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Magnetic hopfion is three-dimensional (3D) topological soliton with novel spin structure that
would enable exotic dynamics. Here we study the current driven 3D dynamics of a magnetic hopfion
with unit Hopf index in a frustrated magnet. Attributed to spin Berry phase and symmetry of the
hopfion, the phase space entangles multiple collective coordinates, thus the hopfion exhibits rich
dynamics including longitudinal motion along the current direction, transverse motion perpendicular
to the current direction, rotational motion and dilation. Furthermore, the characteristics of hopfion
dynamics is determined by the ratio between the non-adiabatic spin transfer torque parameter

and the damping parameter.

Such peculiar 3D dynamics of magnetic hopfion could shed light

on understanding the universal physics of hopfions in different systems and boost the prosperous

development of 3D spintronics.

Introduction—Hopfions are three-dimensional (3D)
topological solitons initially proposed in the Skyrme-
Faddeev model [1-3]. The three spatial dimensions en-
dow hopfions with diverse configurations such as rings,
links, and knots that can be classified by the Hopf in-
dex Q g, a topological index that characterizes the homo-
topy group I13(S?) classifying maps from S® to S? [4-7].
Although hopfions were first studied in the contents of
field theories, they turn out to emerge in various physi-
cal systems, such as optics, liquid crystals, Bose-Einstein
condensates, superconductors, etc [8-14]. Very recently,
their magnetic counterparts have been theoretically pro-
posed in frustrated magnets [15, 16] and confined chi-
ral magnetic heterostructures [17-19], further stimulat-
ing the study of hopfion from a new respect.

While the sophisticated configurations of hopfion could
give rise to fascinating physical phenomena [5, 20], many
of their physical properties, especially their dynamics,
are still largely unexplored. Low-dimensional magnetic
topological solitons like skyrmions and vortices have been
extensively studied over the past few decades with long
lasting interests in both their fundamental physical prop-
erties and potential applications [21-23]. Therefore, it is
also important to unravel the dynamics of the magnetic
hopfion, especially its most essential dynamics driven by
the spin transfer torque (STT) under electric current.
Hopfion dynamics have been recently studied in confined
chiral magnetic heterostructures [24]. But in this case,
hopfions are only allowed to move in two spatial dimen-
sions and the unique physics associated with the third
spatial dimension is completely suppressed by the strong
boundary condition.
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In this Letter, we investigate the current-induced dy-
namics of a magnetic hopfion in frustrated magnet, where
hopfions are free to move in all directions and their full 3D
dynamics can be explored. The hopfion studied here has
Qp = 1 and its motion is driven by both the adiabatic
and non-adiabatic STT effect [25-27]. Based on the sym-
metry of hopfion’s spin configuration (Fig. 1), two typical
cases are studied, i.e., current in the torus midplane and
current perpendicular to the torus midplane. As mani-
fested by its 3D configuration, hopfion possesses various
types of dynamics including translational motion, rota-
tion, and dilation. The spin Berry phase of hopfion hosts
an entangled phase space, which further conjugates these
dynamics and gives rise to more exotic dynamical prop-
erties. All these dynamical behavior can be captured by
an analytical model derived in terms of multi-dimensional
collective coordinates and generalized Thiele’s approach.
A phenomenological analysis is also employed to bridge
the dynamics of hopfion and skyrmion string.

Spin Berry phase and entangled phase space— We
consider here a hopfion with Qg = 1. A typ-
ical hopfion configuration can be achieved by a
stereographic projection from R? to S$%: y =
((x/r)sin f, (y/r)sin f, (z/r) sin f, cos f), followed by the
Hopf map Sy = (z|o|z), where the spinor |z) = (x4 +
ix3, x1 +ix2)t, r? = 22 + y? + 22, and f is a function
of r satisfying the boundary conditions f(0) = 7 and
f(oo) =0 [7]. Explicitly the configuration is given by:

Sy = Zsin2f + Lsin’f,
r r
xz
S§ = %sin?f - T—zsin2f, (1)
2

2
Sg = cos2f + %sin2f.
r

This is the simplest ansatz of a hopfion with axial sym-
metry about z-axis. In this configuration, as shown in



Fig. la, all the iso-spin contours with S, = 0 form a
torus surface. Since Qg is geometrically interpreted as
the linking number [28], we show in the inset of Fig. 1a
(upper right corner) iso-spin contours of S = £z, which
are indeed linked. This confirms the nontrivial topology
of the spin texture under investigation. Fig. 1b and c
show the cross-sectional view of the spin textures at zy
and yz plane, respectively.

As a topological soliton, hopfion has particle-like trans-
lational dynamics. 3D anisotropic nature of the con-
figuration also allows the rotation of hopfion. We can
capture the essential dynamics of hopfion by analyzing
the collective coordinates of both translational and ro-
tational motion. The spin configuration of hopfion at
position r = (x,y,2) and time ¢ can be expressed as
S(r,t) = So(O(r — R)), where R = (X, Y, Z) charac-
terizes the displacement, and OAis the rotation opera-
tor. At infinitesimal rotation, O ~ 1 — @ - L, where
L; = €470k is the angular momentum operator and
O = (6,, 6y, 0,) is the rotation angle of hopfion around
different axes.

The dynamics of localized spins is in general de-
termined by the spin Berry phase term of the La-
grangian [29-31]

Lp = / (1 — cosh)ddV, @)

where 6 and ¢ are the polar and azimuthal angle of the
localized spin S with unit length. By integrating out the
spin configuration, the variation of the spin Berry phase
term §Lgp = f S - 6S x SdV can be written in terms of
the slow-varying collective coordinate as

§Lpp = D(©,Y —0,X) +10,0,, (3)

where D = —fSO . (z@xSO — J;&ZSO) X 8xSOdV and
I =[S (20, — 20,)So x (yd. — 20,)SpdV. In Eq. 3,
all other terms drop out due to parity of the spin con-
figuration. It clearly shows the rotations about z— and
y— axes are canonical conjugate to each other. Through
the entanglement between the displacement and rotation,
translations along z— and y— directions are intertwined
as well. The longitudinal motion of hopfion is thus ac-
companied by transverse displacement and complex ro-
tations.

It is noted that the z—axis related displacement (2)
and rotation (6,) are missing in Eq. 3 due to the sym-
metry of hopfion configuration. To capture these dynam-
ics, it is necessary to include the auxiliary dilation of the
hopfion configuration S(r,t) = So(Ar), where A is a time-
dependent dilation factor and at equilibrium A = 1. The
variation with respect to A then contributes an additional
term to the spin Berry phase

6Lsp = (RZ +T'6,)0), (4)

where 2 = [Sg - (r-8:So x 9,S0)dV and I' = [ Sq - (r-
O0rSo x (20 — y0;)S)dV. This additional term shows
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FIG. 1. (a) Iso-spin contours with S. = 0 for a magnetic
hopfion with Qx = 1. Inset is the iso-spin contours of S = +&
(red) and S = —% (cyan) that demonstrate the unity linking
number of the hopfion. (b) and (c) are the cross-sections of
hopfion onto zy (b) and yz (c) planes, as depicted by the grey
arrows. At the initial state, the torus midplane lies in the zy
plane. In the color scheme, black indicates S, = —1 and
white indicates S, = 1. The color wheel stands for in-plane
spin directions.

the dilation is conjugated to both the displacement and
rotation about z—axis. Equation of motion taken from
variation of A leads to the simultaneous translation and
rotation. It should be noticed that the dilation is not
a collective coordinate since an energy change is associ-
ated with a dilation of the configuration. Nevertheless,
it plays an important role in correctly determining the
corresponding hopfion dynamics. Eq. 3 and Eq. 4 il-
lustrate that the hopfion moves in a phase space where
displacement, rotation and dilation are all entangled to
each other.

Current-driven hopfion dynamics— To validate our
analysis, numerical simulations were performed in order
to precisely capture the hopfion dynamics. We employ a
frustrated Heisenberg Hamiltonian H = — >~ J;;S;-S;,

<ij>

in which the summation of the exchange interaction is
extended up to fourth nearest neighbor. Here we choose
the following parameters J; = 1, Jo = —0.164, J3 = 0,
Jys = —0.082, where the sub-indices represent the or-
ders of nearest neighbors and all the energy terms are
normalized to the value of J;, the nearest neighbor ex-
change [32]. We choose sin f = 2rA\/(r? + A?) as the
initial state where A = 1. A stable hopfion configura-
tion (Fig. 1) is obtained by a direct energy minimization.
Symmetry of this stable configuration is the same as the
prototype showing by Eq. 1.

The magnetization dynamics were calculated by solv-
ing the Landau-Lifshitz-Gilbert (LLG) equation with the
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FIG. 2. Hopfion dynamics in the presence of an in-plane cur-
rent applied in x—direction (j, = 0.5 x 10'*°Am™2). (a) and
(b) show the displacements of hopfion center in y and z di-
rection (AY and AZ) versus the displacement in z direction
(AX) for different values of §. Inset: Current density de-
pendence of the longitudinal velocity (vs;). (c), (d) Rota-
tional motion of hopfion with 8 < « (c) and 8 > «a (d). The
red arrows represent the normal vector of the hopfion’s mid-
plane. The red dots are the corresponding angles of the torus
midplane projected onto a unit sphere at different simulation
time. The blue arrows indicate the direction of rotation.

STT terms:
dS off (6% dS
Pa® . Pa33 .
T 5egU VIS = 505 Sx (- V)S.

Here 7 is the gyromagnetic ratio, « is the damping con-
stant, P is the spin polarization, a is the lattice constant
and j is the current density. BT = —M%S% is the ef-
fective magnetic field and S is the spin length, which is
fixed to be 1 here for simplicity. The last two terms in
Eq. 5 describe the STT induced by an applied current j
and 8 quantifies the non-adiabatic STT effect.

We begin with the current applied in the zy plane.
The simulation results for a current applied along the
r—axis are summarized in Fig.2. The hopfion dynamics
can be illustrated by using its center position and normal
vector of the torus midplane, as shown in Fig. 1la. At the
initial state, the center position is located at the origin,
the midplane lies in the xy plane and its normal vector
is aligned with z—axis. In the case with § =0 and o =
0.1 (8 < «), two transverse motions (AY and AZ) are
associated with a longitudinal motion (AX) along the
current direction (Fig. 2a and b). Meanwhile, Fig. 2c
shows the evolution (red dots) of the directional vector
normal to the midplane (red arrow), which describes the
rotation of the hopfion.

More interestingly, the non-adiabatic S-term signifi-

cantly affects the hopfion dynamics. In the case with
B =02and a = 0.1 (8 > «), sign of AY is reversed
while that of AZ is unchanged compared to 8 < « case.
In contrast, for the rotational motion, the sign of both
6, and @, are reversed as shown in Fig. 2d. However,
once = q, all transverse motions and rotations are sup-
pressed, and the hopfion moves straight ahead along the
current direction. For more comprehensive details of the
hopfion dynamics, see Ref. [32].

To further understand the dynamics, we derive the
equations of motion for hopfion in the presence of STT
effect. A conventional approach proposed by Thiele is to
first apply the operator Sy /0r; - (Sgx) on both sides of
the LLG equation, so that the velocity on the left hand
side equals to the force density on the right [33, 34]. How-
ever, such approach describes the translational motion
only. Notice that the term 9Sg/9r; can be understood
as the momentum operator acting on the spins. There-
fore, we can generalize the Thiele’s approach by apply-
ing the operator LSq - (Spx) on both sides of the LLG
equation where L is the angular momentum operator in-
troduced in the spin Berry phase part. In this way, we
can get additional terms relating the angular velocity to
the torque density. The full set of equations of motion
are summarized as [32]:

D@w + ozKRRY + aKgre @y =BKRrrEJy,

—Déy + aKrprX + aKpo Oy =BKRrEjq,

DX — 10, +aKpeY +aKee 6, =fKretj,
+ DEJa,

—DY + 16, + aKreX + aKeoe 0, =BKrolj.
— D&y,

(6)

with ¢ = 22 Kpp = [ 8,800,504V, Kre = [ 8,So -
(y0. — 20,)SodV, and Koo = [[(y0. — 20,)S0)?dV
are components of the dissipative tensor. The non-
dissipative terms, namely the terms without a on the
left hand side of each equation, are consistent with the
Berry phase analysis, indicating such general approach
is a proper method for handling hopfion dynamics. By
solving Eq. 6 for a current applied along z—axis (jz),
we have X ~ jo, ¥V ~ (@ — 8)ja, Op ~ (& — )]s, and
éy ~ (= B)Jz- Y, O,, and 6, all depend on (a — f3)
so that their signs depend on the ratio between 3 and
«. Once a = B, only X has non-zero value and only
a translational motion along the current direction is al-
lowed. Finally, the longitudinal velocity v, = X is lin-
early proportional to the current density j,. All these
results are consistent with the hopfion dynamics shown
in Fig. 2.

While Eqs. 6 can capture the hopfion dynamics with
current in the midplane, the dynamics associated to the
current component perpendicular to the midplane is com-
pletely missing. To imitate the discussion of spin Berry
phase (Eq. 4), an auxiliary dilation term is included in or-
der to fully understand the hopfion dynamics. Under the
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FIG. 3. (a) Hopfion dynamics under out-of-plane applied cur-
rent (j.). A translational motion along the current direction
is associated with a dilation depending on the ratio 8/a. (b)
Current density dependence of the hopfion velocity (v.) for
different values of 8. (c) Diameter change of hopfion during
its translational motion (j, = 0.5 x 10'°Am~2). (d) Calcu-
lated By based on the spin texture shown in Fig. 1c. The
arrows represent the velocities of skyrmion and antiskyrmion

under an applied current along positive z direction for § < «
(solid) and 8 > « (dashed).

small dilation approximation (A ~ 1), the processional
term related to B°f can be still neglected [32]. In ad-
dition to the linear momentum and angular momentum
approaches applied before, we can apply (r-9d)Sp - (SoX)
on both sides of the LLG equation and then get the equa-
tions of motion along normal direction to the torus mid-
plane,

- Kl.Q—KQF(ﬁ/OJ)

Z - Kl.Q _ KQF sz,
: Ky 2 )
N L 7
6. = Al - p), (D
. A .
Az = *am(l — B/a)&jz

with A = K;pKbe — (K}g)? K1 = QKgo — AKf g,
and Ko = 2Kjg — AKfp. The parameters Ky,
K}g, and K§g are defined as: Kip = [(9.S0)%dV,
Kfgo = [0.So - (20y — y0,)SodV, and Ko = [[(z0, —
y0,)S0]?°dV. Tt needs to be emphasized that in Eq. 6
and Eq. 7, the current direction is relative to the mid-
plane of the hopfion’s torus configuration. During the
hopfion dynamics, the coordinate must be co-rotating as
well.

Combining these equations of motion, the hopfion dy-
namics shown in Fig. 2 can be readily understood in the
following way. The current j, first induces an entan-
gled dynamics including the longitudinal motion (AX),

4

transverse motion (AY’) and rotations (6@, and 6,). As
the midplane of hopfion starts to deviate from the xy
plane, the current can be decomposed into two compo-
nents, one in the midplane (jj) and one normal to the
midplane (j,). While the former component is still re-
sponsible for the entangled dynamics mentioned above,
the hopfion motion AZ along normal direction starts to
develop according to Eq. 7.

To examine the dynamics in the normal direction, we
study the hopfion dynamics under j,. The correspond-
ing simulation results are summarized in Fig. 3a-c. The
current induces a translational motion of hopfion along
its direction in combination with a dilation and rotation
about z—axis. The dilation type is determined by the
ratio between 8 and « (Fig. 3c). When f < «, the
hopfion is compressed (expanded) by a negative (posi-
tive) current, and the case is reversed for 8 > a. While
for B = «, both dilation and rotation are absent. It is
worth mentioning that the expansion and compression
of hopfion are not quite symmetric since there is an en-
ergy barrier to prevent further compression of hopfion in
order to maintain its topology. The velocity of hopfion
v, = Z here is also linearly proportional to the current
density (Fig. 3b). All these dynamics are well described
by Egs. 7. Note that at long enough time frame,
the hopfion may become unstable and collapse or
stop moving in the cases with a #  since its en-
ergy is increased due to the dilation.

The interesting dilation of hopfion can be also un-
derstood phenomenologically in terms of the skyrmion
string. A Qg = 1 hopfion can be recognized as a 2w
twisted skyrmion string with its two ends glued together
and thus a skyrmion-antiskyrmion pair is formed in any
cross-section plane including the z—axis (e.g., zz or yz
plane), similar to that shown in Fig. 1c. To further illus-
trate the hopfion dynamics, the emergent magnetic field
B; = %eiij - (0;S x 0;8S) is calculated based on the
hopfion configuration in Fig. 1c and the B, is shown in
color in Fig. 3d. The current-driven motion of skyrmion
has a transverse component, i.e., the skyrmion-Hall ef-
fect [21, 31, 35, 36]. The corresponding skyrmion-Hall an-
gle is determined by the topological charge, or in identical
terms, the emergent magnetic field of the skyrmion. More
importantly, sign of the skyrmion-Hall angle depends the
ratio between 8 and « [21, 37-39] as shown by the ar-
rows in Fig. 3d. As a result, the skyrmion-antiskyrmion
pair shown in Fig. 3d respond to a current in z—direction
by moving towards or away from each other during their
motion along z. Same is true for any cross section slic-
ing the hopfion. When the skyrmion and antiskyrmion
move towards (away from) each other, the hopfion is com-
pressed (expanded). The hopfion dynamics can thus also
be phenomenologically understood as a collective motion
of skyrmion-antiskyrmion pairs, making connection of
soliton dynamics across dimensionality.

Conclusion— Current-driven 3D dynamics of magnetic
hopfion have been studied both analytically and numer-
ically. The hopfion exhibits rich dynamics of entangled



translation, rotation and dilation. Since our theory is
built on the collective coordinates that is independent of
details of spin interactions, it suggests the universality
of the reported dynamics in all existing and forthcom-
ing hopfion models, not only in magnetism, but also in
other physical systems [5, 20, 40, 41]. Collective dy-
namics of multiple hopfions and hopfion lattices
could also be investigated based on the collec-
tive coordinates [42, 43]. Owing to their novel
topology, hopfions may exhibit non-trivial elec-
tronic signatures and the presence of disorders
may also affect their dynamics by, e.g., modifying
their Hall angles [38, 39]. These interesting dy-
namics could be experimentally access through

topological Hall-type measurements, noise mea-
surements, or 3D x-ray tomography [44—48]. The
rich dynamics hosted by a Qg = 1 hopfion further fore-
shadows more exotic dynamics for hopfions with higher
Qp and their potentials in spintronic applications [49].

Acknowledgement— J.Z. acknowledges the finical sup-
port by the U.S. Department of Energy (DOE), Office
of Science, Basic Energy Sciences (BES) under Award
No. DE-SC0020221. Y.L and X.H. thank the finical
supports from the National Key Research and Develop-
ment Program of China (Grant No. 2017YFA0206200,
2016YFA0300802), the National Natural Science Foun-
dation of China (NSFC, Grants No.51831012, 11804380).

[1] T. H. R. Skyrme, Proc. R. Soc. London Sect. A 260, 127

961).

. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).

. D. Faddeev, Lett. Math. Phys. 1, 289 (1976).

. Hopf, Math. Ann. 104, 637 (1931)

. Faddeev and A. J. Niemi, Nature 387, 58 (1997).

. A. Battye and P. M. Sutchffe Phys. Rev. Lett. 81,

98 (1998).

. Hietarinta and P. Salo, Phys. Lett. B 451, 60 (1999).

. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and

S Padgett Nat. Phys. 6, 118 (2010).

. J. Ackerman and I. I. Smalyukh Nat. Mater. 16, 426

2017).

[10] G. Volovik and V. Mineev, Sov. Phys. JETP 46, 401
(1977).

[11] E. Babaev, L. D. Faddeev, and A. J. Niemi, Phys. Rev.
B 65, 100512 (2002).

[12] D. S. Hall, M. W. Ray, K. Tiurev, E. Ruokokoski, A. H.
Gheorghe, and M. Mottonen, Nat. Phys. 12, 478 (2016).

[13] Y. Kawaguchi, M. Nitta, and M. Ueda, Phys. Rev. Lett.
100, 180403 (2008).

[14] E. Babaev, Phys. Rev. Lett. 88, 177002 (2002).

[15] P. Sutcliffe, Phys. Rev. Lett. 118, 247203 (2017).

[16] F. N. Rybakov, N. S. Kiselev, A. B. Borisov, L. Déring,
C. Melcher, and S. Bligel, arXiv:1904.00250 (2019).

[17] Y. Liu, R. K. Lake, and J. Zang, Phys. Rev. B 98, 174437
(2018).

[18] P. Sutcliffe, J. Phys. A: Math. Theor. 51, 375401 (2018).

[19] J.-S. B. Tai and I. I. Smalyukh, Phys. Rev. Lett. 121,
187201 (2018).

[20] E. Radu and M. S. Volkov, Phys. Rep. 468, 101 (2008).

[21] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899
(2013).

[22] A. Fert, V. Cros,
152 (2013).

[23] K. Y. Guslienko, J. Nanosci. Nanotechnol. 8, 2745 (2008).

[24] X. Wang, A. Qaiumzadeh, and A. Brataas, Phys. Rev.
Lett. 123, 147203 (2019).

[25] J. C. Slonczewski, J. Magn. Magn. Mater.
(1996).

[26] L. Berger, Phys. Rev. B 54, 9353 (1996).

[27] S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004).

[28] P. Hilton, An Introduction to Homotopy Theory (Cam-
bridge University Press, Cambridge, England, 1953).

—
—_

B XN SuEEN
Awggugwrmra

and J. Sampaio, Nat. Nanotechnol. 8,

159, L1

[29] A. Auerbach, Interacting Electrons and Quantum Mag-
netism (Springer-Verlag, New York, 1994).

[30] G. Tatara, H. Kohno, and J. Shibata, Phys. Rep. 468,
213 (2008).

[31] J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, Phys.
Rev. Lett. 107, 136804 (2011).

[32] See Supplemental Material, for details of the derivations,
numerical simulations, and movies of hopfion dynamics.

[33] A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).

[34] O. A. Tretiakov, D. Clarke, G.-W. Chern, Y. B. Baza-
liy, and O. Tchernyshyov, Phys. Rev. Lett. 100, 127204
(2008).

[35] W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. Ben-
jamin Jungfleisch, J. E. Pearson, X. Cheng, O. Heinonen,
K. L. Wang, Y. Zhou, A. Hoffmann, and S. G. E.
te Velthuis, Nat. Phys. 13, 162 (2017).

[36] K. Litzius, I. Lemesh, B. Kriiger, P. Bassirian, L. Caretta,
K. Richter, F. Biittner, K. Sato, O. A. Tretiakov,
J. Forster, R. M. Reeve, M. Weigand, 1. Bykova, H. Stoll,
G. Schiitz, G. S. D. Beach, and M. Kl&dui, Nat. Phys. 13,
170 (2017).

[37] J. Iwasaki, M. Mochizuki,
mun. 4, 1 (2013).

[38] C. Reichhardt, D. Ray, and C. O. Reichhardt, Phys.
Rev. Lett. 114, 217202 (2015).

[39] C. Reichhardt and C. J. O. Reichhardt, New J. Phys. 18,
095005 (2016).

[40] H. K. Moffatt, Nature 347, 367 (1990).

[41] N. Manton and P. Sutcliffe, Topological Solitons (Cam-
bridge University Press, Cambridge, England, 2004).

[42] R. S. Ward, Physics Letters B 473, 291 (2000).

[43] J. Hietarinta, J. Palmu, J. Jykk, and P. Pakkanen, New
J. Phys. 14, 013013 (2012).

[44] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz,
P. G. Niklowitz, and P. Bni, Phys. Rev. Lett. 102,
186602 (2009).

[45] T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner,
C. Franz, C. Pfleiderer, K. Everschor, M. Garst, and
A. Rosch, Nature Physics 8, 301 (2012).

[46] S. A. Daz, C. J. O. Reichhardt, D. P. Arovas, A. Saxena,
and C. Reichhardt, Phys. Rev. B 96, 085106 (2017).

[47] T. Sato, W. Koshibae, A. Kikkawa, T. Yokouchi, H. Oike,
Y. Taguchi, N. Nagaosa, Y. Tokura, and F. Kagawa,
Phys. Rev. B 100, 094410 (2019).

and N. Nagaosa, Nat. Com-



[48] C. Donnelly, M. Guizar-Sicairos, V. Scagnoli, S. Gliga, tel, P. Fischer, and R. P. Cowburn, Nat. Commun. 8,
M. Holler, J. Raabe, and L. J. Heyderman, Nature 547, ncomms15756 (2017).
328 (2017).

[49] A. Ferndndez-Pacheco, R. Streubel, O. Fruchart, R. Her-



