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Many correlated metallic materials are described by Landau Fermi-liquid theory at low energies,
but for Hund metals the Fermi-liquid coherence scale TFL is found to be surprisingly small. In this
Letter, we study the simplest impurity model relevant for Hund metals, the three-channel spin-
orbital Kondo model, using the numerical renormalization group (NRG) method and compute its
global phase diagram. In this framework, TFL becomes arbitrarily small close to two new quantum
critical points (QCPs) which we identify by tuning the spin or spin-orbital Kondo couplings into
the ferromagnetic regimes. We find quantum phase transitions to a singular Fermi-liquid or a
novel non-Fermi-liquid phase. The new non-Fermi-liquid phase shows frustrated behavior involving
alternating overscreenings in spin and orbital sectors, with universal power laws in the spin (ω−1/5),

orbital (ω1/5) and spin-orbital (ω1) dynamical susceptibilities. These power laws, and the NRG
eigenlevel spectra, can be fully understood using conformal field theory arguments, which also
clarify the nature of the non-Fermi-liquid phase.

Introduction.—A very large number of correlated
metallic materials, are “bad metals”, namely in a broad
regimes of temperature T characterized by deviations
from the Landau Fermi-liquid (FL) T 2 law [1] and
their values of resistivity exceeding the Mott-Ioffe-Regel
limit [2]. One class of bad metals are the Hund metals,
i.e. 3d and 4d multiorbital systems where correlations
derive from the Hund’s coupling JH [3–7]. They include
ruthenates [8–13], iron pnictides and chalcogenides [14–
20]. The Landau FL quasiparticles emerge only below a
coherence scale TFL which is much smaller than the nat-
ural energy scales of the problem, set by the electronic
bandwidth. Why is TFL so small in units of the band-
width? This “naturalness problem” is a central problem
of condensed matter physics which has attracted consid-
erable attention in the community. Its solution should
also provide a clue as to what reference system should be
used to describe the anomalous behavior observed in a
broad energy regime above TFL, when no other instabil-
ities such as magnetism or superconductivity intervene.

Two different directions have been followed to address
this puzzle. The first invokes the proximity to quantum
critical points (QCPs) [21–23], signaling the transition
to an ordered phase, or to an unconventional one such
as fractionalized Mott insulators [24, 25]. An alterna-
tive starting point has been provided by the develop-
ment of the combination of ab-initio electronic structure
and dynamical mean field theory (LDA+DMFT) [26–29].
Here, the excitations of a solid are understood in terms
of atomic multiplets embedded in an effective medium,
and the evolution of the electronic structure from atomic
multiplet excitations into quasiparticles arises naturally
as temperature is lowered. This approach has pro-

vided quantitative predictions in many materials of inter-
est [3, 19, 28, 30–36], where the ab-initio LDA+DMFT
calculations are in surprisingly good agreement with ex-
periments. However, the solution of the LDA+DMFT
equations is a complex problem, which generically yields
a non-zero FL scale. Hence no connection with the ideas
of QCPs was made. The question of how to reduce the
FL scale to exactly zero and how to characterize the en-
suing anomalous behavior above TFL has remained open.

In this Letter, we provide an answer to this question by
computing a global phase diagram of the simplest three-
channel spin-orbital Kondo model which captures the es-
sential physics of Hund metals, using the exact numerical
renormalization group (NRG) method [37]. By tuning
the spin or spin-orbital Kondo couplings into the ferro-
magnetic regimes, we push TFL to be exactly zero and
identify QCPs. We find quantum phase transitions to
a singular-Fermi-liquid (SFL) phase and to a novel non-
Fermi-liquid (NFL) phase showing frustrated behavior
of alternating overscreenings in spin and orbital sectors,
with universal power laws in dynamical susceptibilities.
We use conformal field theory (CFT) arguments [38–43]
to identify the nature of the NFL phase, analytically
reproduce the NRG eigenlevel spectra and explain the
power laws. Our global phase diagram provides a clear
picture for understanding the suppression of coherence in
Hund metals in terms of proximity to QCPs.

Model and Methods.—We study the three-channel
spin-orbital Kondo (3soK) model derived from a realistic
Anderson impurity model in [20, 44] for the studies of
Hund metals. Hbath =

∑
pmσ εpψ

†
pmσψpmσ describes a

symmetric, flat-band bath with half-bandwidth D = 1,
where ψ†pmσ creates an electron with momentum p and
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FIG. 1. (a) The calculated global phase diagram vs. J0 and
I0 at fixed K0 = 0.3. Four low-energy fixed points are found:
Fermi-liquid (FL, orange region); singular Fermi-liquid (SFL,
blue region) with underscreened spin and fully screened or-
bital isospin; frustrated non-Fermi-liquid (NFL, pink region)
with alternating spin and orbital overscreenings; and non-
Fermi-liquid NFL∗ (red dot at J0 = 0, I0 = 0) with over-
screened orbital isospin and degenerate impurity spin 1

2
, 3

2
.

Cartoons depict the respective screening processes, where one
dashed ellipse loosely represents an even number of Wilson
shells. The indicated additional charge then is relative to half-
filling, where filled (empty) arrows represent electrons (holes)
with corresponding spin direction. The white-hatched region
indicates the existence of an intermediate-energy crossover
regime SFL′ (NFL′) enclosing the phase boundary between
FL and SFL (NFL). The inset shows the “funnel width”, δJ0,
of the NFL phase vs. 1/I0 when I0 → 0−. (b,c) The onset
energy scales Tx for (x =) FL, SFL and NFL vs. (b) J0 or (c)
I0, where quantum critical points are identified. (d) Impurity
contribution to entropy Simp as functions of temperature T .

spin σ in orbital m ∈ {1, 2, 3}. The bath couples to the
impurity spin S and orbital isospin T via

Hint = J0S · Jsp +K0T · Jorb + I0S · Jsp-orb ·T. (1)

Here S are SU(2) generators in the S = 1 representa-
tion, normalized as Tr(SαSβ) = 1

2δαβ , and T are SU(3)
generators in the 3̄, i.e. (01) representation [45] (orbital
angular momentum takes L = 1 in this representation),
and Tr(T aT b) = 1

2δab. Jsp, Jorb and Jsp-orb are the bath
spin, orbital and spin-orbital densities at the impurity
site, with Jαsp = ψ†mσ

1
2σ

α
σσ′ψmσ′ , Jaorb = ψ†mσ

1
2τ

a
mm′ψm′σ,

Jα,asp-orb = 1
4ψ
†
mσσ

α
σσ′τamm′ψm′σ′ (summation over repeated

indices is implied) and normalized ψ†mσ= 1√
N

∑
p ψ
†
pmσ,

and σα[τa] are Pauli [Gell-Mann] matrices, with normal-
ization Tr(σασβ) = 2δαβ [Tr(τaτ b) = 2δab]. J0, K0 and
I0 are bare spin, orbital and spin-orbital Kondo exchange
couplings, and we treat them as independent parameters
with positive and negative values describing antiferro-
magnetic (AFM) and ferromagnetic (FM) couplings, re-
spectively. We take K0=0.3 throughout.

We use the full-density-matrix NRG [46] method to
solve this model, exploiting its full U(1)ch × SU(2)sp ×
SU(3)orb symmetry using QSpace [45]. Symmetry labels
Q ≡ [q, S, (λ1λ2)] are used to label multiplets, where q
is the bath particle number relative to half-filling of the
bath (we choose qimp = 0 because the impurity site has no
charge dynamics), S is the total spin, and (λ1λ2) labels a
SU(3) representation described by a Young diagram with
λ1 +λ2 (λ2) boxes in its first (second) row. The impurity
multiplet has Qimp=[0, 1, (01)]. The bath is discretized
logarithmically and mapped to a semi-infinite “Wilson
chain” with exponentially decaying hoppings, and the
impurity coupled to chain site k = 0. The chain is diag-
onalized iteratively while discarding high-energy states,
thereby zooming in on low-energy properties: the finite-
size level spacing of a chain ending at site k ≥ 0 is of order
ωk ∝ Λ−k/2. Here Λ > 1 is a discretization parameter,
chosen to be 4 in this work. The RG flow can be visual-
ized by combining the rescaled low-lying NRG eigenlevel
spectra, E = (E − Eref)/ωk vs. ωk, with increasing even
or odd k. The imaginary part of the impurity dynamical
susceptibilities χimp

sp , χimp
orb and χimp

sp-orb were calculated at

temperature T = 10−16. Computational details are pre-
sented in the Supplemental Material [47].
Fixed points.—The calculated global phase diagram as

a function of J0 and I0 is shown in Fig. 1(a). We first
describe the low-energy fixed points found in the phase
diagram. Throughout the entire regions where all three
Kondo couplings are AFM, and for part of regions where
J0 or I0 takes FM values (orange region), the system
flows to a low-energy FL fixed point. This is seen in the
NRG flow diagram and dynamical impurity susceptibili-
ties χimp at J0 = I0 = 0.01 in Figs. 2(a,d). The ground
state is a spin and orbital singlet, with impurity entropy
Simp = ln 1 [orange curve in Fig. 1(d)]. For small ω, all
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FIG. 2. The phase transition from FL to SFL at I0 = 0.01.
(a)-(c) NRG flow diagrams of a Wilson chain with odd length
k, with the energy of the lowest [0, 1, (01)] multiplet as the ref-
erence energy Eref. The symmetry labels of selected multiplets
are shown on top. (d)-(f) Impurity dynamical susceptibility
χimp(ω).
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FIG. 3. Analogous to Fig. 2, but for the phase transition from
FL to NFL at J0 = 0.3.

χimp follow a ω-linear behavior, characteristic of a FL.

When J0 takes FM values and I0 FM or small AFM
values (blue region), the phase is governed by a low-
energy SFL [48–50] fixed point where the spin is under-
screened while the orbitals are fully screened. The tran-
sition from FL to SFL is analyzed in Fig. 2 for I0 = 0.01.
Figs. 2(c,f), computed for J0 = −0.4, show the NRG
flow and χimp to the SFL fixed point. It has ground
state [+1, 1

2 , (00)] and Simp approaches ln 2 at low ener-
gies [blue curve in Fig. 1(d)], signaling a residual spin of
1
2 . χimp

sp deviates slightly from a pure ω−1 power-law by
a logarithmic correction at high energy and can be fitted
by ∼ 1/(ω ln2(ω/TSFL)) with TSFL as an onset energy

scale, consistent with the SFL results in [50]. χimp
orb shows

ω-linear behavior at low energy, indicating fully screened
orbital isospin. The coefficient of the impurity specific
heat, Cimp(T )/T [47], shows divergent behavior [48], con-
firming the singular nature of this fixed point.
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FIG. 4. Analogous to Fig. 2, but for the phase transition from
SFL to NFL at I0 = −0.01.

When I0 takes strong FM and J0 strong AFM cou-
plings (pink region), we find a novel NFL fixed point,
showing very interesting frustrated behavior of alternat-
ing overscreenings in spin and orbital sectors. Figure 3
analyzes the transition from FL to NFL at J0 = 0.3.
Figs. 3(c,f) and 4(c,f) show the NRG flow and χimp to-
wards the NFL fixed point. The two lowest multiplets
with either orbital singlet, [+1, 1

2 , (00)], or spin singlet,
[0, 0, (01)], are very close in energy. The dynamical sus-
ceptibilities follow perfect and universal power laws for
the spin (ω−1/5), oribtal (ω1/5) and spin-orbital (ω1) op-

erators. The impurity entropy Simp evaluates to ln 1+
√

5
2

[pink curve in Fig. 1(d)]. This value can be obtained from
Eq.(6) in [51] for a general SU(N)K Kondo model (K is
the number of channels) with N = 3,K = 2, Q = 2
indicating SU(3)2 orbital overscreening, or with N =
2,K = 3, Q = 1 indicating SU(2)3 spin overscreen-
ing. Motivated by this, we follow the recently devel-
oped SU(2)×SU(3) CFT approach [43] to identify the
nature of this fixed point. Its NRG eigenlevel spectra
Q′=[q′, S′, (λ′1λ

′
2)] can be reproduced by applying either

a SU(2)3 fusion procedure in the spin sector or a SU(3)2

fusion procedure in the orbital sector, i.e. fusing a spec-
trum of free fermion Q = [q, S, (λ1λ2)], with an effective
impurity multiplet labeling either Qeff

imp=[+1, 1
2 , (00)], or

Qeff
imp=[0, 0, (01)]. Double fusion of the spectrum Q′ with

the conjugate representation of the impurity multiplet,
Q̄eff

imp=[−1, 1
2 , (00)] or Q̄eff

imp=[0, 0, (10)], yields the quan-
tum numbers Q′′=[q′′, S′′, (λ′′1λ

′′
2)] to characterize the

CFT boundary operators, with scaling dimensions ∆, de-
termining the behavior of dynamical susceptibilities.

Tables S1-S2 in the Supplemental Material [47] show
the CFT results of the fixed point spectra and com-
pare them with the NRG spectra at J0 = 0.3, I0 =
−0.01. Both fusion procedures yield the same results,
which reproduce the NRG spectra very well. The scal-
ing dimension of the leading boundary operator in the
spin, orbital and spin-orbital sectors are found to be
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∆sp = 2
5 , ∆orb = 3

5 and ∆sp-orb = 1, respectively. They
are also consistent with the CFT results in [51] for ei-
ther a spin SU(2)3 Kondo model (∆sp = 2

2+3 , ∆orb =
3

2+3 ), or an orbital SU(3)2 Kondo model (∆sp = 2
3+2 ,

∆orb = 3
3+2 ). The power laws of dynamical susceptibili-

ties can then be understood by the CFT procedure [43]

χimp
sp ∼ ω2∆sp−1 = ω−1/5, χimp

orb ∼ ω2∆orb−1 = ω1/5 and

χimp
sp-orb ∼ ω2∆sp-orb−1 = ω1, respectively.
The impurity entropy and the CFT analysis both sug-

gest that the spin SU(2)3 and orbital SU(3)2 Kondo mod-
els with overscreened fixed points are actually equiva-
lent and complementary descriptions of this NFL fixed
point. It indicates an alternating spin SU(2)3 and or-
bital SU(3)2 overscreening process by successively bind-
ing one electron or one hole, as illustrated by the car-
toon picture at the bottom right of Fig. 1(a), similar in
spirit to that of Nozières and Blandin [52]. To be specific,
the strong AFM orbital coupling binds the bare impurity
Qimp = [0, 1, (01)] and one bath electron [+1, 1

2 , (10)] into
a fully screened orbital singlet with either spin 3

2 or 1
2 :

[0, 1, (01)] ⊗ [+1, 1
2 , (10)] → [+1, 3

2 , (00)] ⊕ [+1, 1
2 , (00)] .

In the FL phase, the spin 3
2 multiplet has the lower en-

ergy; it can then bind three holes to form a fully screened
spin and orbital singlet [43]: [+1, 3

2 , (00)]⊗[−3, 3
2 , (00)]→

[−2, 0, (00)] . By contrast, in the NFL regime, the spin 1
2

multiplet has the lower energy since the spin-orbital cou-
pling I0 is strongly FM. Next, the AFM spin coupling
attempts to screen the spin 1

2 by coupling it to one hole,
to yield a spin singlet,

[+1, 1
2 , (00)]⊗ [−1, 1

2 , (01)]→ [0, 0, (01)] , (2a)

but the result is an overscreened orbital isospin. Screen-
ing the latter by binding an electron,

[0, 0, (01)]⊗ [+1, 1
2 , (10)]→ [+1, 1

2 , (00)] , (2b)

leads back to an overscreened spin. Overall, this re-
sults in a neverending alternation of spin and orbital
overscreening, favored by the fact that the multiplets
[0, 0, (01)] and [+1, 1

2 , (00)] are lowest in energy [see
Figs. 3(c), 4(c)], with a very small energy difference.

The special point at J0 = I0 = 0 corresponds to a
SU(3)2 NFL fixed point (NFL∗) with overscreened or-
bitals and a degenerate impurity spin of 1

2 , 3
2 . The inset

of Fig. 1(a) suggests that the region of NFL actually ex-
tends to this point. There we analyze the width of the
NFL “funnel”, defined by δJ0 = Jc10 − Jc20 , vs. 1/I0,
where Jc10 (Jc20 ) is the phase boundary between FL (SFL)
and NFL. It follows exp(0.0462/I0 +6.57), becoming zero
only when I0 → 0−.
Phase transitions.—TFL on the FL side and TSFL

(TNFL, the NFL scale) on the SFL (NFL) side go to zero
as the phase boundary is approached. We find that TFL,
TSFL and TNFL follow power laws as functions of the con-
trol parameters J0 and I0, |J0 − Jc0 |α and |I0 − Ic0 |α, to

approach exactly zero at the critical values Jc0 and Ic0 ,
signalling the existence of QCPs [21, 22]. The exponents
found are α=1.8 in the FL-SFL transition, and α=1 for
FL-NFL. We show TFL/SFL as functions of J0 at I0 = 0.01
in Fig. 1(b), and TFL/NFL as functions of I0 at J0 = 0.3
in Fig. 1(c). More data are shown in Fig. S5 [47].

When approaching the QCP in the FL-SFL transition
as in Fig. 2 by decreasing J0, the spin-orbital separation
window [7, 53] increases a lot, as seen in Figs. 2(b,e) for
J0 = −0.3643, and a wide crossover regime, SFL′, forms
at intermediate energies. There the impurity entropy

Simp evaluates to ln 1+
√

5
2 + ln 3 [green curve in Fig. 1(d)],

corresponding to an orbital overscreened SU(3)2 fixed
point, coupled to a fluctuating spin-1 moment. This is
consistent with the recent findings in the region I0 = 0
and J0 → 0+ in [54]. χimp

orb follows a universal power-
law of ω1/5, showing similarity with the NFL phase due
to the same orbital SU(3)2 overscreening, while χimp

sp fol-
lows an approximate power law (with some non-power-
law corrections, see [47]). Across the phase transition,
the multiplet [+1, 1

2 , (00)] is pushed down to be the new
ground state, while the original ground state [−2, 0, (00)]
of the FL phase is pushed up to very high energy.

When approaching the QCP in the FL-NFL transi-
tion as illustrated in Fig. 3, fine-tuning of I0 generates
a large crossover regime NFL′ at intermediate energies
[Figs. 3(b,e)], where the set of low-lying states is simply
the union of those of the FL and NFL spectra (see Table
S4 in [47]). NFL′ thus represents a “level-crossing” sce-
nario [47, 55, 56], involving two orthogonal low-energy
subspaces whose levels cross when I0 is tuned. When
sufficiently close, both subspaces contribute to thermo-
dynamic and dynamical properties. Here, the FL and
NFL compete in the intermediate-energy regime, and I0
determines either FL [Fig. 3(a,d)] or NFL [Fig. 3(c,f)]
to be the low-energy fixed point. The impurity entropy

SNFL′

imp evaluates to ln(eS
FL
imp + eS

NFL
imp ) = ln(1 + 1+

√
5

2 ) [red

curve in Fig. 1(d)], not ln 1+ln 1+
√

5
2 , because the FL and

NFL subspaces do not overlap. Hence the total effective
impurity degrees of freedom is the sum of the contribu-
tions of those two sectors [47]. χimp of NFL′ follow the
same power laws as NFL because the NFL part domi-
nates in this regime. For more details on NFL′, see [47].

The transition from SFL to NFL shown in Fig. 4 con-
firms the picture of alternating overscreenings. Tuning J0

to be more AFM, the state [0, 0, (01)] is pushed down to
be nearly degenerate with the ground state [+1, 1

2 , (00)]
[Fig. 4(b)], signalling the start of the alternating over-
screening process. χimp

sp bends downward away from the

ω−1 behavior towards a ω−1/5 dependence, while χimp
orb

bends upward away from the ω-linear behavior towards
a ω1/5 dependence. χimp

sp-orb still follows ω1.

Conclusion.—To summarize, we have presented a
global phase diagram of the 3soK model. This allows us
to follow the suppression of the coherence scale in Hund



5

metals down to zero energy. The new NFL phase con-
tains the essential ingredients needed to understand the
actual incoherent behavior seen above TFL. Recent ad-
vances in the physics of cold atoms might actually offer
a concrete realization of the phase diagram of the model
studied. Indeed it has been recently demonstrated that it
is possible to simulate SU(N) impurity models with tun-
able exchange interactions reaching both FM and AFM
regimes [57, 58].

The iron pnictides display an intriguing QCP, as for
example in BaFe2(As1−xPx)2 [18, 59–61], where a diver-
gent electron mass and concomitant destruction of the
FL state was observed. This QCP has motivated sev-
eral theoretical studies [62–64]. Further progress from
the perspective of this work would require the DMFT
self-consistency condition and more realistic band struc-
tures. In the DMFT treatment of a lattice model, the
SFL and the NFL phases are expected to turn into mag-
netically ordered states, but the impurity model studied
here with its power-law singularities would describe the
behavior above TFL.

The approach presented here, which takes into account
the Hund’s coupling and the multiorbital nature, is in the
same spirit as the ideas of local quantum criticality used
to describe Kondo breakdown using impurity models [65],
so it would then be also useful for unconventional quan-
tum phase transitions observed in other heavy-fermion
materials [66–69]. The global phase diagram of this 3soK
model will also have potential impact on the studies of
real multichannel spin and (or) orbital Kondo systems or
quantum dots systems, for instance, generalize the stud-
ies in [70–74] to three-channel cases.
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