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We study for the first time the effects of strong short-range electron-electron interactions in generic
Rarita–Schwinger–Weyl semimetals hosting spin-3/2 electrons with linear dispersion at a four-fold
band crossing point. The emergence of this novel quasiparticle, which is absent in high-energy
physics, has recently been confirmed experimentally in the solid state. We combine symmetry con-
siderations and a perturbative renormalization group analysis to discern three interacting phases
that are prone to emerge in the strongly correlated regime: The chiral topological semimetal breaks
a Z2-symmetry and features four Weyl nodes of monopole charge +1 located at vertices of a tetra-
hedron in momentum space. The s-wave superconducting state opens a Majorana mass gap for the
fermions and is the leading superconducting instability. The Weyl semimetal phase removes the
fourfold degeneracy and creates two Weyl nodes with either equal or opposite chirality depending
on the anisotropy of the band structure. We find that symmetry breaking occurs at weaker coupling
if the total monopole charge remains constant across the transition.

The emergence of massless fermionic quasiparticles as
low-energy degrees of freedom in condensed matter sys-
tems links phenomena from high-energy physics to those
of many-body systems [1]. Semimetals with the Fermi
level close to a high-symmetry band crossing point pro-
vide the closest realization of the relativistic concept of
a particle described by its mass and spin [2]. The explo-
ration of such Fermi points in graphene, ultracold atoms,
Dirac, Weyl, and Luttinger semimetals is on the forefront
of both theoretical and experimental research [3–12].

Very recently, first experimental evidences of emergent
spin-3/2 relativistic fermions with concomitantly large
topological charge have been reported in CoSi, RhSi [13–
15], AlPt [16], and PdBiSe [17]. Since the standard model
of particles does not feature fundamental spin-3/2 parti-
cles, although they appear as composite degrees of free-
dom through ∆-baryons or in conjectured extensions like
supergravity [18–20], identifying their condensed mat-
ter analogues is key to studying their properties and in-
teractions. In three-dimensional Rarita–Schwinger–Weyl
(RSW) semimetals with fourfold linear band crossing
point at the Fermi level, the universal low-energy k · p
Hamiltonian reads

H(p) = pi(v1Ji + v2J
3
i ). (1)

Here p is the momentum measured from the crossing
point, Ji are the 4×4 spin-3/2 matrices [21], i = 1, 2, 3 =
x, y, z with implicit summation over repeated indices, and
v1,2 are two non-universal material parameters. The term
multiplying v1 is rotationally invariant and proportional
to the helicity operator with eigenvalues ±3/2,±1/2,
making the spin-3/2 character explicit. The second term
is the other scalar (linear in pi) that can be constructed
from the cubic group and reduces rotational symmetry to
the rotational cubic group O for v2 6= 0, see Fig. 1. Con-
crete candidate materials for realizing H(p) have been
proposed at the transition to a crystalline topological in-
sulator in antiperovskites [22, 23], for many space groups

FIG. 1: Energy dispersion of the spin-3/2 Rarita–Schwinger–
Weyl fermion at a four-fold linear band crossing point. We set
one of the momentum components of p to zero and plot the
eigenvalues of Eq. (1) versus the remaining two components
for v2 = 0 (left) and v2 = 1/3 (right). For v2 = 0 the spectrum
is rotation invariant, while for generic values of v2 it features
cubic anisotropy.

and materials in Refs. [24–26], in transition metal sili-
cides [8], and for v2 = 0 through a specific tight-binding
model with isotropic spin-orbit coupling on a tricolor lat-
tice in Ref. [27]. Our model in Eq. (1) is idealized in the
sense that we do not assume other band crossings at the
Fermi level to be important for the interacting phases,
including intervalley coupling to an RSW fermion of op-
posite chirality.

The impact of short-range interactions in generic RSW
semimetals has not been studied so far. This is somewhat
surprising when compared to the case of quadratic band
touching of spin-3/2 electrons, with Eq. (1) replaced
by the Luttinger Hamiltonian [28, 29], where material
realizations in pyrochlore iridates and half-Heuslers are
rather well-understood, and there exists an extensive lit-
erature on exotic interacting phases resulting from the
higher spin of fermions such as spin-2 or spin-3 Cooper
pairing [30–43] or octupolar magnetism [44–49]. In both
RSW and Luttinger semimetals, weak short range in-
teractions are irrelevant due to the vanishing density of
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states at the Fermi point, and so the phases of interest are
at strong coupling. For RSW semimetals, short-range in-
teractions have only been investigated in the exceptional
case of α = 0 [10, 11](defined below), which is qualita-
tively different from H = piJi.

In this Letter we aim to fill this gap in the under-
standing of interacting RSW semimetals. Our analy-
sis proceeds in three steps. We first study the single-
particle physics of RSW fermions to clarify the distinct
relevant parameter regimes. We then perform an unbi-
ased perturbative renormalization group (RG) analysis of
all competing ordering channels and identify three lead-
ing strong coupling instabilities. At last we discuss sym-
metries and quasiparticle spectra in the ordered phases
found with the RG.

Single-particle physics. To discuss the symmetries and
topology of the RSW Hamiltonian in Eq. (1), we write

H(p) = pi(Vi + αUi) (2)

with Vi = 1
3 (−7Ji + 4J3

i ) and Ui = 1
6 (13Ji − 4J3

i ) [23].
We have tr(ViVj) = tr(UiUj) = 4δij and tr(ViUj) = 0.
The chemical potential is at the band crossing point. We
set the Fermi velocity multiplying the term piVi to unity
so that the crossing is described by the single parame-
ter α [53]. For α = 2 the Hamiltonian reduces to the
rotationally invariant expression piJi. Remarkably, the
matrices Vi form a Clifford algebra,

{Vi, Vj} = 2δij , (3)

and so Hα=0 = piVi is Lorentz invariant with enhanced
O(2)-symmetry. Importantly, this comprises two Weyl
points of equal chirality, contrary to a Dirac Hamiltonian,
which decomposes into Weyl points of opposite chirality
in the massless limit.

The system is time-reversal invariant with time-
reversal operator T = γ45K, T 2 = −1, where K is com-
plex conjugation and γ45 a Hermitean matrix defined be-
low. For fixed p we have {T , H(p)} = 0, and so ev-
ery eigenvalue E(p) implies an eigenvalue −E(p) for the
time-reversed eigenvector, i.e. particle-hole symmetry of
the spectrum. Next consider the Hermitean operator

W =
2√
3

(JxJyJz + JzJyJx), (4)

which squares to unity. We have [Vi,W] = {Ui,W} = 0,
implying WHαW = H−α. Consequently a sign change
α → −α can be undone by ψ →Wψ, and so we assume
α ≥ 0.

We now determine the topology of the RSW point
node. The eigenvectors |ν(p)〉 of H(p) for fixed p com-
prise two positive and two negative energy bands, which
we label by an index ν. For each band we define the
Berry connection Aν(p) = −i〈ν(p)|∇p|ν(p)〉, pseudo-
magnetic field Bν(p) = ∇p ×Aν(p), and Chern number

band energy α = 0 0 < α < 1 1 < α

1 E+(p) C = −1 C = 3 C = 3

2 E−(p) C = −1 C = −5 C = 1

3 −E−(p) C = 1 C = 5 C = −1

4 −E+(p) C = 1 C = −3 C = −3

monopole charge −2 −2 4

TABLE I: Normal state Chern numbers. Bands are enumer-
ated by decreasing energy eigenvalues, see Eq. (10) with
χ = 0. There is a topological phase transition at α = 1,
where the total monopole charge changes. The case α = 0
corresponds to two overlapping Weyl nodes of equal chirality.

Cν =
∮

d~Ω ·Bν(p), where the latter surface integral en-
closes the origin. In Table I we present Cν as a function
of α together with the total monopole charge of the Fermi
node, defined as the sum of Chern numbers of the positive
energy bands. The system undergoes a topological phase
transition at α = 1, where the monopole charge changes
from −2 to 4. (Note that H(p) features line nodes for
α = 1, which are an artefact of the linear approximation
and can be eliminated by including a quadratic term.)
The curious Chern numbers in the regime 0 < α < 1 do
not seem to have been reported before. Note that while
RSW fermions are often associated with monopole charge
4 as in AlPt or PdBiSe, the case of charge 2 observed in
CoSi/RhSi might also correspond to an RSW fermions.

Renormalization group. The many-body physics of in-
teracting RSW electrons is captured by the Lagrangian

L = ψ†(∂τ +H(−i∇) + ēa)ψ +
1

2
(∇a)2 + Lshort (5)

with τ imaginary time, ψ the four-component electron
spinor, a the photon that mediates long-range inter-
actions, ē electric charge, and short-range interactions
Lshort. Due to the symmetries and dimensionality of the
system, the interaction effects at low energies can be in-
vestigated with the one-loop RG developed in Ref. [48],
where Eqs. (5) and (6) have been investigated for H be-
ing the Luttinger Hamiltonian. Here we use the same no-
tation and adapted equations, but obviously the physics
is different due to the modified band dispersion. We re-
fer to Ref. [48] for a very detailed introduction to the
computational procedure, but summarize a few central
definitions in the Supplemental Material (SM, [21]).

In the following, we only need to consider point-like
short-range interactions, since terms containing deriva-
tives of the fermion field are suppressed at the Fermi
point at low energies. The most general Fierz-complete
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form is [48]

Lshort = ḡ1(ψ†ψ)2 + ḡ2

2∑
a=1

(ψ†γaψ)2 + ḡ3

5∑
a=3

(ψ†γaψ)2,

(6)

where we introduce five γ-matrices

γ1 =
J2
x − J2

y√
3

, γ2 = J2
z −

5

4
1, γ3 =

JzJx + JxJz√
3

, (7)

γ4 =
JyJz + JzJy√

3
, γ5 =

JxJy + JyJx√
3

(8)

satisfying {γa, γb} = 2δab. We write γab = iγaγb. For the
RG analysis, we define dimensionless running couplings
by gi = Λ2ḡi/(2π

2), e2 = ē2/(2π2), with Λ the band-
width. Although the gi are power-counting irrelevant,
they can induce ordering at strong coupling [50].

As pointed out by Isobe and Fu [23], the electric charge
e gives self-energy corrections, but flows to zero. It leads
to an anomalous dimension ∝ e2 for the fermions and,
remarkably, the stable fixed points for the anisotropy are
α = 0 and α = 2.296, whereas α = 2 is unstable. In
real materials, however, the corresponding RG flow may
be stopped by finite volume effects, or suppressed by a
large dielectric constant. We thus assume α to be a fixed
number, determined by the chemical composition of the
compound. Renormalization effects due to the coupling
of long- and short-range interactions are equally sup-
pressed by powers of e2 → 0 and will be neglected hence-
forth. (Furthermore, there is no one-loop diagram that
could induce a back-reaction of g1,2,3 onto the RG flow
of e2 [48].) The remaining RG flow equations have the
form dgi/d ln b = −2gi + Cijk(α)gjgk, where Cijk(α) are
coefficients that result from integrating out fluctuations
of RSW electrons in a momentum shell Λ ≥ p ≥ Λ/b.
The coefficients parametrically depend on α through the
anisotropic fermion dispersion.

We search for quantum critical points, which are fixed
points of the RG flow where exactly one linear combina-
tion of g1, g2, g3 is a relevant direction. At every fixed
point, we determine the scaling dimension of the ten
fermion bilinears ψ†Mψ(∗) allowed by symmetry through
coupling a term hψ†Mψ(∗) to the Lagrangian and deter-
mining the flow ḣ = (1 + η)h. The bilinear with the
largest susceptibility η condenses at the associated quan-
tum phase transition [21]. Both the fixed points and
susceptibilities depend on α. We identify three distinct
quantum critical points (labelled W, SC, V), which are
related to the following order parameters:

(1) chiral topological semimetal: χ = 〈ψ†Wψ〉 6= 0

(2) s-wave superconductor: φ = 〈ψ†γ45ψ∗〉 6= 0

(3) Weyl semimetal: mi = 〈ψ†Viψ〉 6= 0
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FIG. 2: Renormalization group fixed points. Upper panel.
Couplings g1, g2, g3 (solid, dashed, dotted line) at the fixed
points W (black), SC (red), and V (blue). At W we have
g1 = −g2 = g3 and so we only show the first coupling.
Lower panel. Susceptibility exponent η of the order parame-
ter at the fixed points. At W we have η = 3 for 〈ψ†Wψ〉
for all α > 0 (solid black). This is the dominant diver-
gence for α > 0.7, while for α < 0.7 the order parameter
Ni(α) = 〈ψ†(Vi + κ(α)Ui)ψ〉 with κ(α) � 1 has the largest
susceptibility (dashed black). At SC the most divergent chan-
nel is the s-wave superconductor (red). At V, Ni(α) has the
largest susceptibility exponent (dashed blue). Since here κ(α)
is generically very small, we can neglect it and only consider
the approximate order parameter 〈ψ†Viψ〉 (solid blue).

The identification of these three leading instabilities in
interacting RSW semimetals from an unbiased RG anal-
ysis constitutes the first major result of this work.

The three fixed points have the following properties,
which are visualized in Fig. 2: The large critical cou-
plings gi,c ∼ 1 are due to the vanishing density of states
at the Fermi point. Whereas SC and V exist for every
α, W only exists for α > 0. W: Here the ratio of critical
couplings is g1 = −g2 = g3 = 2g? > 0 for all α, implying
the system to flow to the fixed point Lagrangian (9). The
susceptibility exponent of χ is exactly given by the spa-
tial dimension, ηW = d = 3, which comprises the leading
instability in the regime α ≥ 0.70. For α < 0.7, the order
parameter instead has large overlap with 〈ψ†Uiψ〉, but
we will not further discuss it in this work. SC: This is
a superconducting quantum critical point corresponding
to a condensation of φ, which acts as a Majorana mass
term for the fermions, see Eq. (12). V: The fixed point V
corresponds to a condensation of mi. More precisely, the
order parameter receives a small admixture of Ui accord-
ing to 〈ψ†(Vi+κ(α)Ui)ψ〉. However, κ = 0 for α = 0 and
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κ(α) < 5% in general, so we neglect this effect for the dis-
cussion here, but plot the function κ(α) for completeness
in the SM [21].

Chiral topological semimetal. We now characterize
the properties of the chiral topological semimetal phase,
which is the second major result of this work. We ver-
ified above that the system at W, after fine-tuning one
coupling, is attracted to the fixed point Lagrangian

L? = ψ†(∂τ +H)ψ − ḡ?(ψ†Wψ)2 (9)

with ḡ? > 0. In the mean field approximation we re-
place −ḡ?(ψ†Wψ)2 → χ(ψ†Wψ) and arrive at effectively
noninteracting fermionic quasiparticles described by the
Hamiltonian Hmf(p) = H(p) + χW. Note that W is in-
variant under the rotational or chiral tetrahedral group
T only [21]. The term χW breaks time-reversal symme-
try, but preserves particle-hole symmetry of the energy
spectrum. The positive eigenvalues of Hmf(p) are

E±(p) =

[
χ2 + (1 + α2)p2 ±

(
4χ2p2 + α2

[
4p4

− 3(4− α2)
∑
i<j

p2i p
2
j + 12

√
3χp1p2p3

])1/2]1/2
. (10)

We have E+(p) > 0. The zeros of E−(p) are located
at the four vertices of a tetrahedron according to pn =
(χ/
√

3)en with

e1 =

1

1

1

 , e2 =

−1

−1

1

 , e3 =

−1

1

−1

 , e4 =

 1

−1

−1

 .

(11)

The α-dependence of the nodes is implicit, through χ,
which is the solution of an α-dependent gap equation.
The sign of the order parameter χ gives the configuration
of Weyl nodes a handedness so that it cannot be rotated
into its mirror image with z-component reversed in sign,
thereby breaking a Z2 symmetry.

To clarify the nature of the gapless quasiparticles at
the nodal points, we compute Bν(p) for the two bands
with energy ±E−(p) and determine the Chern number C
from the surface integral surrounding pn in momentum
space. At each vertex of the tetrahedron the positive
energy band has C = 1 and the negative energy band
has C = −1, so the total monopole charge is 4. Thus for
α > 1 the phase transition is such that the normal state
charge of +4 is distributed onto four unit charges +1.
For 0 < α < 1, on the other hand, symmetry breaking
implies a topological phase transition which changes the
total monopole charge.

The effective Weyl Hamiltonian that describes exci-
tations with momentum p = pn + δp close to the
nodal points can be obtained from projecting onto

the subspace spanned by the zero modes |0n〉, |0′n〉 of

H(pn), yielding H
(n)
0 (δp) = v

(n)
ij δpiσj , which consti-

tutes type-I Weyl nodes. The energy close to the nodal
point reads E(n)(δp) = ±

√
δpi(v(n)v(n)T )ijδpj and the

monopole charge of each Weyl node is consistently given
by sgn[det(v(n))] = sgn(α2) = 1. The matrices v(n) are
displayed in the supplemental material (SM) [21].

Dirac, Majorana, and Weyl mass terms. Identifying
fermion bilinears that open a full gap (”mass terms”) is
an important step in finding energetically favorable or-
dering patterns for any new single-particle Hamiltonian
and as such complements the perturbative RG analysis.
In the following we discuss three canonical mass terms
in the systems: those of Dirac-, Majorana-, and Weyl-
type. We first derive the negative result that the Hamil-
tonian H = piVi for α = 0 does not permit a Dirac mass
term, which would be a fourth matrix M that anticom-
mutes with all Vi. Indeed, the 4 × 4 Clifford algebra
{An, Am} = 2δnm1 allows for two inequivalent represen-
tations: One reads Ai = 12 ⊗ σi, which is a reducible
representation where no fourth anti-commuting matrix
exists. The second solution is A1 = σ1 ⊗ 12, A2 =
σ3⊗12, A3 = σ2⊗σ2, A4 = σ2⊗σ1, A5 = σ2⊗σ3, and
so after choosing three matrices to construct a Hamilto-
nian piAi, there are two left to form mass terms. With a
suitable basis change one easily sees that Vi ∼ 12 ⊗ σi in
RSW semimetals [21], which is of the first type, implying
the leading (particle-number conserving) instability for
α = 0 to have nodes. Note that the Hamiltonian consid-
ered in Ref. [11] reads pi(12 ⊗ σi + βσi ⊗ 12), with β a
real parameter, and so only for β = 0 has overlap with
the RSW Hamiltonian.

In the s-wave superconducting phase, the system devel-
ops a Majorana mass term. The corresponding effective
Lagrangian reads [30]

Lsc = ψ†(∂τ +H)ψ − gs(ψ†γ45ψ∗)(ψT γ45ψ) (12)

with superconducting gap ∆ ∝ 〈ψ†γ45ψ∗〉 and gs > 0.
Recall that a Majorana mass term for two-component
fermions reads ψ†σ2ψ

∗. The energies of quasiparticles
are E(p) = ±

√
E0(p)2 + |∆|2, with E0(p) the spectrum

of H. The suppression of low-energy excitations explains
the superiority of the s-wave superconductor among all
particle-number non-conserving orders in the perturba-
tive RG computation.

Eventually consider adding a Weyl mass miVi to the
Hamiltonian. As is well-known, for α = 0 this merely
shifts the position of the Weyl nodes. But for α > 0,
the effect is far more intriguing. Assume the minimal
free energy is obtained for a state with residual SO(2)-
symmetry and so ~m = (0, 0,m). The nodes of the mean-
field Hamiltonian HV (p) = H(p) +mV3 are located at

pa =
−m

1 + α
(0, 0, 1)T , pb =

−m
1− α

(0, 0, 1)T , (13)
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assuming α 6= 1. These momenta again correspond
to type-I Weyl nodes [21]. Remarkably, the monopole
charge associated to each of the two Weyl nodes is given
by

qa = −1, qb = sgn(α− 1). (14)

Consequently, there is a topological phase transition in
the broken phase when crossing α = 1, with the total
monopole charge being −2 for α < 1 and 0 for α > 1.
For α < 1 the monopole charge remains constant upon
condensation of m 6= 0. The identification of this Weyl
semimetal phase constitutes the third major result of this
work.

Conclusion. Our analysis reveals an intriguing inter-
play between topology and interactions. First, the crit-
ical couplings of W and V are smaller in those regimes
where the total monopole charge does not change across
the transition (α > 1 for W and α < 1 for V), and so no
topological phase transition occurs besides the symmetry
breaking. Second, the critical coupling for W has no kink
at α = 1 and the scaling dimension of the order parame-
ter is independent at α, indicating a topological nature of
the ordering. The rearranged monopole structure in the
ordered phases can be revealed experimentally through
surface state spectroscopy [7, 8] or optical response mea-
surements [11, 51]. It will be exciting to study the inter-
play of a pair of RSW fermions with opposite monopole
charge, similar to the interplay of Weyl nodes in Weyl
semimetals [52].
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