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Rubidium Rydberg atoms in either |mj |-sublevel of the 36p3/2 state can exchange energy via
Stark-tuned Förster resonances, including two-, three-, and four-body dipole-dipole interactions.
Three-body interactions of this type were first reported and categorized by Faoro, et al. [Nat.
Commun. 6, 8173 (2015)] and their Borromean nature was confirmed by Tretyakov, et al. [Phys.
Rev. Lett. 119, 173402 (2017)]. We report the time dependence of the N-body Förster resonance
N×36p3/2,|mj |=1/2 → 36s1/2 +37s1/2+(N−2)×36p3/2,|mj |=3/2, for N = 2, 3, and 4, by measuring
the fraction of initially excited atoms that end up in the 37s1/2 state as a function of time. The
essential features of these interactions are captured in an analytical model that includes only the
many-body matrix elements and neighboring atom distribution. A more sophisticated simulation
reveals the importance of beyond-nearest-neighbor interactions and of always-resonant interactions.

Understanding few-body and many-body interactions
is of near universal importance, with relevance to prob-
lems in atomic, condensed matter, and nuclear physics.
Experiments with ultracold atoms and molecules have
significantly advanced that understanding. For exam-
ple, the spin lattice that forms when polar molecules are
confined with an optical lattice may be useful in model-
ing quantum magnetism and topological insulators [1, 2].
Precise control over the interactions in systems of ul-
tracold atoms has recently been realized in a variety of
experiments. The few-body universal quantum states
predicted by Efimov [3] have been observed and stud-
ied extensively in ultracold gases [4, 5]. Progress with
dipolar quantum gases includes the observation of stable
quantum droplets in a dysprosium Bose-Einstein conden-
sate [6], the observation of angular oscillations of quan-
tum droplets, analagous to the behavior of nuclei, in-
duced by the dipole-dipole interaction [7], and the dis-
covery of a regime with super-solid properties [8].

Dipole-dipole mediated energy exchange in an amor-
phous ultracold Rydberg gas has been studied extensively
over the past two decades [9, 10]. Precise lineshape mea-
surements have contributed to our understanding of the
importance of many-body and always resonant exchange
in this system [11–15]. Recently, resonant energy trans-
fer between Rydberg atoms and polar molecules has also
been observed [16, 17].

Less attention has been given to the time evolution
of resonant energy exchange in this system. A Ramsey
interferency measurement was used to explore dephasing
due to always resonant processes [18]. Rabi oscillations in
the energy exchange between a pair of isolated atoms has
been seen [19, 20] along with energy exchange between
two well-separated macroscopic samples [21]. Computa-
tional and experimental results that image the time de-
pendence of the energy exchange hint at the possibility
of localization in this system [22–24]. Using a microwave
field to initiate a quantum quench Orioli, et al. have ex-

plored relaxation of an ultracold Rydberg gas [25]. Fur-
ther exploration of the time evolution of energy exchange
in ultracold Rydberg gases may ultimately shed light on
many-body localization and thermalization that comple-
ments recent work in other spin systems [26–28].

Resonant few-body dipole-dipole interactions with Ry-
dberg atoms were discovered and studied only recently.
Gurian, et al. observed a four-body resonant interaction
in cesium that lies between, and relies on, a pair of two-
body interactions [29]. Faoro, et al. reported on a sim-
pler three-body process in cesium and developed a theory
for a class of similar few-body interactions applicable to
many Rydberg atoms [30]. More recently, Tretyakov, et
al. observed the same type of three-body interaction in
rubidium Rydberg atoms while conclusively demonstrat-
ing the Borromean nature of the energy exchange [31].
Additional work has studied coherence of this interaction
and its suitability for use in a quantum gate [32, 33].

In this Letter, we report on the time dependence of the
two-, three-, and four-body dipole-dipole interactions in
rubidium

p+ p → s+ s′ (1)

p+ p+ p → s+ s′ + p′ (2)

p+ p+ p+ p → s+ s′ + p′ + p′, (3)

where the state labels have been abbreviated p =
36p3/2,|mj|=1/2, s = 37s1/2, p′ = 36p3/2,|mj|=3/2, and
s′ = 36s1/2. We present a simple model of the time evo-
lution that is able to approximately describe the shape
of the time dependence curve, though it neglects always-
resonant and beyond-nearest-neighbor interactions. In
contrast, a full many-body simulation matches the ex-
periment more closely, revealing the importance of these
physical processes.

The resonant interactions of Eqs. (1)-(3) are indicated
by solid arrows in the Stark map of Fig. 1(a). The
two-body exchange is resonant at an electric field of
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3.29 V/cm. Tuning to higher field introduces an en-
ergy defect that is equal to Ep − Ep′ at 3.52 V/cm. A
third p atom can account for the defect via either of the
equally detuned two-body exchanges p+ s′ → s′ + p′ or
p+s → s+p′. Similarly, the energy defect is 2(Ep−Ep′)
at 3.80 V/cm which requires a fourth p atom. One exam-
ple of the many possible four-body interactions is shown
in Fig. 1(b). While the few-body energy exchange can
be perturbatively calculated as a sequence of two-body
interactions, it is essentially Borromean in nature and re-
quires all atoms to participate simultaneously [31]. More
Förster resonances following this pattern are possible and
are discussed in Ref. [30].

In our experiment, about 106 85Rb atoms are trapped
in a magneto-optical trap (MOT) of diameter ≈ 0.5 mm.
The trapping laser at 780 nm cycles atoms between the
5s and 5p states. A 776 nm laser drives the 5p to 5d
transition and a 1265 nm laser excites atoms to the 36p
state. Simulation suggests a Rydberg density on the or-
der of 108 cm−3, corresponding to an average spacing of
about 20 µm. Highly excited atoms then exchange en-
ergy through a dipole-dipole interaction and the fraction
of atoms in each state is quantified using directed field
ionization (DFI) [34].
A set of coaxial cylinders placed on either side of the

MOT allow us to apply static and time varying electric
fields [35]. To separate the p and p′ states, atoms are
excited in an electric field of 4.2 V/cm. The interaction
pulse, which is a square voltage pulse whose length and
amplitude can be varied, is then applied to one cylinder.

To determine the strength of this energy exchange, we
measure the fraction of atoms that end up in the s state.
The time-resolved field ionization signals from the s and
p states obtained using standard selective field ionization
(SFI) are almost completely overlapping. In addition,
the p-state signal causes ringing in our detector, which
makes quantitative measurement of the s′-state fraction
difficult. We therefore use DFI to better resolve the s

and p states and measure s-state fraction [34–36]. Using
a genetic algorithm, DFI optimizes a small perturbation
that is added to an SFI ramp. This perturbation directs
a fraction of the s-state signal along a pathway through
the Stark map that ionizes early in time relative to that of
the p-state signal, allowing us to quantify the fraction of
atoms that end up in the s state. During optimization of
the DFI perturbation, the delay between excitation and
the start of the field ionization ramp is set to zero and no
interaction pulse is present. After optimization we add a
fixed delay of 10 µs between excitation and DFI to pro-
vide room for an interaction pulse of varying amplitude
and/or length. During this 10 µs window, blackbody ra-
diation can drive transitions to neighboring states. This
leads to a constant 1.5% transfer to the s state in the ab-
sence of any dipole-dipole interaction, which we subtract
from our dipole-dipole fraction measurements.

With the width of the interaction pulse fixed at 9 µs,
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Figure 1. (Color online) (a) Stark map showing the s, p,
s′ and p′ energy levels as a function of electric field. Solid
arrows correspond to Förster resonances for which the time
dependence was studied, with atoms are initially excited to
the p state. Dotted lines are the complementary set of res-
onances for an initial state of all p′ atoms. The dashed line
is the location of the two-body p + p′ → s + s′ resonance.
(b) Energy level diagram of a possible four-body interaction
of Eq. (3). (c) Experimental s-state fraction as a function of
electric field for an initial state composed of p atoms (solid
line) or p′ atoms (dotted line).

we scan the amplitude to tune various interactions into
resonance. We alternate between exciting the p and p′

states and average several thousand shots for each ampli-
tude. For a sample excited to the p state, the fraction of
atoms that end up in the s state is shown in Fig. 1(c) by
the solid line. In this scan we can clearly identify two-,
three- and four-body resonant energy exchanges. We also
see a feature at the location of the p + p′ → s+ s′ reso-
nance, which is marked by the dashed arrows in Fig. 1(a).
We associate this with an off-resonant energy exchange.
First the off-resonant p+ p → s+ s′ populates the s+ s′

state. From this state, the resonant s + s′ → p + p′

can proceed. In contrast to the resonant few-body in-
teractions studied here, this is an inefficient off-resonant
multi-step process that seeds the p+p′ → s+s′ exchange.

Other features in the signal have yet to be understood.
In particular, we see a broad tail to the low field side of
the two-body exchange along with the small peak near
2.7 V/cm. The dotted lines in Fig. 1(a) and Fig. 1(c)
show the complementary set of resonances that occur
with initial excitation to the p′ state. The field axis is
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calibrated by fitting the locations of the two-body reso-
nances. We check this calibration by measuring the split-
ting between the p and p′ states. These two calibrations
agree to within 5%.
We have also investigated the time dependence of the

two-, three-, and four-body interactions. To collect this
data, we scan the time that the interaction field is applied
for each of the three resonant fields at 3.29, 3.52, and
3.80 V/cm. The fraction of atoms in the s state as a
function of time is shown by the solid lines in Fig. 2 for
each of these three fields. The primary uncertainty in the
s-state fraction is due to systematic errors in calibration
of about 5%. This is larger than the statistical error since
we average over thousands of shots at each time.
For two atoms at fixed separation, the time dependence

should be given by Rabi oscillations; in fact, Ravets, et
al. have observed Rabi oscillations between a pair of Ry-
dberg atoms [20]. A more complicated, but still coher-
ent, oscillation is expected for few-body interactions in
a close triplet or quadruplet [33]. However, we have a
different amorphous sample of atoms on each shot of our
laser, which averages out the oscillations. The early time
behavior of Fig. 2 is dominated by high frequency os-
cillations among closely spaced atoms, which drive the
relatively rapid increase in s-state fraction. This is fol-
lowed by a gradual approach to saturation due to more
distant interactions.
We can begin to understand the shape of the time de-

pendence curves for the N -body interactions by consid-
ering three main factors. First, as N increases, the sat-
uration level of the population transfer decreases so that
one expects the s-state fraction to eventually plateau at
0.25, 0.16, and 0.125 for N = 2, N = 3, and N = 4
respectively. Second, the matrix elements decrease as N
increases since each additional two-body step brings in
another factor of the detuning. This is, however, some-
what mitigated by the increasing number of paths from
initial state to final state as N increases. Finally, in an
amorphous sample of atoms the distance between a close
pair will be less than the average distance among close
triplets or quadruplets.
We construct a simple analytical model comprised of

these three factors. We assume that the N -body inter-
action is dominated by contributions from clusters of N
atoms. The jth-nearest neighbor probability distribution
is given by

g(r0j | r0(j−1)) = 4πr20jρe
− 4

3πρ(r
3
0j−r30(j−1)), (4)

where r0j is the distance from the central atom to its
jth-nearest neighbor and ρ is the Rydberg atom den-
sity [37, 38]. Beyond-nearest-neighbor atoms may be
closer to each other than to the central atom. Since
the r−3 dependence of the dipole-dipole interaction lends
much greater weight to closely spaced atoms and r(i≥1)j

could be significantly less than r0j , we average over the
distances r(i≥1)j .
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Figure 2. (Color online) Fraction of atoms in the s state as
a function of interaction time for (a) the experiment (solid)
compared to the simple analytical model (dashed) and (b) the
experiment (solid) compared to the simulation (dashed). The
two-, three-, and four-body interactions are shown in blue,
red, and green respectively. In (a), a density of 9.5×107 cm−3

was chosen for the simple model to match the initial slope of
the two-body interaction. In (b), the simulations were run at
a density of 2.4× 108 cm−3.

The matrix elements can be calculated perturbatively
by summing over all paths from the initial state |i〉 to the
final state |f〉 with

ω2 =
〈f |σ̂fi|i〉

r3fi
(5)

ω3 =
∑

j

〈f |σ̂fj |j〉 〈j|σ̂ji|i〉

δjr
3
fjr

3
ji

(6)

ω4 =
∑

j

∑

k

〈f |σ̂fj |j〉 〈j|σ̂jk|k〉 〈k|σ̂ki|i〉

δjδkr
3
fjr

3
jkr

3
ki

, (7)

where |j〉 and |k〉 are intermediate states, δj is the detun-
ing of the jth intermediate state, and σ̂ij is the operator
that takes the jth state to the ith state. Since the dipole-
dipole interaction couples pairs of atoms, each operator
σ̂ represents a product of single-atom operators that take
an individual atom from an s-state to a p-state or vice
versa [23, 39].
For this simple model, we ignore the angular depen-

dence and simply multiply the summands in Eq. (6) and
Eq. (7) by the total number of possible paths from a
given initial to a given final state. We also consider δ to
be fixed for every step, yielding

ω2 =
µν

r312
, ω3 =

2(µν)2

δ r312r
3
23

, and ω4 =
16(µν)3

δ2 r312r
3
23r

3
34

, (8)
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where µ ≈ 700 ea0 and ν ≈ 600 ea0 are the transition
dipole moments p or p′ → s and p or p′ → s′ respec-
tively. There are significantly more paths from initial to
final state if ±mj states are included.
The time dependence of the population transfer to

the s state among a cluster of N atoms should be os-
cillatory with frequencies similar to ωN and an ampli-

tude determined by the saturation level. Since we av-
erage the time dependence over atomic separations, the
particular form of the oscillation is not important. We
use (2N)−1 sin2(ωN t), where (2N)−1 gives the saturation
level. The population fractions, PN (t), transferred to the
s state are

P2(t) = 2πρ

∫ ∞

0

e−
4
3πρr

3

sin2

[

µν

r3
t

]

dr, (9)

P3(t) =
16πρ2

3

∫ R

0

r202e
− 4

3πρr
3
02

∫ r02

0

r201

∫ π

0

sin2

[

(µν)2t

δ r301(r
2
01 + r202 − 2r01r02 cos θ12)3/2

]

dθ12dr01dr02, (10)

P4(t) = 16πρ3
∫ R

0

r203e
− 4

3πρr
3
03

∫ r03

0

r202

∫ r02

0

r201

∫ π

0

∫ π

0

sin2

[

(µν)3t

δ2 r301(r
2
01 + r202 − 2r01r02 cos θ12)3/2(r202 + r203 − 2r02r03 cos θ23)3/2

]

dθ12dθ23dr01dr02dr03, (11)

where θij is the angle between ~r0i and ~r0j and the numeri-
cal pre-factor includes the saturation level. The two-body
result of Eq. (9) can be integrated analytically [15, 40].
The three- and four-body results in Eqs. (10)-(11) must
be integrated numerically. The integration is terminated
at a radius R large enough that it converges.

The time dependence of Eqs. (9)-(11) is shown by
dashed lines in Fig. 2(a). The density was chosen to
match the initial slope of the model’s two-body time
dependence to the experimental data, yielding ρ =
1.0(0.3) × 108 cm−3. This model captures the es-
sential features of the experimental curves. However,
in attempting to match the two-body data, it signifi-
cantly under-predicts the three- and four-body popula-
tion transfer. This simple model ignores the fact that the
experimental three- and four-body time-dependence each
include a contribution from the shoulder of the two-body
interaction. This could account for some, but not all, of
the disagreement.

Our simple model neglects always-resonant interac-
tions and beyond-nearest-neighbor interactions, which
have been shown to play a role in the dipole-dipole energy
exchange in a three-Rydberg-atom chain [41]. To address
these deficiencies, we have also simulated our system by
constructing the Hamiltonian matrix using Eqs. (5)-(7)
while averaging over the angular dependence [20, 42],
under the assumption that the Rydberg atoms remain
frozen in place for the duration of the experiment. We
randomly place 40 atoms in a spherical volume of ra-
dius 34 µm, while using the blockade radius to estimate
a minimum distance between atoms. We calculate the
time evolution by solving the Schrödinger equation on a
supercomputer for each atom and its closest 8 neighbors,

resulting in a Hamiltonian matrix of rank 48620. The
results are averaged over all 40 atoms and the process
is repeated so that a few hundred random instances are
averaged. The simulated results, which agree well with
the data, are shown by the dashed lines in Fig. 2(b).

Our simulations suggest that our Rydberg density is
2.4(0.1)×108 cm−3, where the statistical uncertainty was
calculated from multiple simulation runs at a range of
densities. By averaging over many random arrangements
of atoms at this density, we calculate average interaction
strengths of ω2 = 162± 6 kHz, ω3 = 1.6± 0.1 kHz, and
ω4 = 0.7 ± 0.1 kHz for the two-, three-, and four-body
interactions, respectively. Since each of the resonant in-
teractions scale differently with density, one could poten-
tially fit simulations to the data to measure the Rydberg
density of the sample.

Our experiment is a quantum quench [43, 44]. We
initially excite atoms to a many-body eigenstate of the
Stark Hamiltonian at an electric field where they are non-
interacting and then switch to the dipole-dipole interac-
tion Hamiltonian by changing the field. The subsequent
time evolution can be broadly divided into two outcomes.
The system can thermalize, eventually achieving an equi-
librium state that can be specified with a small number
of parameters. Or, in the case of many-body localization,
the system fails to thermalize and retains a memory of
its initial state [44–46]. Quenches have been used exten-
sively to study both many-body localization and ther-
malization [25, 46–49].

Since long-range dipole-dipole interactions should lead
to efficient energy transport, one expects our system to
thermalize. Indeed, for the two-body interaction this is
what we seem to observe as the s-state fraction satu-
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rates near the expected level of 0.25. However, for the
three-body and especially the four-body interactions, the
saturation level is significantly lower than expected. This
could indicate that the system fails to thermalize. In fact,
Nandkishore and Sondhi have recently shown that many-
body localization could be possible even in systems with
long-range interactions [50].

To further investigate, we have extended our simula-
tions of the four-body interaction to longer times and
higher densities. The results show that the s-state frac-
tion does not saturate at the expected value of 0.125.
Távora, et al. [51, 52], suggest using the survival prob-
ability of the initial state as a criterion for numerically
predicting thermalization. A rapidly decaying survival
probability is a sign of thermalization as the memory of
the initial state becomes inaccessible due to the spread of
entanglement throughout the system. Our preliminary
numerical analysis shows that the initial state survival
probability in the four-body case does, indeed, decay sig-
nificantly more slowly than for the two-body interaction.

We have presented experimental data showing the time
dependence of few-body interactions in an amorphous
ultracold sample of Rydberg atoms. While the matrix
elements for the three- and four-body interactions are
reduced because of the detuning, these interactions are
stronger than one might expect because of the many
paths from initial state to final state. The densities ex-
tracted from our simple model and our simulation differ
by about a factor of two or three, revealing the impor-
tance of always-resonant and beyond-nearest-neighbor
interactions. Finally, the population transfer saturation
levels suggest that the system may not thermalize as ex-
pected. Since the four-body resonance is relatively well-
separated from the two- and three-body peaks, it could
prove useful for future experiments studying thermaliza-
tion and localization.

This work was supported by the National Science
Foundation under Grants No. 1607335 and No. 1607377.
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