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Magnetic hopfion is three-dimensional (3D) topological soliton with novel spin structure that
would enable exotic dynamics. Here we study the current driven 3D dynamics of a magnetic hopfion
with unit Hopf index in a frustrated magnet. Attributed to spin Berry phase and symmetry of the
hopfion, the phase space entangles multiple collective coordinates, thus the hopfion exhibits rich
dynamics including longitudinal motion along the current direction, transverse motion perpendicular
to the current direction, rotational motion and dilation. Furthermore, the characteristics of hopfion
dynamics is determined by the ratio between the non-adiabatic spin transfer torque parameter
and the damping parameter. Such peculiar 3D dynamics of magnetic hopfion could shed light
on understanding the universal physics of hopfions in different systems and boost the prosperous
development of 3D spintronics.

Introduction—Hopfions are three-dimensional (3D)
topological solitons initially proposed in the Skyrme-
Faddeev model [1–3]. The three spatial dimensions en-
dow hopfions with diverse configurations such as rings,
links, and knots that can be classified by the Hopf in-
dex QH , a topological index that characterizes the homo-
topy group Π3(S2) classifying maps from S3 to S2 [4–7].
Although hopfions were first studied in the contents of
field theories, they turn out to emerge in various physi-
cal systems, such as optics, liquid crystals, Bose-Einstein
condensates, superconductors, etc [8–14]. Very recently,
their magnetic counterparts have been theoretically pro-
posed in frustrated magnets [15, 16] and confined chi-
ral magnetic heterostructures [17–19], further stimulat-
ing the study of hopfion from a new respect.

While the sophisticated configurations of hopfion could
give rise to fascinating physical phenomena [5, 20], many
of their physical properties, especially their dynamics,
are still largely unexplored. Low-dimensional magnetic
topological solitons like skyrmions and vortices have been
extensively studied over the past few decades with long
lasting interests in both their fundamental physical prop-
erties and potential applications [21–23]. Therefore, it is
also important to unravel the dynamics of the magnetic
hopfion, especially its most essential dynamics driven by
the spin transfer torque (STT) under electric current.
Hopfion dynamics have been recently studied in confined
chiral magnetic heterostructures [24]. But in this case,
hopfions are only allowed to move in two spatial dimen-
sions and the unique physics associated with the third
spatial dimension is completely suppressed by the strong
boundary condition.
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In this Letter, we investigate the current-induced dy-
namics of a magnetic hopfion in frustrated magnet, where
hopfions are free to move in all directions and their full 3D
dynamics can be explored. The hopfion studied here has
QH = 1 and its motion is driven by both the adiabatic
and non-adiabatic STT effect [25–27]. Based on the sym-
metry of hopfion’s spin configuration (Fig. 1), two typical
cases are studied, i.e., current in the torus midplane and
current perpendicular to the torus midplane. As mani-
fested by its 3D configuration, hopfion possesses various
types of dynamics including translational motion, rota-
tion, and dilation. The spin Berry phase of hopfion hosts
an entangled phase space, which further conjugates these
dynamics and gives rise to more exotic dynamical prop-
erties. All these dynamical behavior can be captured by
an analytical model derived in terms of multi-dimensional
collective coordinates and generalized Thiele’s approach.
A phenomenological analysis is also employed to bridge
the dynamics of hopfion and skyrmion string.

Spin Berry phase and entangled phase space— We
consider here a hopfion with QH = 1. A typ-
ical hopfion configuration can be achieved by a
stereographic projection from R3 to S3: χ =
((x/r) sin f, (y/r) sin f, (z/r) sin f, cos f), followed by the
Hopf map S0 = 〈z|σ|z〉, where the spinor |z〉 = (χ4 +
iχ3, χ1 + iχ2)T , r2 = x2 + y2 + z2, and f is a function
of r satisfying the boundary conditions f(0) = π and
f(∞) = 0 [7]. Explicitly the configuration is given by:

Sx0 =
x

r
sin2f +

yz

r2
sin2f,

Sy0 =
y

r
sin2f − xz

r2
sin2f,

Sz0 = cos2f +
2z2

r2
sin2f.

(1)

This is the simplest ansatz of a hopfion with axial sym-
metry about z-axis. In this configuration, as shown in
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Fig. 1a, all the iso-spin contours with Sz = 0 form a
torus surface. Since QH is geometrically interpreted as
the linking number [28], we show in the inset of Fig. 1a
(upper right corner) iso-spin contours of S = ±x̂, which
are indeed linked. This confirms the nontrivial topology
of the spin texture under investigation. Fig. 1b and c
show the cross-sectional view of the spin textures at xy
and yz plane, respectively.

As a topological soliton, hopfion has particle-like trans-
lational dynamics. 3D anisotropic nature of the con-
figuration also allows the rotation of hopfion. We can
capture the essential dynamics of hopfion by analyzing
the collective coordinates of both translational and ro-
tational motion. The spin configuration of hopfion at
position r = (x, y, z) and time t can be expressed as

S(r, t) = S0(Ô(r − R)), where R = (X, Y, Z) charac-

terizes the displacement, and Ô is the rotation opera-
tor. At infinitesimal rotation, Ô ≈ 1 − Θ · L̂, where
L̂i = εijkrj∂k is the angular momentum operator and
Θ = (Θx,Θy,Θz) is the rotation angle of hopfion around
different axes.

The dynamics of localized spins is in general de-
termined by the spin Berry phase term of the La-
grangian [29–31]

LBP =

∫
(1− cosθ)φ̇dV, (2)

where θ and φ are the polar and azimuthal angle of the
localized spin S with unit length. By integrating out the
spin configuration, the variation of the spin Berry phase
term δLBP =

∫
S · δS× ṠdV can be written in terms of

the slow-varying collective coordinate as

δLBP = D(ΘxẎ −ΘyẊ) + IΘyΘ̇x, (3)

where D = −
∫

S0 · (z∂xS0 − x∂zS0) × ∂xS0dV and
I =

∫
S0 · (z∂x − x∂z)S0 × (y∂z − z∂y)S0dV . In Eq. 3,

all other terms drop out due to parity of the spin con-
figuration. It clearly shows the rotations about x− and
y− axes are canonical conjugate to each other. Through
the entanglement between the displacement and rotation,
translations along x− and y− directions are intertwined
as well. The longitudinal motion of hopfion is thus ac-
companied by transverse displacement and complex ro-
tations.

It is noted that the z−axis related displacement (Z)
and rotation (Θz ) are missing in Eq. 3 due to the sym-
metry of hopfion configuration. To capture these dynam-
ics, it is necessary to include the auxiliary dilation of the
hopfion configuration S(r, t) = S0(λr), where λ is a time-
dependent dilation factor and at equilibrium λ = 1. The
variation with respect to λ then contributes an additional
term to the spin Berry phase

δLzBP = (ΩŻ + Γ Θ̇z )δλ, (4)

where Ω =
∫

S0 · (r · ∂rS0 × ∂zS0)dV and Γ =
∫

S0 · (r ·
∂rS0 × (x∂y − y∂x)S0)dV . This additional term shows
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FIG. 1. (a) Iso-spin contours with Sz = 0 for a magnetic
hopfion with QH = 1. Inset is the iso-spin contours of S = +x̂
(red) and S = −x̂ (cyan) that demonstrate the unity linking
number of the hopfion. (b) and (c) are the cross-sections of
hopfion onto xy (b) and yz (c) planes, as depicted by the grey
arrows. At the initial state, the torus midplane lies in the xy
plane. In the color scheme, black indicates Sz = −1 and
white indicates Sz = 1. The color wheel stands for in-plane
spin directions.

the dilation is conjugated to both the displacement and
rotation about z−axis. Equation of motion taken from
variation of λ leads to the simultaneous translation and
rotation. It should be noticed that the dilation is not
a collective coordinate since an energy change is associ-
ated with a dilation of the configuration. Nevertheless,
it plays an important role in correctly determining the
corresponding hopfion dynamics. Eq. 3 and Eq. 4 il-
lustrate that the hopfion moves in a phase space where
displacement, rotation and dilation are all entangled to
each other.

Current-driven hopfion dynamics— To validate our
analysis, numerical simulations were performed in order
to precisely capture the hopfion dynamics. We employ a
frustrated Heisenberg HamiltonianH = −

∑
<i,j>

JijSi ·Sj ,

in which the summation of the exchange interaction is
extended up to fourth nearest neighbor. Here we choose
the following parameters J1 = 1, J2 = −0.164, J3 = 0,
J4 = −0.082, where the sub-indices represent the or-
ders of nearest neighbors and all the energy terms are
normalized to the value of J1, the nearest neighbor ex-
change [32]. We choose sin f = 2rλ/(r2 + λ2) as the
initial state where λ = 1. A stable hopfion configura-
tion (Fig. 1) is obtained by a direct energy minimization.
Symmetry of this stable configuration is the same as the
prototype showing by Eq. 1.

The magnetization dynamics were calculated by solv-
ing the Landau-Lifshitz-Gilbert (LLG) equation with the
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FIG. 2. Hopfion dynamics in the presence of an in-plane cur-
rent applied in x−direction (jx = 0.5 × 1010Am−2). (a) and
(b) show the displacements of hopfion center in y and z di-
rection (∆Y and ∆Z) versus the displacement in x direction
(∆X) for different values of β. Inset: Current density de-
pendence of the longitudinal velocity (vx). (c), (d) Rota-
tional motion of hopfion with β < α (c) and β > α (d). The
red arrows represent the normal vector of the hopfion’s mid-
plane. The red dots are the corresponding angles of the torus
midplane projected onto a unit sphere at different simulation
time. The blue arrows indicate the direction of rotation.

STT terms:

dS

dt
=− γS×Beff +

α

S
S× dS

dt

+
Pa3

2eS
(j · ∇)S− Pa3β

2eS2
S× (j · ∇)S.

(5)

Here γ is the gyromagnetic ratio, α is the damping con-
stant, P is the spin polarization, a is the lattice constant
and j is the current density. Beff = − 1

µBS
∂H
∂S is the ef-

fective magnetic field and S is the spin length, which is
fixed to be 1 here for simplicity. The last two terms in
Eq. 5 describe the STT induced by an applied current j
and β quantifies the non-adiabatic STT effect.

We begin with the current applied in the xy plane.
The simulation results for a current applied along the
x−axis are summarized in Fig.2. The hopfion dynamics
can be illustrated by using its center position and normal
vector of the torus midplane, as shown in Fig. 1a. At the
initial state, the center position is located at the origin,
the midplane lies in the xy plane and its normal vector
is aligned with z−axis. In the case with β = 0 and α =
0.1 (β < α), two transverse motions (∆Y and ∆Z) are
associated with a longitudinal motion (∆X) along the
current direction (Fig. 2a and b). Meanwhile, Fig. 2c
shows the evolution (red dots) of the directional vector
normal to the midplane (red arrow), which describes the
rotation of the hopfion.

More interestingly, the non-adiabatic β-term signifi-

cantly affects the hopfion dynamics. In the case with
β = 0.2 and α = 0.1 (β > α), sign of ∆Y is reversed
while that of ∆Z is unchanged compared to β < α case.
In contrast, for the rotational motion, the sign of both
Θx and Θy are reversed as shown in Fig. 2d. However,
once β = α, all transverse motions and rotations are sup-
pressed, and the hopfion moves straight ahead along the
current direction. For more comprehensive details of the
hopfion dynamics, see Ref. [32].

To further understand the dynamics, we derive the
equations of motion for hopfion in the presence of STT
effect. A conventional approach proposed by Thiele is to
first apply the operator ∂S0/∂ri · (S0×) on both sides of
the LLG equation, so that the velocity on the left hand
side equals to the force density on the right [33, 34]. How-
ever, such approach describes the translational motion
only. Notice that the term ∂S0/∂ri can be understood
as the momentum operator acting on the spins. There-
fore, we can generalize the Thiele’s approach by apply-
ing the operator L̂S0 · (S0×) on both sides of the LLG

equation where L̂ is the angular momentum operator in-
troduced in the spin Berry phase part. In this way, we
can get additional terms relating the angular velocity to
the torque density. The full set of equations of motion
are summarized as [32]:

DΘ̇x + αKRRẎ + αKRΘΘ̇y =βKRRξjy,

−DΘ̇y + αKRRẊ + αKRΘΘ̇x =βKRRξjx,

DẊ − IΘ̇x + αKRΘ Ẏ + αKΘΘΘ̇y =βKRΘξjy

+Dξjx,

−DẎ + IΘ̇y + αKRΘẊ + αKΘΘΘ̇x =βKRΘξjx

−Dξjy,

(6)

with ξ = Pa3

2e . KRR =
∫
∂xS0 · ∂xS0dV , KRΘ =

∫
∂xS0 ·

(y∂z − z∂y)S0dV , and KΘΘ =
∫

[(y∂z − z∂y)S0]2dV
are components of the dissipative tensor. The non-
dissipative terms, namely the terms without α on the
left hand side of each equation, are consistent with the
Berry phase analysis, indicating such general approach
is a proper method for handling hopfion dynamics. By
solving Eq. 6 for a current applied along x−axis (jx),

we have Ẋ ∼ jx, Ẏ ∼ (α − β)jx, Θ̇x ∼ (α − β)jx, and

Θ̇y ∼ (α − β)jx. Ẏ , Θx, and Θy all depend on (α − β)
so that their signs depend on the ratio between β and
α. Once α = β, only Ẋ has non-zero value and only
a translational motion along the current direction is al-
lowed. Finally, the longitudinal velocity vx = Ẋ is lin-
early proportional to the current density jx. All these
results are consistent with the hopfion dynamics shown
in Fig. 2.

While Eqs. 6 can capture the hopfion dynamics with
current in the midplane, the dynamics associated to the
current component perpendicular to the midplane is com-
pletely missing. To imitate the discussion of spin Berry
phase (Eq. 4), an auxiliary dilation term is included in or-
der to fully understand the hopfion dynamics. Under the
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FIG. 3. (a) Hopfion dynamics under out-of-plane applied cur-
rent (jz). A translational motion along the current direction
is associated with a dilation depending on the ratio β/α. (b)
Current density dependence of the hopfion velocity (vz) for
different values of β. (c) Diameter change of hopfion during
its translational motion (jz = 0.5 × 1010Am−2). (d) Calcu-
lated Bx based on the spin texture shown in Fig. 1c. The
arrows represent the velocities of skyrmion and antiskyrmion
under an applied current along positive z direction for β < α
(solid) and β > α (dashed).

small dilation approximation (λ ∼ 1), the processional
term related to Beff can be still neglected [32]. In ad-
dition to the linear momentum and angular momentum
approaches applied before, we can apply (r ·∂r)S0 ·(S0×)
on both sides of the LLG equation and then get the equa-
tions of motion along normal direction to the torus mid-
plane,

Ż =
K1Ω −K2Γ (β/α)

K1Ω −K2Γ
ξjz,

Θ̇z = − K2Ω

K1Ω −K2Γ
(1− β/α)ξjz,

λ̇z = −α ΩΛ

K1Ω −K2Γ
(1− β/α)ξjz,

(7)

with Λ = Kz
RRK

z
ΘΘ − (Kz

RΘ)2, K1 = ΩK z
ΘΘ − ΛK z

RΘ ,
and K2 = ΩK z

RΘ − ΛK z
RR. The parameters Kz

RR,
Kz
RΘ , and Kz

ΘΘ are defined as: Kz
RR =

∫
(∂zS0)2dV ,

Kz
RΘ =

∫
∂zS0 · (x∂y − y∂x)S0dV , and Kz

ΘΘ =
∫

[(x∂y −
y∂x)S0]2dV . It needs to be emphasized that in Eq. 6
and Eq. 7, the current direction is relative to the mid-
plane of the hopfion’s torus configuration. During the
hopfion dynamics, the coordinate must be co-rotating as
well.

Combining these equations of motion, the hopfion dy-
namics shown in Fig. 2 can be readily understood in the
following way. The current jx first induces an entan-
gled dynamics including the longitudinal motion (∆X),

transverse motion (∆Y ) and rotations (Θx and Θy). As
the midplane of hopfion starts to deviate from the xy
plane, the current can be decomposed into two compo-
nents, one in the midplane (j‖) and one normal to the
midplane (jz). While the former component is still re-
sponsible for the entangled dynamics mentioned above,
the hopfion motion ∆Z along normal direction starts to
develop according to Eq. 7.

To examine the dynamics in the normal direction, we
study the hopfion dynamics under jz. The correspond-
ing simulation results are summarized in Fig. 3a-c. The
current induces a translational motion of hopfion along
its direction in combination with a dilation and rotation
about z−axis. The dilation type is determined by the
ratio between β and α (Fig. 3c). When β < α, the
hopfion is compressed (expanded) by a negative (posi-
tive) current, and the case is reversed for β > α. While
for β = α, both dilation and rotation are absent. It is
worth mentioning that the expansion and compression
of hopfion are not quite symmetric since there is an en-
ergy barrier to prevent further compression of hopfion in
order to maintain its topology. The velocity of hopfion
vz = Ż here is also linearly proportional to the current
density (Fig. 3b). All these dynamics are well described
by Eqs. 7. Note that at long enough time frame,
the hopfion may become unstable and collapse or
stop moving in the cases with α 6= β since its en-
ergy is increased due to the dilation.

The interesting dilation of hopfion can be also un-
derstood phenomenologically in terms of the skyrmion
string. A QH = 1 hopfion can be recognized as a 2π
twisted skyrmion string with its two ends glued together
and thus a skyrmion-antiskyrmion pair is formed in any
cross-section plane including the z−axis (e.g., xz or yz
plane), similar to that shown in Fig. 1c. To further illus-
trate the hopfion dynamics, the emergent magnetic field
Bi = 1

2εijkS · (∂jS × ∂kS) is calculated based on the
hopfion configuration in Fig. 1c and the Bx is shown in
color in Fig. 3d. The current-driven motion of skyrmion
has a transverse component, i.e., the skyrmion-Hall ef-
fect [21, 31, 35, 36]. The corresponding skyrmion-Hall an-
gle is determined by the topological charge, or in identical
terms, the emergent magnetic field of the skyrmion. More
importantly, sign of the skyrmion-Hall angle depends the
ratio between β and α [21, 37–39] as shown by the ar-
rows in Fig. 3d. As a result, the skyrmion-antiskyrmion
pair shown in Fig. 3d respond to a current in z−direction
by moving towards or away from each other during their
motion along z. Same is true for any cross section slic-
ing the hopfion. When the skyrmion and antiskyrmion
move towards (away from) each other, the hopfion is com-
pressed (expanded). The hopfion dynamics can thus also
be phenomenologically understood as a collective motion
of skyrmion-antiskyrmion pairs, making connection of
soliton dynamics across dimensionality.

Conclusion— Current-driven 3D dynamics of magnetic
hopfion have been studied both analytically and numer-
ically. The hopfion exhibits rich dynamics of entangled
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translation, rotation and dilation. Since our theory is
built on the collective coordinates that is independent of
details of spin interactions, it suggests the universality
of the reported dynamics in all existing and forthcom-
ing hopfion models, not only in magnetism, but also in
other physical systems [5, 20, 40, 41]. Collective dy-
namics of multiple hopfions and hopfion lattices
could also be investigated based on the collec-
tive coordinates [42, 43]. Owing to their novel
topology, hopfions may exhibit non-trivial elec-
tronic signatures and the presence of disorders
may also affect their dynamics by, e.g., modifying
their Hall angles [38, 39]. These interesting dy-
namics could be experimentally access through

topological Hall-type measurements, noise mea-
surements, or 3D x-ray tomography [44–48]. The
rich dynamics hosted by a QH = 1 hopfion further fore-
shadows more exotic dynamics for hopfions with higher
QH and their potentials in spintronic applications [49].
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