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A Luttinger liquid (LL) describes low energy excitations of many interacting one dimensional
systems, and exhibits universal response both in and out of equilibrium. We analyze its behaviour
in the non-hermitian realm after quantum quenching to a PT-symmetric LL by focusing on the
fermionic single particle density matrix. For short times, we demonstrate the emergence of unique
phenomena, characteristic to non-hermitian systems, that correlations propagate faster than the
conventional maximal speed, known as the Lieb-Robinson bound. These emergent supersonic modes
travel with velocities that are multiples of the conventional light-cone velocity. This behaviour is
argued to be generic for correlators in non-hermitian systems. In the long time limit, we find
typical LL behaviour, extending the LL universality to the non-equilibrium non-hermitian case.
Our analytical results are benchmarked numerically and indicate that the dispersal of quantum
information is much faster in non-hermitian systems.

Introduction. Non-hermitian quantum mechanics has
provided us with a plethora of interesting phenom-
ena, investigated both theoretically and experimentally.
These include spontaneous PT-symmetry breaking, non-
unitary dynamics, encircling and manipulating excep-
tional points, unidirectional invisibility, complex Bloch
oscillations and even topological effects[1–11], to men-
tion a few. However, the common theme behind these
studies is the underlying effective single particle picture,
while excursions to the quantum many-body realm are
scarce[12].

By now, hermitian quantum many-body physics in one
spatial dimension is well understood thanks to the avail-
able analytical and numerical methods[13, 14], both in
and out of equilibrium. In particular, many of these sys-
tems realize Luttinger liquids (LLs), including bosonic,
fermionic, spin etc. models, irrespective of their statis-
tics and microscopic details[13–15]. Therein, the Fermi-
liquid description breaks down and the elementary ex-
citations are bosonic collective modes. This fractional-
ization is manifested by the universal non-integer power
law decays in almost all correlation functions[13]. Fur-
thermore, when taken out of equilibrium, for example
following a quantum quench, the evolution of such her-
mitian systems is always unitary. The changes of sys-
tem parameters cause the emission of quasiparticles car-
rying correlations that propagate across the system with
a certain velocity whose maximum value is given by the
Lieb-Robinson bound[16]. The existence of a maximum
speed implies a light-cone spreading of correlations[17]
with only subsonic mode velocities.

Therefore, it comes as a natural question whether any
of the LL universality and light-cone structure survive
under non-hermitian conditions. This motivated us to
explore the fate of LLs after a quantum quench to a PT-

symmetric non-hermitian system. We find that the long
time limit exhibits LL behaviour with non-integer power
law decays, thus extending LL universality to the non-
equilibrium non-hermitian realm.
The short time behaviour, on the other hand, differs

drastically from that in the hermitian realm[18]. On top
of the usual light-cone[16], new supersonic modes appear
and travel with velocities that are multiples of the light-
cone velocity. The origin of the supersonic modes is
related to an effective long range Hamiltonian, govern-
ing the time evolution, for which such supersonic modes
might be expected[19]. We argue that this emergent phe-
nomenon is characteristic to all correlation functions in
non-hermitian systems. These findings are tested numer-
ically on a non-hermitian variant of the XXZ Heisenberg
model. Its density correlation function reveals three dis-
tinct light-cones, in perfect agreement with bosonization.
PT-symmetric LL. The non-hermitian LL Hamilto-

nian, we study, is given by

H =
∑

q 6=0

v|q|b†qbq +
ig2|q|Θ(t)

2

[

bqb−q + b+q b
+
−q

]

, (1)

with v being the bare ”sound velocity”, and b†q the cre-
ation operator of a bosonic density wave. The inter-
action g2 is changed from zero to a nonzero value at
t = 0. Although the Hamiltonian is non-hermitian,
its spectrum remains real[20] as ωq = ṽ|q| in the pres-
ence of imaginary interaction, with renormalized veloc-
ity ṽ =

√

v2 + g22 . This falls into the category of PT-
symmetric non-hermitian systems[1–4]: Eq. (1) satisfies
the antiunitary (generalized PT-) symmetry[20] as the
combination of time reversal, i → −i and phase trans-
formation bq → ibq, b

+
q → −ib+q . The Hamiltonian does

not commute with the generators of each symmetry in-
dependently, but only with their product. This is to be
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contrasted to the hermitian case, obtained by the replace-
ment ig2 → g2 in Eq. (1), in which case the sound ve-
locity is[13] v− =

√

v2 − g22 . In both cases, the system is
stable for |g2| < v, as we show below. A distinct version
of a non-hermitian LL was investigated in Ref. [21].
In the present work, we are interested in the time

evolution of a LL following a sudden quantum quench.
Initially, the system is prepared in the non-interacting
ground state |φ0〉 (i.e. the vacuum for the b bosons), and
time evolved with the non-hermitian Hamiltonian, Eq.
(1) as |φ(t)〉 = e−iHt |φ0〉. [22]. In the hermitian realm,
such systems were studied exhaustively[18, 23–27].
In the fermionic realization of non-hermitian physics,

the ensuing non-equilibrium dynamics can be captured
by the fermionic one-particle density matrix. The orig-
inal fermion field decomposes to right-going and a left-
going parts[13, 14] as Ψ(x) = eikF xR(x) + e−ikF xL(x),
therefore it is enough to investigate, for example, the
correlator of the right-movers, defined as

Gr(x, t) ≡
〈φ(t)|R+(x)R(0)|φ(t)〉

〈φ(t)|φ(t)〉
, (2)

describing excitations around the right Fermi momen-
tum, k ≈ kF . The right-moving field, R(x), is ex-
pressed in terms of the LL bosons as [13] R(x) =

ηr√
2πα

exp (iφr(x)), where ηr denotes the Klein factor,

and φr(x) =
∑

q>0

√

2π/|q|Leiqx−α|q|/2bq + h.c. with α
an ultraviolet regulator. Due to the non-unitary time
evolution[12, 28], it is compulsory to treat carefully the
denominator arising in Eq. (2).
The norm of the wavefunction. To warm up, let us

start by evaluating the denominator in Eq. (2), which

is N(t) ≡ 〈φ(t)|φ(t)〉 = 〈φ0|e
iH+te−iHt|φ0〉, which would

be 1 in the hermitian case. Calculating N(t) is accom-
plished by realizing that the operators appearing in the
Hamiltonian, K0(q) = (b+q bq+b−qb

+
−q)/2,K+(q) = b+q b

+
−q

and K−(q) = bqb−q are the generators of SU(1,1) Lie al-
gebra [29]. Exploiting a faithful 2 × 2 matrix represen-
tation of the SU(1,1) generators [30, 31], the product of
the time evolution operators is recast as

eiH
+te−iHt =

∏

q>0

eC+(q,t)K+(q)eC0(q,t)K0(q)eC−
(q,t)K

−
(q).

(3)

When taking its expectation value with the bosonic vac-
uum, the first and last exponentials containing K+(q)
and K−(q) are Taylor expanded, and only the zeroth
order term remains finite, all other terms containing
powers of bqb−q vanish when acting on the vacuum.
Then, the expectation value of Eq. (3) reduces to
∏

q>0 exp(C0(q, t)/2). This is evaluated to yield N(t) =
∏

q>0 ṽ
2/(ṽ2 − 2g22 sin

2(ωqt)), which indeed gives one for
t = 0 [32]. Interestingly, the non-hermitian formulation
remains valid only for g2 < v, similarly to the hermitian

case, even though the renormalized sound velocity does
not vanish for v = |g2|. The norm, N(t) should always
be non-negative. However, with increasing g2, it first di-
verges and becomes negative for |g2| > v. This happens
because after the quench, the time evolved wavefunction
leaves the space of normalizable wavefunction, which is
signaled by the total norm becoming negative[33, 34].
This behavior can be associated with the dynamical man-
ifestation of the equilibrium instability found in related
systems[35].
The numerator of the Green’s function. The two ex-

ponentials in the right-moving fields are merged using
standard tricks[36] and the time evolution of this opera-
tor is then evaluated using the identity

〈φ0|e
iH+te−i(φr(x)−φr(0))e−iHt|φ0〉 =

= 〈φ0|e
iH+te−iHteiHte−i(φr(x)−φr(0))e−iHt|φ0〉 =

〈φ0|e
iH+te−iHte−i(φr(x,t)−φr(0,t))|φ0〉. (4)

This allows us to formally define a pseudo-Heisenberg-
type time evolution for the operators as bq(t) =
eiHtbqe

−iHt, though this is not the physical Heisenberg

time evolution as that would involve the eiH
+t operator

to the front. The resulting pseudo-Heisenberg equation
of motion is solved from ∂tbq = i[H, bq] and ∂tb

+
−q =

i[H, b+−q], which are not related to each other by hermi-
tian conjugation. This equation of motion is solved as

bq(t) = uq(t)bq + vq(t)b
+
−q, (5a)

b+−q(t) = u∗
q(t)b

+
−q − vq(t)bq, (5b)

and |uq(t)|
2 + |vq(t)|

2 = 1 [37], and the canonical com-
mutation relation, [bq(t), b

+
q (t)] = 1 is preserved. Finally,

the time-dependent pseudo-Bogoliubov coefficients are

uq(t) = cos(ωqt)−
iv

ṽ
sin(ωqt), vq(t) =

g2
ṽ

sin(ωqt), (6)

which are related to the hermitian Bogoliubov
coefficients[25] through the g2 → ig2 change.
The two time evolution operators, acting on the bra

vector, are then rewritten using Eq. (3) as

〈φ0|e
iH+te−iHt = 〈φ0|

∏

q>0

eC−
(q,t)K

−
(q)+

C0(q,t)
2 =

= N(t)〈φ0|
∏

q>0

eC−
(q,t)K

−
(q). (7)

Therefore, the denominator appears also in the numera-
tor and drops out from the final expression. Using again
the faithful representation of the SU(1,1) algebra, we get
C−(q, t) = 2uq(t)vq(t)/(|uq(t)|

2 − |vq(t)|
2).

Supersonic modes. In order to calculate the vac-
uum expectation value, we normal order the pseudo-
Heisenberg time evolved bosonic operators in the Green’s
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function. Using the pseudo-Heisenberg time evolution
from Eq. (5), we obtain

e−i(φr(x,t)−φr(0,t)) = e−iφ+(x,t)e−iφ−(x,t)ec(x,t), (8)

where φ+(x, t) =
∑

q>0

√

2π
qL ((e

−iqx − 1)u∗
q(t)b

+
q +

(eiqx − 1)vq(t)b
+
−q), φ−(x, t) =

∑

q>0

√

2π
qL ((e

iqx −

1)uq(t)bq− (e−iqx−1)vq(t)b−q), c(x, t) =
∑

q>0
π
qL |e

iqx−

1|2(2|v2q(t)| − 1). In the hermitian case, the calcula-
tion would end here[24], which contains all equilibrium
and quench induced correlations, since C−(q, t) would
be zero. For the non-hermitian quench, by combining
Eqs. (7) and (8), the three exponentials are again Taylor
expanded to calculate the required vacuum expectation
value. The e−iφ−(x,t) term gives one when acting on the
vacuum. The expansion of the eC−

(q,t)K
−
(q) contains the

same powers of bq and b−q due to the very definition of
K−(q). Therefore, in order to have a non-zero expecta-
tion value, only those terms contribute from the expan-
sion of e−iφ+(x,t), which also contain the same powers of
b+q and b+−q. This finally gives after some tedious alge-
bra [38]

Gr(x, t)

G0
r(x)

= exp

(

−
8π

L

∑

q>0

g22 sin
2(qx/2) sin2(ωqt)

q(ṽ2 − 2g22 sin
2(ωqt))

)

(9)

where G0
r(x) = i/(2π(x+ iα)) denotes the free fermion

propagator, L the system size. This final result differs
from the outcome of a hermitian quantum quench by the
denominator in the exponent, but as we discuss below,
it has profound consequences for the time evolution and
light-cone structure.
The exponent of the Green’s function is Taylor ex-

panded in terms of sin2(ωqt). Then, the various q in-
tegrals are performed and the series is resumed, yielding

Gr(x, t) = G0
r(x) exp

((

1−
ṽ

v−

)

d(x, 0)−

−2

∞
∑

n=1

ṽ

v−

(

−g22
v2 + ṽv−

)n

d(x, nt)

)

, (10)

where d(x, t) = 1
4 ln

(

(α2+(x−2ṽt)2)(α2+(x+2ṽt)2)
(α2+4ṽ2t2)2

)

using

the e−α|q| cutoff in Eq. (9) [39].
For 2ṽt ≫ x, the Green’s function becomes completely

time-independent, similarly to the hermitian quench[18].
The characteristic non-integer power law decay of LL is
observed as Gr(x, t → ∞) ∼ |x|−ṽ/v

− , and the exponent
is smaller than for a hermitian quench[25] with the same
interaction strength g2. This establishes the LL univer-
sality also in the non-equilibrium and non-hermitian case.
On the other hand, for 2ṽt ≪ x, supersonic modes

that propagate faster than the sound velocity ṽ, emerge
and the corresponding velocities are integer multiples of
2ṽ, even though H itself is local[16]. Its origin is traced

back to the eiH
+te−iHt factor in Eq. (4). When merg-

ing the exponentials into a single one, a series of nested
commutators arise from the Baker-Campbell-Hausdorff
formula[31] due to [H,H+] 6= 0, and the resulting expo-
nent, interpreted as an effective Hamiltonian, becomes
increasingly non-local and long range, therefore there is
no obvious bound of the propagation speed of correla-
tions in non-hermitian systems. This parallels to the ap-
pearance of supersonic modes in hermitian long range
systems[19]. These are manifested in the denominator of
Eq. (9): upon expanding it in Taylor series in sin2(ωqt),
the resulting expression involves terms that oscillate at
frequencies 2ωq, 4ωq, 6ωq. . . , leading to the propagation
velocities 2nṽ. However, the sharpness of the supersonic
light-cones at x = 2nṽt decreases with n due to the g2n2
factor in Eq. (10), as shown in Fig. 1. By neglecting the
C−(q, t) term, arising from [H,H+] 6= 0, only a single
conventional light-cone would appear.
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FIG. 1. The single particle density matrix is plotted from Eq.
(10) for g2/v = 0.8 (blue) and 0.95 (red) line with x = 100α.
The n = 1 light-cone from the sum in Gr(x, t) corresponds
to the conventional light-cone with 2ṽ velocity, while the first
two supersonic features are denoted by n = 2 and 3 with 4ṽ
and 6ṽ velocity, respectively.

We argue that supersonic modes appear generically
during the time evolution of any correlator of local ob-
servablesOx in non-hermitian systems. Consider the cor-
relation function χ(x, t) ≡ 〈φ(t)|OxO0|φ(t)〉/N(t) as

χ(x, t) = 〈φ0|e
iH+te−iHtOx(t)O0(t)|φ0〉/N(t), (11)

where Ox(t) = eiHtOxe
−iHt is the pseudo-Heisenberg

time evolved operator. Due to eiH
+te−iHt, supersonic

modes are expected from the argument below Eq. (10).
Indeed, using Eq. (7), it is rewritten as

χ(x, t) = 〈φ0|e
∑

q>0 C
−
(q,t)K

−
(q)Ox(t)O0(t)|φ0〉. (12)

The C−(q, t) function contains 1/(ṽ2−2g22 sin
2(ωqt)), and

when the expectation value is taken, this will inevitable
alter the propagation velocity in χ(x, t) by even inte-
ger multiples of ṽ, similarly to the single particle density
matrix in Eq. (10). Supersonic modes follow from the
proper Heisenberg picture using the equation of motion
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method[40]. While supersonic modes were also seen in
a non-hermitian non-interacting system[41], our results
imply that these are expected on general ground in non-
hermitian dynamics.
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/
J

FIG. 2. The complex many-body energy spectrum, En of Eq.
(13) for N = 14 at half filling is plotted for Jz = −0.3J (red
dots) and the non-interacting, hermitian case with Jz = 0
(blue squares) for comparison from exact diagonalization us-
ing periodic boundary conditions. During the time evolution
with e−itH , states with the largest imaginary part contribute
the most, which is the upper flat part of the spectrum. Out
of these, states with increasing ReEn have less influence due
to their decreasing overlap with the initial state. Due to the
normalization in Eq. (11), the imaginary offset of energies
drops out from the expectation values.

Numerics for lattice fermions. In order to test our
results, we study a simple lattice model with imaginary
interactions, which is not PT-symmetric, albeit the low
energy part of its spectrum can be considered effectively
real, while some higher modes develop significant imag-
inary parts, which would only influence the long time
dynamics. The Hamiltonian is

H =

N
∑

m=1

J + iJz
2

(

c+m+1cm + h.c.
)

− i
Jzπ

2
nm+1nm,

(13)

where c’s are fermionic operators and N the number of
lattice sites, nm = c+mcm and Jz denotes the nearest
neighbour interaction and the system is half filled. Its low
energy excitations are sound waves with sound velocity
ṽ ≈ J +(π2/8− 1)J2

z /J after setting the lattice constant
to one, which allows us to identify g2 ∼ −Jz/1.4 for small
Jz, while v = J . Let us note, that the hermitian version
(iJz → Jz in Eq. (13)) is Bethe-Ansatz solvable[13] with
sound velocity v− ≈ J+(1−π2/8)J2

z/J , in perfect agree-
ment with the bosonization discussion following Eq. (1).
The main merit of introducing Jz into the hopping as well
is that it eliminates the g4 process which is only respon-
sible for velocity renormalization[13] but does not induce
non-integer power law decay of correlation functions, and
makes the velocity real[13] for the non-hermitian case.
Its energy spectrum at half filling obtained with exact
diagonalization is shown in Fig. 2.
We consider numerically a quench dynamics, when the

system is prepared initially in the non-interacting, Jz = 0
ground state of Hamiltonian, Eq. (13) as a Slater determi-

nant. This is determined by the density matrix renormal-
ization group [42] approach. Then, we suddenly switch
on Jz and let the system evolve according to the Hamilto-
nian, Eq. (13). To study the quench dynamics we use the
time evolving block decimation algorithm [43] in the ma-
trix product state representation. We have followed the
time evolution of several physical quantities, such as the
single particle density matrix or the density correlator,
and we found that all show signs of supersonic modes.
However, there is a compromise: we have to keep the
ration |Jz/J | . 0.4, relatively small in order to retain
the flat part of the spectrum as in Fig. 2 with constant
imaginary part. On the other hand, the smallness of the
interaction suppresses the higher order supersonic modes,
as evident from Fig. 1. In Fig. 3, we show the density
correlator χnn(x, t), defined in Eq. (11) using Ox = nx in
a system with N = 201 and 101 fermions. The system is
slightly away from half filling, which helps in killing the
umklapp term[13]. We checked that qualitatively similar
results arise exactly at half filling with N = 200 and 100
particles, though.
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FIG. 3. Contour plot of the the density correlator,
χnn(x, t)/χnn(x, 0), where denominator cancels the initial
spatial correlation in the ground state, and all features result
from the non-hermitian quench dynamics with Jz/J = −0.3.
The white dashed lines denote the n = 1, 2 and 3 modes by
using the sound velocity, ṽ = 1.02J without any fitting.

Experimental relevance. Non-hermitian Hamiltoni-
ans can arise from a variety of different ways. It can
arise from classical photonic waveguides, which only emu-
lates the Schrödinger equation[6]. In this case, supersonic
modes are expected to occur for arbitrary long times.
The non-hermitian time evolution can also follow from a
conditional Lindblad-type dynamics[35, 41], when the en-
vironment is continuously monitored in order to maintain
the condition of no quantum jump[44]. The probability
of having no quantum jump decreases steadily with time,
rendering long time non-hermitian dynamics increasingly
difficult to observe, though not impossible[45]. In this
setting, Eq. (13) is realized by a dissipative lattice[46]
with one-body loss, i.e. superimposing a weak reso-
nant optical lattice (for the non-hermitian hopping) and
also implementing background two-body loss[44] (for the
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imaginary interactions). Finally, non-hermiticity could
arise by adding the imaginary self energy (i.e. from fi-
nite lifetime quasiparticles) from diagrammatics[47] to an
originally Hermitian system, and treating this as an ef-
fective non-hermitian system. In this case, however, the
temporal dynamics of the system would also require to
go beyond the self-energy approximation and include ver-
tex corrections as well, and the ensuing dynamics would
probably feature a single light cone, as dictated by the
Lieb-Robinson bound[16].

Summary. We studied many-body non-hermitian dy-
namics by a quantum quench in a PT-symmetric LL. The
fermionic single particle density matrix reveals displays
LL universality in the long time limit. For short times, in
contrast to unitary evolution, the Lieb-Robinson bound
is violated and supersonic modes emerge due to non-
unitary dynamics. They travel with velocities that are
multiples of the conventional light-cone velocity. We ar-
gue and demonstrate that this emergent phenomena is
characteristic to non-hermitian systems and arise from an
effective long range Hamiltonian, governing the time evo-
lution, although the physical Hamiltonian contains only
short range, though non-hermitian terms. Our analyti-
cal findings are benchmarked by the numerical study of
a non-hermitian short range interacting lattice fermions.
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[24] B. Dóra, M. Haque, and G. Zaránd, Crossover from adi-
abatic to sudden interaction quench in a luttinger liquid,
Phys. Rev. Lett. 106, 156406 (2011).

[25] A. Iucci and M. A. Cazalilla, Quantum quench dynamics
of the luttinger model, Phys. Rev. A 80, 063619 (2009).

[26] J. Dziarmaga, Dynamics of a quantum phase transition
and relaxation to a steady state, Adv. Phys. 59, 1063
(2010).

mailto:dora@eik.bme.hu


6

[27] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalat-
tore, Colloquium : Nonequilibrium dynamics of closed
interacting quantum systems, Rev. Mod. Phys. 83, 863
(2011).

[28] H. Carmichael, An Open Systems Approach to Quantum
Optics (Springer-Verlag, Berlin, 1993).

[29] The generators of the SU(1,1) Lie algebra satisfy
[K+(q),K−(q)] = −2K0(q), [K0(q),K±(q)] = ±K±(q),
and the operators for distinct q’s commute with each
other.

[30] A. I. Solomon, Group theory of superfluidity, J. Math.
Phys. p. 390 (1971).

[31] R. Gilmore, Baker-campbell-hausdorff formulas, J. Math.
Phys. 15, 2090 (1974).

[32] The steady state, t → ∞ limit of the overlap is evaluated
analytically in the thermodynamic limit as N(t → ∞) =
(

1

2
+ 1

2

v
−

ṽ
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