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Abstract 
 
Although metamaterials or metasurfaces consisting of patterned subwavelength structures have 

been widely employed for thermal emission control, the collective behavior of the emitter arrays 

in a metasurface still remains unclear. Here, based on quasi-normal mode theory, we derive a new 

scale law to elucidate the far-field thermal emission from a metasurface composed of densely 

packed plasmonic nanoemitters. The tight binding method is used to approximate the collective 

resonant mode of the emitter array. Due to in-phase near-field interaction, the thermal radiation 

from a single emitter in a metasurface is suppressed by its adjacent emitters. We find that the 

overall far-field thermal radiation from a metasurface can be either positively or negatively 

correlated with the packing density of the emitters, depending on the mode properties of the single 

emitter. This new scale law thus serves as a general guideline for designing metasurfaces with 

desired thermal emission properties. 
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Thermal radiation, which physically originates from the electromagnetic waves emitted from 

thermally induced random currents in materials, plays a vital role in many fields, such as energy 

conversion 1–6, infrared sensing7,8, radiative cooling9–14 and thermal management15–18. In recent 

years, metasurfaces consisting of an array of subwavelength plasmonic thermal emitters have 

emerged as an important platform to actively control and manipulate far-field thermal radiation19–

27. Although the far-field thermal radiation from a single plasmonic thermal emitter is well 

comprehended under the framework of Quasi-normal mode (QNM) theory20,28 and coupled mode 

theory29,30, the collective behavior of the closely packed nanoscale plasmonic emitters in a 

metasurface remains largely unknown.  

Here we develop a new scale law to predict and design the thermal emission from a metasurface 

based on QNM theory and the tight-binding (TB) method. In this new theory, the thermal emission 

from one individual sub-wavelength emitter in a metasurface is described by QNM theory, 

whereas the TB method is employed to quantify the red shift of the thermal emission spectrum due 

to the interactions between the emitters. Based on this new scale law, we can quantitatively 

describe the suppression of thermal emission from a single plasmonic emitter when coupled with 

adjacent emitters in the same phase. We find that depending on the QNM properties of a single 

emitter, the overall far-field thermal radiation from the metasurface can be either positively or 

negatively correlated with the packing density of the emitters. We also experimentally verify the 

new scale law by fabricating and measuring plasmonic metasurfaces made by gold nanorods. 

Hence, this new scale law could perform as a general theoretical framework for designing 

metasurfaces with desired thermal emission properties, which has important implications in 

thermal energy conversion, thermal management and infrared sensing. 
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QNMs, which are the eigen solutions to the source free Maxwell equation in the non-Hermitian 

system31–33, were introduced to quantitatively describe the thermal radiation from a single 

plasmonic thermal emitter. The TB method was first introduced to calculate the electronic band 

structure based upon the superposition of wave functions for isolated atoms34,35. Here we adopt 

the same methodology to account for the modification of the single emitter’s QNM inside the array, 

provided that the electric field of a plasmonic emitter is highly confined around its surface. Due to 

the translational symmetry of the plasmonic emitter array in a metasurface (FIG. 1), the collective 

QNM of the entire emitter array should follow the form of Bloch’s wave. Therefore, the QNM is 

a periodic function of the lattice constant of the emitter array 𝑹" = 𝑙%𝑃%𝒆(𝒙 + 𝑙+𝑃+𝒆(𝒚 , which 

are 	𝑬𝒏(𝜔(𝒌), 𝒓) =
6
√8
∑ 𝒂𝒏(𝑹𝒍, 𝒓)𝑒=𝒌∙𝑹?" , 𝑯𝒏(𝜔(𝒌), 𝒓) =

6
√8
∑ 𝒃𝒏(𝑹", 𝑟)𝑒=𝒌∙𝑹𝒍" . 𝑙%  and 𝑙+  here 

are the integers. N is the number of emitters considered. The coefficients 𝒂𝒏(𝑹", 𝒓) and 𝒃𝒏(𝑹", 𝒓) 

are two sets of Wannier functions which only depend on 𝒓 − 𝑹".  

 

Since the QNM of a plasmonic emitter is highly confined around its surface, we assume that the 

QNM of the entire emitter array behaves similarly in the vicinity of each emitter as it does in the 

case of a standalone single emitter. Therefore we can use the QNM of a single emitter 

{𝒆E(𝜔E, 𝒓), 𝒉E(𝜔E, 𝒓)}  as the approximation of 𝒂𝒏(𝒓 − 𝑹")  and 𝒃𝒏(𝒓 − 𝑹") , namely: 

𝑬E(𝜔(𝒌), 𝒓) =
6
√8
∑ 𝒆E(𝜔E, 𝒓 − 𝑹")𝑒=𝒌∙𝑹?" ,  𝑯E(𝜔(𝒌), 𝒓) =

6
√8
∑ 𝒉E(𝜔E, 𝒓 − 𝑹")𝑒=𝒌∙𝑹?" . Here, 

{𝒆E(𝜔E, 𝒓), 𝒉E(𝜔E, 𝒓)} is the solution to the source free Maxwell equation for a stand-alone 

emitter: 

∇ × 𝒆E(𝜔E, 𝒓) = 𝑖𝜔E𝜇L𝒉E(𝒓)	
∇ × 𝒉E(𝜔E,𝒓) = −𝑖𝜔E𝜀N(𝜔E, 𝒓)𝒆E(𝒓)		, 

(1) 
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where 𝜀N(𝜔E, 𝒓)  is the permittivity function for the emitter. In order to satisfy the boundary 

conditions of Maxwell’s equation, the coefficients of the Bloch-form QNM of the metasurface 

should be modified as the following form: 𝒆O𝒏(𝜔E, 𝒓 − 𝑹") = 𝒆E(𝜔E, 𝒓 − 𝑹")𝛾(𝜔E, 𝒓 − 𝑹") , 

𝒉Q𝒏(𝜔E, 𝒓 − 𝑹") = 𝒉E(𝜔E,𝒓 − 𝑹")𝛾(𝜔E, 𝒓 − 𝑹") , where 𝛾RS," = 𝛾(𝜔E, 𝒓 − 𝑹") =

1 ∑ 𝜀N(𝜔E, 𝒓 − 𝑹")"⁄  and 𝜀N  here is defined inside the repeating unit cell indexed by the lattice 

constant V𝑙%, 𝑙+W. Thus, the new Bloch-form QNM satisfies the continuous boundary conditions at 

the interface of the emitter and the background material. 

Substituting the QNM of the entire emitter array into the source-free Maxwell equation 

∇ × 𝑯E(𝒓) = −𝑖𝜔(𝒌)𝜀X(𝜔(𝒌), 𝒓)𝑬E(𝒓), we have 

Y
1
√𝑁

∇ × 𝒉E(𝜔E,𝒓 − 𝑹")𝑒=𝒌∙𝑹?𝛾RS,"																							
"

 

=
1
√𝑁

Y𝑒=𝒌∙𝑹?𝛾RS,"V−𝑖𝜔E𝜀N(𝜔E, 𝒓 − 𝑹")𝒆E(𝒓 − 𝑹")W
"

 

				=
1
√𝑁

Y−𝑖𝜔(𝒌)𝜀X(𝜔(𝒌), 𝒓)𝒆E(𝜔E, 𝒓 − 𝑹")𝑒=𝒌∙𝑹?𝛾RS,"		.
"

 

(2) 

Note that 𝜀X(𝜔(𝒌), 𝒓) is the permittivity function of the emitter array which is related to the single 

emitter permittivity function by 𝜀X(𝜔, 𝒓) = ∑ 𝜀N(𝜔, 𝒓 − 𝑹")" . Now we obtain the new equation 

between the modified resonant frequency 𝜔(𝒌) and the resonant frequency of the single emitter 

𝜔E: 

 

Y𝑒=𝒌∙𝑹?𝛾RS,"𝜔E𝜀N(𝜔E, 𝒓 − 𝑹")𝒆E(𝜔E, 𝒓 − 𝑹")
"

=Y𝑒=𝒌∙𝑹?𝛾RS,"𝜔(𝒌)𝜀X(𝜔(𝒌), 𝒓)𝒆E(𝜔E, 𝒓 − 𝑹")
"

. 

(3) 
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Multiplying both sides of Equation (3) with 𝒆E(𝜔E, 𝒓 − 𝑹"\) and integrating over the whole emitter 

array volume, we get: 

Y]𝑑𝑟_𝑒=𝒌∙𝑹?𝛾RS,"𝜔E𝜀N(𝜔E, 𝒓 − 𝑹")𝒆E,"𝒆E,"\ =
"

Y]𝑑𝑟_𝑒=𝒌∙𝑹?𝜔(𝒌)𝛾RS,"𝜀X(𝜔(𝒌), 𝒓)𝒆E,"𝒆E,"\
"

			, 

(4) 

where 𝒆E," = 𝒆E(𝜔E, 𝒓 − 𝑹"). If the distance between adjacent emitters is not significantly smaller 

than the lateral dimension of the emitters and the index 𝑙′ is set to be (0,0) or 0, then the left-hand 

side (LHS) of Equation (4) is reduced to ∑ ∫𝑑𝑟_𝑒=𝒌∙𝑹?𝛾RS,"𝜔E𝜀N(𝜔E, 𝒓 − 𝑹")𝒆E,"𝒆E,"\ ="

∫ 𝑑𝑟_𝛾RS,L𝜔E𝜀N(𝜔E, 𝒓)𝒆E,𝟎𝒆E,𝟎 . Finally, the modified resonant QNM frequency of the emitter 

array can be calculated by solving the equation: 

Y]𝑑𝑟_𝑒=𝒌∙𝑹?𝛾RS,"𝜔(𝒌)𝜀X(𝜔(𝒌), 𝒓)𝒆E,"𝒆E,"\
"

= ]𝑑𝑟_𝛾RS,L𝜔E𝜀N(𝜔E, 𝒓)𝒆E,𝟎𝒆E,𝟎		. 

(5) 

The index l only needs to run over the nearby emitters to obtain the accurate result. If we only 

consider the coupling effect from the nearest emitters, the modified resonant frequency for the 2D 

array of emitters in a metasurface can be calculated as follows: 

𝜔(𝒌) =
𝐼LN

𝐼LX + 2𝑐𝑜𝑠(𝒌 ∙ 𝑹L)𝐼6,%X + 2𝑐𝑜𝑠(𝒌 ∙ 𝑹L)𝐼6,+X
𝜔E			. 

(6) 

The integral 𝐼"N = ∫ 𝑑𝑟_𝑒=𝒌∙𝑹?𝛾RS,"𝜀N(𝜔E, 𝒓)𝑒E,𝟎𝑒E," , 𝐼"X = ∫𝑑𝑟_𝑒=𝒌∙𝑹?𝛾RS,"𝜀X(𝜔(𝒌), 𝒓)𝑒E,𝟎𝑒E," . 

The integral 𝐼6,%X  and 𝐼6,+X  are mode overlapping terms from the adjacent emitters in the x-direction 

and y-direction respectively. Equation (6) could be solved iteratively. If the mode overlapping 

terms 𝐼6,%X  and 𝐼6,+X  are small as compared to the zero-order coupling term 𝐼LX, then 𝜔(𝒌) = 𝜔 =
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𝜔E𝐼LN 𝐼LX⁄ . In this case, the resonant frequency has no dispersion with respect to the lattice 

momentum k.  

 
FIG. 1. Schematic of an array of resonant thermal emitters in a plasmonic metasurface.   

 

For a metasurface made from an array of plasmonic emitters with Px and Py as the periodicities in 

the x- and y-directions, we assume that there exists a unit cell A including N+1 emitters, where 

when the center emitter is thermally excited, the rest of N emitters are coupled to it, and the 

coupling of the emitters outside this unit cell can be neglected. We follow the same mathematical 

derivation in our previous work28 to rewrite the far-field thermal radiation from the unit cell. As 

an approximation, we use the QNM of a single emitter to calculate the coupling strength in the 

emitter array. The modification of the resonant frequency is addressed by the TB method. We can 

express the far-field thermal radiation from one emitter inside the array in terms of the fractional 

losses 𝐷i,𝐷j  and 𝐷k  from the single emitter’s QNM profile yet at the modified resonant 

frequency 𝜔.  
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(7) 

                   

where , and 

 P and F are two imperfection factors that each has a value between 

0 and 1. Here 𝐸jm  is the QNM excited inside the ith emitter. 𝜙k(𝜔L) is the reduced heat flow, and 

the overall radiative heat flux can be estimated as Φk = ∫ pR
qr
Θ(𝜔, 𝑇) u6

j
𝐿(𝜔)𝜙k(𝜔L)w, where 

Θ(𝜔, 𝑇)  is the Planck term, 𝐿(𝜔)  is the Lorentzian lineshape function 𝐿E(𝜔) =

xy(Rz){

xy(Rz){|(}~(RS)�R){
 36. The relative magnitude of 𝐷i  and 𝐷jm  is determined by the coupling 

strength of the center emitter and the ith emitter. For two emitters to be coupled, the excitation of 

the QNM in one emitter needs to effectively invoke the same QNM in the other emitter. To 

quantitatively investigate the coupling strength between two adjacent emitters placed in the near 

field, we can integrate the QNM field overlapping as 

 𝑓E(𝑟) = ∫𝑑𝑟′_𝐸0(𝑟ʹ)†𝐸𝑛(𝑟ʹ − 𝑟𝑛) ∫𝑑𝑟′_𝐸0(𝑟ʹ)†𝐸0(𝑟ʹ)⁄ , where 𝐸L and 𝐸Eare the electrical fields of 

the QNMs of the center emitter and the nth emitter respectively, and 𝑟E is the location of the nth 

emitter center. Thus, the relative intensity of the QNM field incurred inside the neighboring 

emitters can be evaluated. We further introduce the effective number of emitters coupled 
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(8) 

to calculate the far-field thermal radiation from one emitter in the array.  

 

Under the electric quasi-static approximation for a plasmonic emitter, the imperfection factors P 

and F approach unity28. By utilizing the effective number of emitters coupled, we can get 

∑ 𝐷jm = 𝑁~��𝐷i= . Finally, the far-field thermal radiation from one emitter inside the array becomes 

             

(9)     

where 𝛽 = ��
��

.  Depending on the coupling strength of the plasmonic emitters, there exist three 

types of scaling behaviors for the far-field thermal radiation as follows. (i) When the plasmonic 

emitters are in the overcoupling regime37,38, the QNMs of individual emitters are in the same phase 

and intensity. Hence Neff  approaches N as indicated by Equation (8), and the total thermal radiation 

from (N+1) such plasmonic emitters inside the unit cell is 𝜙k,X�X�"(𝜔) =
�(8|6)�

V(8|6)�|6W{
∝ 6

8|6
. Thus, 

it indicates that the total thermal radiation from overcoupled plasmonic emitter array will be 

inversely proportional to the packing density. (ii) When the plasmonic emitters are in the non-

coupling regime, the QNMs of individual emitters are in uncorrelated phase, hence Neff becomes 

0. The total thermal radiation from such an uncoupled plasmonic emitter array is 𝜙k,X�X�"(𝜔) =

�(8|6)�
(�|6){

∝ (𝑁 + 1). This implies that the total thermal radiation is now proportional to the packing 

density of the plasmonic emitter array. (iii) When the coupling between adjacent plasmonic 

emitters leads to the opposite phase for their QNMs, Neff could become a negative value (see 

Supplemental Materials), and the total thermal radiation from such a plasmonic emitter array is 

( )
( )( ) ( )( )2 2

4 4 ,
1 1 1
E

eff E eff

D D

N D D N

bf w
b

¥
¥

¥

= =
+ + + +
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able to deliver superior power as compared to the conventional uncoupled plasmonic emitter 

array37,38: 	𝜙∞,X�X�"(𝜔) =
�(8|6)�

�V8���|6W�|6�
{ >

�(8|6)�
(�|6){

= (𝑁 + 1)𝜙k,�E����"~p . It should be noted 

that the cases in (i) and (iii) arrive at the same scaling behaviors as reported in the previous work37, 

which are referred to as the “superradiance” and “subradiance” effects, respectively. For the cases 

other than the aforementioned three scenarios, the thermal radiation from one emitter inside the 

array is always suppressed, compared with the thermal radiation from the stand-alone single 

emitter, ��
(�|6){

  (see Supplemental Materials). As the distance between adjacent emitters decreases, 

the thermal emission from one emitter inside the array 𝜙k is continuously suppressed, while the 

packing density increases simultaneously. If the decreasing rate of 𝜙k is larger than the increasing 

rate of the packing density, the total thermal radiation from the unit cell will be positively 

correlated with the packing density. Otherwise, the total thermal radiation will be negatively 

correlated with the packing density.  

 

To verify this new scale law, we theoretically and experimentally investigate the far-field thermal 

radiation from metasurfaces consisting of gold nanorod arrays. Each nanorod emitter has a 

rectangular shape with 2.5 microns in length, and 70 nm by 80 nm in cross-section area. In the 

experiment, the nanorod emitter array is placed on a substrate which is designed to reflect all the 

infrared radiation to the upper space for the measurement purpose. The substrate is composed of a 

150 nm thick alumina layer and a 50nm thick aluminum layer deposited on a SiO2 thermal oxide 

wafer. The spatial distribution function of the electrical field intensity around a single nanorod 

emitter with and without the substrate is plotted in Fig. 2(a) for the first resonance frequency, and 

the corresponding QNM field profile is shown in the inset of Fig. 2(a). The exponential decay of 
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electric field intensity leads to a fast-descending coupling strength and effective number of emitters 

coupled to the center one with respect to the distance between adjacent emitters, as shown in Fig. 

2(b). The coupling strength can vary when emitters are aligned in different directions. In this case, 

the coupling strength in the x-direction (shoulder-to-shoulder) is stronger than that in the y-

direction (head-to-head) because of the dipole-like QNM profile. Also, the coupling strength is 

weakened when the emitter is placed on the high-index substrate as shown by the blue curve in 

Fig. 2(a). The weak coupling makes it difficult to observe the subradiance effect or reach the 

superradiance limit. For this QNM, the value of 𝛽 is calculated to be 0.11 by the frequency-domain 

finite element method, and the reduced radiative heat flow 𝜙k at the resonant frequency from the 

stand-alone nanorod emitter is 0.36. By normalizing to the blackbody limit28 Φ�� = ∫ pR
qr
Θ �qr

�{
�, 

the emissivity of the metasurface at the resonant frequency can be calculated.  



11 
 

 

FIG. 2. (a) Electric field intensity around a single nanowire emitter with and without the substrate. Inset: 
corresponding QNM field profile. (b) Coupling strengths between two emitters in the x- and y-directions, and 
corresponding effective number of emitters coupled to the emitter due to the x-direction coupling. (c) 
Thermal emission from a single emitter in the array at Py=3.5 µm but different Px. (d) Corresponding 
emissivity of the metasurface (gold nanorod array), where the total thermal emission is normalized to 
blackbody radiation. 

 

Here we first investigate the suspended nanorod emitter array in vacuum where Py = 3.5 µm but 

Px varies. In Fig. 2(c), the predicted reduced radiative heat flow from one emitter inside the array 

is plotted in the blue curve. The corresponding emissivity is plotted in Fig. 2(d). The maximum 
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emissivity of 0.72 is achieved when Px is around 500 nm. To validate our theory, we directly 

calculate the far-field thermal radiation from the metasurface using the Wiener chaos expansion 

(WCE) method22,39. The direct calculation and the prediction from the new scale law show good 

agreement, as shown in Figs.2(c) and (d). 

 

FIG. 3. (a) SEM image of the nanorod emitter array when Py = 2.7µm and Px = 0.5µm.  (b) Emission spectra 
of a nanorod emitter array when Py is fixed to be 3.5µm but Px varies, and (c) when Px is fixed to be 0.5µm 
but Py varies. The color bar on the right represents the emissivity of the nanorod emitter arrays. 

 

 

We experimentally measure the emissivity of metasurfaces made from the nanorod emitter arrays, 

where the emissivity is indirectly evaluated as the absorptivity according to the Kirchhoff’s law 

(see Supplemental Materials). The scanning electron microscopy (SEM) image of the fabricated 

nanorod emitter arrays is shown in Fig. 3(a). For Py = 3.5 µm, the measured emission spectra with 

varied Px are plotted in Fig. 3(b).  Indeed, the emissivity increases monotonically with the packing 

density as shown by both the experiment results and the theoretical prediction in Fig. 4(a), and the 

maximum emissivity point is pushed to be around Px = 100 nm. The overall emissivity is also 

larger than that without the substrate. The decrease of the mode coupling strength in the existence 

of a high-index substrate leads to larger thermal emission from the individual emitter at the same 
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packing density, thereby resulting in a smaller optimized periodicity value and a larger maximum 

emissivity as compared to the case in vacuum (Fig. 2(d)). There is a red shift of the resonant 

frequency of the nanorod emitter inside the array when Px decreases (Fig. 4(c)). The new theory 

developed in this work is utilized to calculate the frequency shifting (Fig. 4(d)). Our experimental 

results agree well with our new theory. 

  

To reach the “turning point” of the correlation between the metasurface emissivity and the nanorod 

packing density, we can further increase the coupling strength between the emitters by shrinking 

the periodicities. Here we use the other nanorod emitter array pattern where Px is fixed to be 0.5 

µm such that the coupling in the x-direction is still strong, but Py varies. The corresponding 

emission spectra are shown in Fig. 3 (c). In Fig. 4(b), an optimized periodicity is found to be around 

Py = 2.75 µm as predicted by the new scale law. The emissivity of the metasurface keeps increasing 

with the increased packing density until Py reaches 2.75 µm. After passing the optimized point, 

the overall emissivity decreases with increasing the packing density. An optimized point reaches 

at Py = 2.8 µm which gives the emissivity of 0.83. When Py is further reduced, the emissivity 

quickly decreases. The discrepancies between theory and experiment in Fig. 4 are attributed to the 

following reasons. First, in QNM theory, we only consider the contribution of dominant resonant 

modes. The non-resonant component of the radiation field is treated as background noise36. Second, 

the nanorod roughness and the small variations of the nanorod sizes (~20 nm in the length direction 

and ~5 nm in the width direction) also contribute to the deviation of the theoretical prediction from 

experimental results.  
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FIG. 4. Emissivity of the nanorod emitter array for (a) Py =3.5µm and (b) Px = 0.5µm. The red shifts of the 
resonance frequency observed in experiment (c) and predicted by theory (d).  

 

 

In summary, we develop a new scale law of far-field thermal emission by applying QNM theory 

to the metasurface consisting of densely packed plasmonic emitters. The TB method is used to 

approximate the collective resonant mode of the emitter array. The thermal radiation from a single 

emitter inside the array is observed to be suppressed by its adjacent emitters due to their in-phase 
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near-field coupling, where such the suppression of thermal radiation can be quantitively predicted 

by the new scale law. Depending on properties of the single emitter’s QNM, the overall thermal 

radiation can be either positively or negatively correlated with the packing density. This new scale 

law of thermal radiation can thus serve as a general guideline for designing metasurfaces with 

desired thermal emission properties.  
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