful in explaining experimental data on thermodynam-
ics and transport in high-mobility silicon metal-oxide-
semiconductor field-effect transistors (Si-MOSFETS) [7].

In the opposite limit of strong on-site repulsion for com-
mensurate filling, we have several examples of Mott in-
sulators [8] in narrow band systems in which electrons
are localized due to strong repulsion with an energy gap
to excitations. The discovery of Mott insulators that can
be driven into metallic or superconducting states upon
doping has opened the field of competing charge-ordered,
spin-ordered, nematic, pseudogap, superconducting and
strange metallic phases. To understand the emergent be-
havior, it is important to separate out the effects of in-
creasing disorder from adding or removing carriers. In
this regard, gate tuning is a useful knob that tunes only

the chemical potential without necessarily adding disor-
der, as distinct from chemical doping.

Previous experiments have observed a power-law sup-
pression of the local density of states upon doping the
Mott insulator Sr3Ir207 with Ru substitution for Ir [9],
which indicates that new states are added at the chem-
ical potential. Ru has been experimentally shown to be
an isovalent substitution in Sr3Ir207, so the IMT in this
system may be a good example of a disorder-induced tran-
sition. Transport measurements help determine whether
the states are localized or extended, and indeed corrob-
orate a metallic state with a finite resistivity extrapo-
lated to T = 0 in the Ru substituted compounds. Theo-
retical methods ranging from inhomogeneous mean field
theory [10], DMFT-based approaches [11–17], quantum
Monte Carlo [18–20], and exact diagonalization studies
[21] of the Anderson-Hubbard model support the presence
of insulator-metal transition (IMT). However, the mecha-
nism behind this transition and the nature of the emer-
gent metallic phase remains unclear. Current research
aims to develop a local picture that elucidates the nature
of this pseudogap transition that is the subject of intense
high resolution experiments in correlated materials [22].

In this Letter, we investigate the tension between two
localizing tendencies: Mott repulsion and Anderson local-
ization in two dimensions at half filling in the Anderson-
Hubbard model, and their roles in driving quantum
phase transitions. We investigate the correlations among
the local maps of the magnetization, density of states,
and the local bond conductivity, for a given realiza-
tion and strength of disorder. We depict our results in
a schematic phase diagram in the interaction-disorder
plane in Fig. 1(a) that is based on our inhomogeneous
mean field results for the Anderson-Hubbard model. It
shows that while disorder and interactions independently
enhance localization and promote an insulating state, act-
ing together results in a novel metallic phase sandwiched
between the Mott insulator at low disorder and a corre-
lated Anderson insulator at high disorder.
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FIG. 1. (a) Interaction- Disorder U–V phase diagram in units of the hopping t; x-axis captures Anderson localization, y-axis is the
Mott MIT, and novel metal at intermediate energies. Relative points in phase space where development of conductivity is analyzed
to create Fig. 3(e) (See Fig. S4). Dashed lines represent cuts (U = 4.0t and U = 0, V = 3.5t with increasing binary disorder fraction)
along which the inverse participation ratio (IPR) is evaluated (b) and (c). IPR ∝ ξ−2

loc where ξloc is the extent of the energy eigenstate.
(d) Full DOS and (e) states about the Fermi energy offset vertically for clarity (right). Spectral data averaged over 40 disorder
realizations for 40×40 square lattice with broadening δ = 0.0075t. (f) Optical conductivity σ(ω) in units of (e2/h̵) and ωσ(ω) (inset)
at various disorder fractions. Dotted black line in inset highlights a finite dc conductivity for higher disorder, or correspondingly a
linear behavior of ωσ(ω). (g) dc conductivity as a function of temperature for 30×30 lattice at U = 4.0t and V = 3.5t. The data in (f)
and (g) are averaged over 8 disorder realizations.

Specifically, our two key new results are:

(1) Our earlier study [10] showed that disorder adds
spectral weight within the Mott gap resulting in a
V-shaped density of states [also shown in Fig. 1(d)].
Here we calculate the dc conductivity and show
that, remarkably, the conductivity increases with
increasing fraction of disordered sites and also in-
creases with temperature for a fixed disorder frac-
tion [Fig. 1(g)]. Interestingly, this emergent metal-
lic phase shows a non-Drude response in the optical
conductivity [Fig. 1(f)].

(2) Local dc conductivity profiles show the formation of
conducting bonds in regions surrounding disorder
sites, and the emergence of percolating metallic net-
works.

Model.—The Hamiltonian for the Anderson-Hubbard
model is given by

H = −t ∑
⟨i, j⟩,σ

(c†
iσc jσ+H.c.)+U∑

i
ni↑ni↓+∑

i,σ
(Vi −µ)niσ,

(1)

where c†
iσ(ciσ) is the electron creation (annihilation) op-

erator at site i with spin σ, and niσ ≡ c†
iσciσ. t repre-

sents the hopping amplitude between nearest neighbor
sites, and U is the onsite electron-electron repulsion. Vi

the onsite disorder potential, treated as binary-alloy dis-
order: p fraction of randomly chosen sites have Vi = V ,
and 1−p fraction of sites have Vi = 0. The chemical poten-
tial µ is adjusted to achieve global half filling. The Hub-
bard interaction term U is treated at the Hartree-Fock
level in terms of the site-dependent spin and charge den-
sity fields. This numerical method has the advantage that
it treats the disorder potential exactly, and thus captures
the localization physics due to the inhomogeneous poten-
tial profile accurately [23].

Global properties.—With increasing disorder, the DOS
N(ω) shows an evolution from a Mott gapped insula-
tor to a gapless phase leading to a V-shaped pseudogap
at the chemical potential [Fig. 1(d,e)] [9, 10]. To get
some idea of whether these in-gap states are localized
or extended, we plot the inverse participation ratio (IPR)
≡ ∑r iα

∣ψα(r i)∣4 ∝ ξ−2
loc, where ψα is the real-space wave-

function associated with eigenenergy α and ξloc is its as-
sociated localization length (zero IPR value corresponds
to infinitely delocalized state). In-gap states at low disor-
der fraction are bound states that are localized, as shown
by the large value of their IPR shown in Fig. 1(b). As dis-
order regions grow and extend across the system, energy
eigenstates become increasingly delocalized, depicting a
transition from a Mott insulator to a metallic state. The
IPR and derivative results that follow agree with previ-
ously analyzed metallic phases and are robust in the in-
finite system size limit as seen by finite size scaling pro-
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FIG. 2. (a, b, c) Local charge density, conductivity, and antifer-
romagnetic (AFM) order parameter (⟨m†

i ⟩ ≡ (−1)xi+yi ⟨Sz,i⟩) as
a function of disorder fraction. Data averaged over 40 random
disorder realizations at V = 3.5t, U = 4.0t, T = 0.01t for 40×40
lattice. (b) Local dc conductivity distribution normalized by the
total number of sites N, extrapolated from the low frequency
conductivity. (d) Site disorder with Gaussian broadening and its
correlation with local staggered magnetization; shading shows
the standard deviation.

vided in Supplemental Material [Fig. S3(a)].
To understand this emergent phase with a finite den-

sity of states at the chemical potential, we evaluate the
optical conductivity σ(ω), shown in Fig. 1(f). Starting
with a finite gap at low disorder, we observe the gap
closing with increasing disorder, consistent with previ-
ous theoretical studies [24, 25]. As the system develops
an increasing low-frequency conductivity, the behavior of
σ(ω) is non-Drude, with a peak in the conductivity at
a nonzero frequency that moves toward lower frequency
with increasing disorder. Rather remarkably, we observe
a nonzero dc conductivity that grows with increasing dis-
order fraction as depicted in low frequency behavior of
ωσ(ω) in the inset in Fig. 1(f). Beginning at 30%, the lin-
ear behavior of σ(ω) allows us to extrapolate a nonzero
dc conductivity σdc [Fig. 1(g)]. A finite σdc indicates the
onset of a metallic phase in which the conductivity grows
with increasing disorder. Similar enhancement of the con-
ductivity was found for uniform box potential disorder
[−V ,+V ] [24–26], indicating that the emergence of the
metallic phase is ubiquitous.

Local properties.—Insight into how metallicity arises as
a result of the competition between disorder and inter-
actions is captured by the distribution of local quanti-
ties: antiferromagnetic (AFM) order parameter ⟨m†

i⟩ ≡(−1)xi+yi ⟨Sz
i ⟩, LDOS, and transport characteristics σ

µµ
i j ,

as we discuss below.

(a) Local magnetization.—For positive potential V , it be-

U/t

V/t

Anderson Localized

Correlated Anderson 
Ins.

M
ott Ins.

Anderson-Hubbard phase diagram

Pseu
do

ga
p M

eta
l

0
0

S4a

S4c

S4b

S4d

ω − µ

t

N
(ω

)

σ
d
c

T/t

σ
µ
µ
(ω

) ω
σ

µ
µ

ω − µ

t

ω/t

U = 4.0t; V = 3.5tIPR: U = 4.0t

IPR: U = 0.0tU/t

V/t
ω − µ

t

(a) (b)

(c)

(d) (e)

(f) (g)

D
is

or
de

r%
D

is
or

de
r%

P
ro

ba
bi

lit
y

Local Cond.
(b)

(d)

⟨m
† i⟩2

Vi/V

AFM vs. DisorderLocal AFM Order
(c)

⟨m†
i⟩

σdc

ω − µ

t

ω − µ

t

N
(ω

)
N

(ω
)

15% Disorder 25% Disorder

35% Disorder 45% Disorder

(a) (b)

(c) (d)

P
ro

ba
bi

lit
y

(a)

⟨ni⟩

Local Density ⟨m†
i⟩

⟨ni⟩

Vi

15% Disorder 35% Disorder

IP
R

:
U

=
0.

0t
IP

R
:
U

=
4.

0t

(a)

(b)

(c)

(d)

(e)

(f)

⟨m†
i⟩

σ̄dc

(e)
Cond vs. AFM

LDOS vs. AFM

⟨m†
i⟩2

⟨m†
i⟩2

FIG. 3. (a-d) Inhomogeneity in LDOS and dependence on
⟨m†

i ⟩2. Data collected from 40 random disorder realizations on
a 40 × 40 lattice, (U ,V) = (4.0t,3.5t), (e) Average local bond
conductivity as a function of ⟨m†

i ⟩ taken from 8 disorder real-
izations for 15%, 25%, 35%, 45% on lattices of sizes 26× 26.
V is not strong enough to eliminate ordering in the red curve
(U = 4.0t;V = 2.3t), so the local AFM remains highly ordered
≥ 0.6. See Fig. S4 for full conductivity distribution vs ordering.

comes energetically unfavorable to occupy the disorder
sites, leading to a reduction in the local moment and
charge density on disorder sites. The bimodal charge
density distribution shown in Fig. 2(a) depicts disorder
sites with relatively fixed mean occupation while non-
disordered sites slowly transition away from unit filling,
initially only impacting nearest neighbor sites. The spin
ordering distribution echoes this nearest neighbor to dis-
order behavior. In Fig. 2(c), the distribution of AFM or-
der is sharply peaked close to the maximum value at
low disorder fractions, and becomes broader and shifts
toward zero as the fraction increases, indicating a tran-
sition from a uniform AFM phase toward a nonuniform
paramagnetic phase. Fig. 2(c) shows a reduction of the
local moment on neighboring sites as the occupation in-
creases beyond unit filling: Sites are screened from the
effects of disorder at low disorder fraction, seen by the
disparate peak and slightly perturbed sharp AFM profile
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for 15%. As the density of disorder in local regions grows,
more charge occupies neighboring sites and neutralizes
spin ordering. We correlate the magnetic ordering with
local disorder density by smoothing the original disorder
potential to create an effective disorder profile [Fig. 2(d)].
At low fraction ⟨m†

i⟩2 decreases linearly with the degree
of disorder, so initially Vi only has localized effect on in-
teracting sites. As the disorder throughout the full lattice
grows, the impact becomes increasingly non-local where
sites away from disorder become paramagnetic.

(b) Local bond conductivity.—The distribution of local
conductivities (current-current correlator between bond
(i, j) and all (k, l) bonds) in Fig. 2(b) shows that mostly
clean systems have a local dc conductivity distribution
that is sharply peaked near zero, as expected for a Mott
insulator. As disorder increases, the distribution broad-
ens and the mean increases. Thus bonds become increas-
ingly conducting and sites increasingly paramagnetic as
the system becomes more disordered.

(c) Inhomogeneous LDOS.—The magnetization and con-
ductivity hint at an inhomogeneous nature of the emer-
gent disorder-driven metal. We ask how does this local
non-uniformity promote charge transport in a Mott insu-
lator. The first insight into how a metal emerges with
increasing disorder comes from local spectroscopic analy-
sis. Fig. 3 depicts the local density of states averaged over
sites with different ranges of magnetic order. For low dis-
order fraction [Fig. 3(a)], regions with high AFM order
exhibit a Mott-gap around the Fermi energy with almost
no states below EF . For moderate disorder, [Fig. 3(b,c)]
show that Mott physics is preserved in magnetically or-
dered regions, while increasingly disordered regions have
enhanced spectral weight within the Hubbard gap with
the formation of a V-shaped pseudogap. Such spectro-
scopic dependence on disorder has been observed exper-
imentally in Mott insulating materials, where the pseu-
dogap behavior is enhanced near impurity atoms [9].

(d) Correlation between local moment and conductivity.—
Extending the previous discussion on the correlation of
eigenstate delocalization and closing spectral gap with re-
duced magnetic ordering, to low frequency conductivity in
Fig. 3(e), we show that transport and magnetic order are
anti-correlated: The less magnetically ordered the region,
the more conducting. Introducing few disorder sites de-
creases the magnetization and drives charge mobility on
these sites, see Fig. 3(e). Maximal conductivity occurs at
nonzero magnetic ordering in each curve, suggesting that
weak correlations are crucial for promoting mobility.

In Fig. 4 we present a real space picture of two repre-
sentative disorder realizations at 15% and 35% to show
how disorder breaks down an initial Mott insulating sys-
tem. Fig. 4(a-c) provide a spatial map of the random dis-
order potential and its effect on charge and spin.

To relate disorder and interactions with their effects
on the local magnetization and bond conductivity in real-

space, we overlay the magnetization profile for a rep-
resentative disorder realization with the most conduct-
ing bonds (shown in red) in Fig. 4(d). The contrast
with the non-interacting system [Fig. 4(e)] is remarkable:
While disorder reduces conduction as expected in the non-
interacting case, the behavior is quite the opposite for
the interacting system, where one observes pockets of en-
hanced conductivity localized around a small fraction of
disorder sites [p = 15%, Fig. 4(d, left)], expand to a perco-
lating cluster at larger disorder fraction [p = 35%, Fig. 4(d,
right)].

(e) Formation of percolating metal.—To exhibit the per-
colative nature of transport, we construct a network
with each site as a node and ρ i j = 1/σi j as the bond
weights. The minimum series resistance ρmin to con-
nect the two ends of the system by the shortest path is
obtained by a weighted path analysis of the conductivity
graph[Fig. 4(f)]. The addition of 10% disorder leads to a
factor of 2 decrease ρmin while adding 30% disorder leads
to a decrease by nearly two orders of magnitude. Above
30–35% disorder the cost remains constant as expected
above the percolation threshold. The percolative nature
of disorder we have characterized adds to current theo-
retical descriptions [27–30] and experimental characteri-
zation of disorder in materials [31].

In conclusion, our results capture the previously
unexplored local properties of the intermediate pseu-
dogapped metallic phase in the half-filled Anderson-
Hubbard model. This work illuminates the interplay be-
tween disorder and interactions in the simplest fermionic
model, and provides an avenue for understanding how
non-Fermi liquid behavior arises at the microscopic level.

Our model, which does not include long-range Coulomb
interaction, is particularly applicable to disordered sys-
tems with isovalent substitutions. The suppression of
magnetism in regions near dopants, and subsequent de-
velopment of in-gap states, which we observe in our re-
sults, are still expected in the presence of long-range in-
teraction. Although our work does not address the effects
of Coulomb gap on the emergent percolation network, we
speculate that these metallic channels, identified in our
local conductivity maps, play an important role in the low
energy transport properties of the system.

The conductivity maps provide predictions for increas-
ingly powerful spatially resolved spectroscopic techniques
such as microwave impedance microscopy, 4-probe STM,
and LC-AFM, which only recently been used to study local
conductivity profiles on 100ṅm down to atomic resolution
[32–34]. Recent breakthroughs in cold atom experiments
now allow for resistivity and optical conductivity exper-
iments, where the highly tunable nature of these exper-
iments provide an ideal testing environment for the re-
sults we present here [35].

We acknowledge J. O’Neal for his significant work de-
veloping the MFHF solver and DOS analysis methods and
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FIG. 4. (a,b,c) Real space profile for two representative disorder realizations (15%, 35%) and corresponding charge density and AF
magnetization for a 30×30 square lattice and U = 4.0t,V = 3.5t. (d) Local staggered magnetization map superimposed with local bond
conductivities (red lines), obtained at low frequency and low temperature (ω = 0.01t,T = 0.005t) for two disorder realizations. Lines in
35% (right) are roughly 10–20 times more conducting to similar intensities in 15% (left). (e) Recreation of figures (d) with interactions
turned off and identical disorder profile. (f) Shortest distance path for conductivity network constructed from the conductivity profile.
Edges between sites (i, j) assigned weight proportional to 1/σi j . Path weight/distance is in arbitrary units but proportional to

N2/σi j , normalized to minimum path weight (50% for interacting, 5% for noninteracting cases). Constructed from L paths for each
L×L random disorder realization (L = 30, and 10 disorder profiles).
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