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Scattering processes are typically sensitive to the incident wave properties and to interference ef-
fects generated via wave-matter interactions with the target. We challenge this general belief in the
case of targets that undergo time-periodic modulations encircling quasi-adiabatically an exceptional
point in a given parameter space. When the scattering dwell time is above a critical value τc, the
scattered field is surprisingly insensitive to the properties of the incoming wave and local opera-
tional details of the driving. Instead, it reaches a fixed point attractor that can be controlled by
the direction of the driving cycle. For dwell times below τc, the unusual robustness is abruptly sup-
pressed. Such protocols may become useful tools in control engineering, including the management
of thermal and quantum fluctuations.

Introduction– Wave scattering from naturally occur-
ring or engineered media carries information about the
properties (e.g. shape, internal constitution) of the scat-
tering object itself, convoluted with the impinging signal.
A challenge in modern technology is to manage, amplify,
alter or encrypt this information. The traditional meth-
ods used to achieve these goals rely on the manipulation
of the constituent properties of the scattering medium
and/or on the appropriate preparation of the interrogat-
ing wave. Well known examples include metamaterials
and transformation optics [1–10], and the enhancement
of absorption [11–16] or the improvement of transmis-
sion through complex media [17, 18] by wavefront op-
timization. The advent of non-Hermitian wave physics
[19–23] has opened alternative avenues for the manipu-
lation of the scattered fields. Representative examples
include the phenomena of unidirectional invisibility [24–
26], asymmetric transport [27–30], and PT-symmetric
lasers [31, 32]. When combined with the manipulation
of time-degrees-of freedom (e.g., via periodic time modu-
lation of system parameters) non-Hermitian physics leads
to new opportunities, such as chiral adiabatic state-flip
[33–36], reconfigurable perfect absorbers [37–39], bypass
of Chu’s limit [40], etc. While most of these achieve-
ments have been implemented in photonics, other areas
like atomic and quantum systems [41–43], optomechan-
ics [35, 44, 45], acoustics [25, 46], and electronics [47],
have also benefited from these developments. In all these
cases, the scattered fields demonstrate complex interfer-
ence patterns, which are very sensitive to the incident
wave properties and to interferences generated due to in-
tricate wave-matter interactions occurring when the in-
cident signal engages the target.

Here we propose to manage the scattered fields via a
carefully chosen quasi-adiabatic modulation of the pa-
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rameters of the target, such that their variation forms a
closed path (loop) around an exceptional point (EP) in a
two-parameter space. We will show that when the dwell
time of the scattering process exceeds a critical value, the
scattered field becomes insensitive to local details of the
parametric path and to the specific features of the inci-
dent wave. The overall response only depends on the di-
rection (clockwise versus counter-clockwise) of the closed
path. The eigenvectors of the scattering matrix play the
role of “fixed-point attractors” in the dynamical scatter-
ing process. This exotic scattering response is analyzed
theoretically using coupled mode theory and its validity
is confirmed using a realistic electronic circuit set-up.
Coupled Mode Theory Modeling– We consider a sys-

tem of two coupled modes n = 1, 2 with periodic, time-
modulated frequencies ε1 = ε(t) = ε(t + 2π/Ω) and
ε2(t) = −ε(t), and corresponding decay/amplification
rates γ1 = −γ/2 and γ2 = γ/2. The coupling κ(t) = κ(t+
2π/Ω) between the two modes is also time-dependent
with modulation frequency Ω. The dynamics of this sys-
tem is described by a time-dependent coupled mode the-
ory (CMT)

i
d|Ψ(t)〉
dt

= H0(t)|Ψ(t)〉; H0(t) =

(
ε(t)− iγ

2 κ(t)

κ(t) −ε(t) + iγ
2

)
,

(1)
where 〈n|Ψ(t)〉 = ψn(t) describes the field amplitudes at
modes n = 1, 2. The evolution of this time-dependent
system is described in terms of the instantaneous (i.e., at
a fixed time t) eigenvectors {|λtl〉}(l = 1, 2) and eigenval-
ues {λtl} of the Hamiltonian H0. The latter are

λt1,2 = ±

√(
ε(t)− iγ

2

)2

+ κ(t)2, (2)

with corresponding instantaneous eigenvectors

∣∣λt1,2〉 =
1√
N1,2

(
κ(t), λt

1,2 − ε(t) + i
γ

2

)T

, (3)



2

FIG. 1: (a) A scattering set-up where an EP degeneracy is adi-
abaticall encircled, via the variation of two parameters. Ma-
genta arrows indicate a fixed outgoing scattering field which
is independent from incident excitations with random ampli-
tudes/ phase (yellow arrows of different width); (b) CW en-
circlement leads to a scattered field that has a “fixed-point"
attractor determined by the mode |µt1〉 (i.e., the normalized
weight amplitude b̃2 = 0) for Γ < Γc. For Γ > Γc, the scat-
tered field is random i.e. both b̃1,2 depend on the input. (c)
The same as in (b) but now for a CCW encirclement. In this
case the scattered signal is dominated by |µt2〉 i.e. b̃1 = 0 for
Γ < Γc. The sharp transition at Γ = Γc is indicated with
the transparent green plane. We assumed that γ = 1 (unit of
frequency).

where N1,2 = 2λt1,2
(
λt1,2 − ε(t)∓ iγ/2

)
. For fixed pa-

rameters (ε, κ), Eqs. (2,3) indicate that the system Eq.
(1) supports exceptional point (EP) spectral degenera-

cies. These degeneracies occur at
(
ε− iγ

2

)2

+ κ2 = 0

and are associated with the coalescence of both eigenval-
ues and eigenvectors. In the example of Eq. (1) we find
that a necessary condition to realize an EP is to have
ε = 0. Under this condition, we have an EP degener-
acy when κ = γ/2. It turns out that the quasi-adiabatic
evolution of any initial preparation under Hamiltonian
H0(t) results in a final state corresponding to one of the
two eigenstates Eq. (3), when the parameters (ε(t), κ(t))
change quasi-adiabatically forming a closed loop around
an EP. The dominant eigenvector of this final state is
uniquely determined by the handedness of the EP encir-
clement in the parameter space. This surprising effect
has been recently confirmed in microwave and optome-
chanical systems [34, 35]. The phenomenon has been
coined chiral mode switching and since its confirmation
has attracted much attention, with a number of subse-

quent studies addressing various aspects in the frame-
work of its Hamiltonian evolution [33, 36–39].

Here we depart from the Hamiltonian framework of chi-
ral mode switching dynamics and address the following
question: Are there any traces of this chiral physics in the
scattering framework, and if yes, how do they manifest
themselves in the scattered signal? Notice that when the
system is coupled to leads, new time scales (e.g. the dwell
time) emerge that affect (and even alter) the physics as-
sociated with the Hamiltonian dynamics of Eq. (1).
Scattering set-up–We proceed by turning the system of

Eq. (1) into a scattering target, see Fig. 1a. We assume a
scenario where an incident monochromatic wave |S+〉 =(
s+

1 , s
+
2

)T
e−iωt of frequency ω [49] enters the structure

from both sides n = 1, 2. In the most general case, its
components are random variables i.e., s+

l = S+
l e

iφl(l =
1, 2) where S+

l and φl are random numbers.
The coupled mode equations that describe the scatter-

ing process take the form

i
d|Ψ(t)〉
dt

= Heff |Ψ(t)〉+ iD|S+(t)〉

|S−(t)〉 = −|S+(t)〉+DT |Ψ(t)〉 (4)

where |Ψ(t)〉 is the field inside the scatterer and |S−(t)〉 =(
S−

1 (t), S−
2 (t)

)T is the outgoing scattered wave eval-
uated at some position, with components S−

l (t) =´
exp (−iωt) Ŝl(ω)dω. The effective Hamiltonian Heff in

Eq. (4) describes the dynamics of the field inside the tar-
get and takes into consideration its leakage to the con-
tinuum. It has the form

Heff = H0(t)− (i/2)DDT ; D =
√

2ΓÎ (5)

where H0(t) is given by Eq. (1), D describes the coupling
of the isolated system to the continuum and Î is the 2×2
identity operator. For simplicity, we will assume below
that |Ψ(t = 0)〉 = 0. Finally, for concreteness, we will use
a quasi-adiabatic driving scheme ε1(t) = −r sin(ϕ(t)),
κ(t) = κ0 + r cos(ϕ(t)) where ϕ(t) = Ωt + π/4 and Ω is
the modulation frequency.

It is tempting to argue, based on the similarities be-
tween the first Eq. (4) and the time-dependent CMT
Eq. (1) that describes the dynamics of an isolated sys-
tem, that the temporal evolution of the field |Ψ(t)〉 is the
same for the isolated and the scattering set-ups. There
are, however, important differences between these two
scenarios. Specifically, in Eq. (4) there is a “noise" term
associated with the incident monochromatic wave and an
extra “dissipative" term in the effective Hamiltonian that
modifies the internal dynamics, see Eq. (5). The latter is
described by the coupling operator D, which introduces
a new time scale τ ∼ 1/Γ. It defines the time for which
the field dwells inside the target before it decays back
into the continuum.
Analysis of scattered fields – We decompose the

outgoing wave |S−(t)〉 in terms of the eigenvectors
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FIG. 2: (a) An ensemble of initial waves
∣∣S+

〉
is sent into a quasi-adiabatically modulated linear target when the coupling

to the continuum (indicated by the green plane in the Im(λ)-axis of the spectrum of H0) is weak in comparison with the
cumulative amplification that the field experiences during one driving cycle. The solid trajectories on the eigenfrequencies
surfaces represent the measure p(t) =

|a1(t)|2λt
1+|a2(t)|

2λt
2

|a1(t)|2+|a1(t)|2
, which quantifies the relative weight with which each instantaneous

eigenvalue and the corresponding eigenvector
∣∣λt1,2〉 participate in the internal evolution. The weights a1,2 are evaluated via

the decomposition of the evolved state |Ψ〉 in the instantaneous basis of H0. At the end of the CW/CCW loop around an EP
(upper/lower sub-figures) the field inside the scatterer is dominated by only one eigenmode, residing at the blue/red Riemann
surface. This internal dynamics overwhelms the outgoing signal,

∣∣S−〉 = (S−1 , S
−
2 )T , whose ratio S−2 /S

−
1 reaches a fixed-point

attractor (see red/blue points at the outgoing panel). (b) The same as in (a) but for a strong coupling to the continuum. In
this case, the outgoing signal is largely influenced by the properties of the incident wave.

{|µtl〉}(l = 1, 2) of the instantaneous scattering matrix St
as |S−(t)〉 = b1(t) |µt1〉 + b2(t) |µt2〉. The relative weights
b1,2(t) have been evaluated after an initial transient –
typically associated with times t larger than two or three
periods of the driving.

The matrix St is then derived from Eqs. (4), assuming
a steady state solution. It takes the form:

St
∣∣µt〉 = µt

∣∣µt〉 ; St = −Î+iDTGteffD, G
t
eff =

1

ωÎ −Ht
eff

.

(6)
where Ht

eff = Heff(t = fixed) indicates the instantaneous
Hamiltonian Eq. (5) at time t. In our case of D =

√
2ΓÎ,

eigenvectors of St are the same as the eigenvectors of H0

and do not depend on the incident frequency ω.
Figures 1b,c show the real and imaginary parts of the

normalized weights b̃l = bl/
√
|b1|2 + |b2|2, (l = 1, 2) ver-

sus the coupling strength Γ for two counter-encirclements
of the EP. For each value of Γ, we generated a num-
ber of incident waves with components (s+

1 , s
+
2 ) having

normally (uniformly) distributed random relative ampli-
tudes (phases). We find an abrupt transition occurring
above a critical coupling strength Γc (marked by the

transparent green plane in Figs. 1b,c) from a “determin-
istic" to a “random" scattered wave. Below Γc the scat-
tered field is chiral, i.e., it consists of only one eigenmode
of the instantaneous scattering matrix St, while its pro-
jection to the other basis vector is negligible. The specific
eigenstate that represents the scattered field depends on
the encircling handedness of the parametric loop around
the EP. For example, in case of Fig. 1b where the pa-
rameters ε(t);κ(t) encircle the EP in a clockwise (CW)
direction, the coefficient b̃2 ≈ 0 while b̃1 remains on the
unit circle irrespective of the specific features of the in-
cident wave. When the encircling is counter-clock-wise
(CCW), the coefficient b̃1 ≈ 0 while b̃2 remains on a unit
circle, see Fig. 1c. Above Γc, the scattered field is, in gen-
eral, a linear combination of both eigenvectors {

∣∣µt1,2〉}
with b̃n reflecting the dependence of the outgoing field on
the specific properties of the incident waves.

The abrupt transition from a chiral fixed point attrac-
tor to a stochastic scattered signal is also evident from
the analysis of the outgoing fields in the channel repre-
sentation, i.e., |S−(t)〉 =

(
S−

1 (t), S−
2 (t)

)T . In Figs. 2a,b
we show the real and the imaginary part of the ratio be-
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tween the left and right outgoing scattered fields S−
2 /S

−
1

for two values of Γ, being above or below Γc ≡ 1/τc. We
also show the scattered field for a CW and a CCW en-
circling around the EP. The results reconfirm the conclu-
sions drawn from the previous analysis using the instan-
taneous scattering matrix basis, see Figs. 1b,c. Namely,
for Γ < Γc, the relative scattered right/left field ampli-
tudes are insensitive to the characteristics of the inci-
dent wave (see Fig. 2a) and depend only on the hand-
edness of the encirclement; for Γ > Γc the relative scat-
tered right/left amplitudes vary widely, becoming highly
sensitive to the characteristics of the initial wave. We
have confirmed via simulations that the scattered fields
demonstrate the same features as the ones shown in Figs.
1b,c and 2a,b irrespective of the incident frequency ω in
a broad frequency range ω ∈ [−2γ, 2γ]. For loops far
away from an EP, the scattered field appears to be again
sensitive to the shape of the incident wave [50].

The existence of a chiral fixed-point attractor in the
scattered field for Γ < Γc is particularly intriguing. A
heuristic explanation of its occurrence is given by consid-
ering the extreme case in which, during the parametric
cycle, the field |Ψ(t)〉 inside the scatterer follows the in-
stantaneous eigenstate of the effective Hamiltonian Ht

eff

corresponding to an eigenvalue that has the largest imag-
inary part. The total amplification (or attenuation) ex-
perienced by such mode at the end of the evolution cy-
cle is I ≈

´ 2π/Ω

0
max(Im(λteff,1, λ

t
eff,2))dt, and it splits

in two contributions: one associated with the amplifica-
tion/attenuation due to the evolution under H0(t) and
one due to a pure attenuation mechanism attributed to
the “escape" of the field to the continuum. These two
competing mechanisms determine the magnitude of the
internal field |Ψ(t)〉, see the first Eq. (4), which influ-
ences the formation of the scattered wave. The latter,
according to Eq. (4)b, consists of two terms: the leaking
internal field and the incoming wave, corresponding to
the second and first term in Eq. (4). If I > 0, the leak-
ing internal field will dominate over the incident wave
and it will determine the form of the scattered field. If,
on the other hand, I < 0 (due to strong coupling to the
continuum), the internal field will eventually subside and
the waves |S+(t)〉 will strongly influence the form of the
scattered field |S−〉.

The above argument assumes that the internal quasi-
adiabatic dynamics [50] is not affected by the presence
of the radiative losses (due to coupling to the contin-
uum) and the additive incoming fields |S+(t)〉 (see the
first Eq. (4)). Indeed, we have analytically shown (see
supplement) that this assumption is valid.
Electronic Circuits –We validated these predictions us-

ing an electronic circuit scattering set-up. The circuit
consists of two LC resonators (dimer), see Fig. 3a, one
being lossy due to the presence of a resistor R, while
the other one experiencing a balanced amount of gain
due to an amplifier −R. The inductances L at both res-

FIG. 3: Electric-circuit scattering set-up where a quasi-
adiabatic encirclement of an EP degeneracy can lead to a
chiral control of the scattered field when the coupling to TLs
is smaller than a critical value. The outgoing scattered field,∣∣S−V 〉 = (S−1 , S

−
2 )T , has an attractor determined by the di-

rection of encircling (bottom left). When the coupling to the
continuum is large, the outgoing field is sensitive to the spe-
cific features of the incident field.

onators are equivalent. The capacitances at the left and
right resonators are C1 = C(1 − ε) and C2 = C(1 + ε)
respectively, where ε � 1 is a time-modulated parame-
ter. Each LC resonator (ε = 0, R → ∞) has a resonant
angular frequency ω0 = 1/

√
LC = (2π)1GHz and res-

onant impedance Z0 =
√
L/C = 70 Ohms. The two

resonators are coupled via a capacitor Cc = κC. The
circuit is connected to transmission lines (TL), repre-
sented through their Thevenin equivalent, consisting of a
grounded voltage source connected in series to the refer-
ence resistance R0 = 50 Ohms and capacitively coupled
through Ce = δ · C to the nodes of the left and right
resonators, V1 and V2, see Fig. 3a.

Using Kirchoff’s laws, we evaluated the parameters for
which the isolated circuit (Ce = 0) has EP degeneracies
[50]. The eigenfrequencies of this system are

ω2 =
±
√

(2κ− γ2)2 − 4γ2 + 2(1 + κ)− γ2

2(1 + 2κ)
(7)

where ω = ω̃/ω0 and γ ≡ Z0/R. Consequently, the EP
occurs whenever the term inside the square- root is zero
i.e. κ = γ(1+γ/2). A quasi-adiabatic loop around the EP
is realized by a time-variation of the capacitances of each
of the two LC resonators and of the coupling capacitance
i.e. ε(t) = ε0 sin(Ωt) and κ = κ0(1 + ` cos(Ωt)), where
Ω = 1MHz is the modulation frequency and ε0 = 0.05,
` = 0.3, and κ0 = 0.105.

The incident (monochromatic) voltages waves∣∣S+
V (t)〉 = (s+

1 , s
+
2 )T eiω̃t = 1

2 (V s1 , V
s
2 )T eiω̃t are generated

by driving the nodes VL and VR (see Fig. 3), with
time dependent (Thevenin equivalent) voltage sources
vs1,2(t) = Re

(
V s1,2e

iω̃t
)
. We have considered an ensemble
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of incident waves resulting from voltage sources with
random amplitudes V s1(2) and phases [50]. The outgoing
waves at the two transmission lines are written as
|S−
V (t)〉 = (S−

1 (t), S−
2 (t))T , where v−1,2(t) = Re

{
S−

1,2(t)
}
.

We have evaluated the outgoing voltages at multiples
of the driving period and after a transient time of
two-three driving periods. Figure 3 shows that, for
weak coupling to the transmission lines, the system
reaches a fixed-point attractor which depends only on
the direction of the loop encircling the EP. In contrast,
when the coupling to the TL is strong, the outgoing
signal demonstrates a sensitivity to the preparation of
the incident wave, see Fig. 3.

Conclusions –We have investigated the scattering from
an adiabatically driven target which supports an EP de-
generacy. We find that the scattered field is insensitive to
the shape of the incident wave and the operational details
of the driving. This occurs when the parametric path of
the driving encircles the EP and the dwell time of the
scattering process is above a critical value τc. The lat-
ter is associated with the inverse growth rate of the field
inside the scattering target during one period of the adia-
batic driving. Under these conditions, the scattered field
approaches a fixed point. The sensitivity to the incident
wave is abruptly regained when the dwell time becomes
smaller than τc. We have tested the validity of these re-
sults in an electronic circuit. It will be interesting to test
this robustness of the outgoing field against initial condi-
tions in more challenging scattering scenarios where, for
example, chaotic scattering prevails [52, 53].
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